
Diagnosing Business Processes Execution using
Choreography Analysis

Diana Borrego, Maŕıa Teresa Gómez-López, Rafael M. Gasca and Irene Barba

Departamento de Lenguajes y Sistemas Informáticos, Universidad de Sevilla, Sevilla, Spain
{dianabn,maytegomez,gasca,irenebr}@us.es

Abstract. This work presents a proposal to diagnose business processes that form
a global process using a choreography analysis. The diagnosis is based on distributed
diagnosis since the business process is formed by a process orchestrations modelled
by a set of activities. These business processes have two different types of activities,
with internal and external interaction. In this paper the knowledge of the whole
business process is divided in different processes. In means that each user has a local
point of view of the information of the organization, it also happens in distributed
system, where neither agent has global information of how the system is modelled.
This work propose a methodology to diagnose the business processes, analyzing only
the interactions between the activities of different processes. In order to perform
the fault detection for business processes, an algorithm has been defined based on
distributed diagnosis. Also some definitions about model-based diagnosis have been
redefined to be adapted to business processes diagnosis.

Keywords: Choreography Analysis, Business Processes Diagnosis, Model-Based Di-
agnosis.

1 Introduction

Currently the business processes can be composed of different subprocess and a large number
of activities that interact by means of a choreography with the same process or another.

Fault diagnosis permits to determine why a business process correctly designed does
not work as it is expected. The diagnosis aim is to detect and to identify the reason of
an unexpected behavior, or in other words, to identify the parts which fail in a process
orchestration. Our proposal is based on DX community approaches [12], [9]. These works
were proposed to find out the discrepancies between the observed and correct behavior of a
system. In this paper we adapt the DX methodology to business processes fault detection.
In the business processes, each user has a local point of view

The traditional diagnostic tools can be considered as a single diagnostic agent with a
model of the whole system to be diagnosed, however, in some systems a single agent ap-
proach is not desirable. Moreover the integration of knowledge into one model of the system
is infeasible if the system is too large, dynamic or distributed over different local entities.
In some systems, the knowledge integration can proceed from different local diagnostic pro-
cesses situated in different nodes (it is called spatially distributed) or from different fields
of expertise (it is called semantically distributed [6]). When a business process is performed
by different users, the full knowledge is unknown since is divided into different process, and
the behavior of the process cannot be studied is a global way. Thereby, the business process
diagnosis can be compared to the distributed diagnosis.

In previous works, the fault diagnosis for systems is classified as follows:

– Centralized approach. In general, traditional model-based diagnosis is centralized,
and the diagnostic algorithm is run on an only system. This system captures all the

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 13

observations in order to perform the global diagnosis. Relating it to business process, it
can be the diagnosis of a business process where all the activities that form the process
are known.

– Decentralized approach. In order to obtain a global diagnosis of a system, a central
coordination process and a local diagnoser for each subsystem that form the whole
system are required. Some examples were presented in [4][10][7], where local diagnosers
are communicated to a coordination process obtaining a global diagnosis. This type of
knowledge distribution can be compared with the orchestration of a set of process to
achieve an objective, where the central agent is in charge of the combination of the
processes.

– Distributed approach. This type of systems represents the aim of this paper. It uses
communication by a set of local diagnosers instead of requiring a global coordination pro-
cess such as in a decentralized approach. In the bibliography, there are several proposals
where there is no centralized control structure or coordination process [1][5][11][13][14].
Each local diagnoser is communicated directly with other diagnosers. In these systems
the model is distributed, the diagnosis is locally generated and the inter-component con-
sistency should be satisfied. Our solution is centered here, where each process that forms
the global business process counts on a local agent which is in charge of the communi-
cation and the local diagnosis. This implies that the different process performs a part of
the choreography to obtain the objective of the full process.

As it has been commented for each type of distribution of systems, this type of prob-
lematic is similar to business processes diagnosis, where the orchestration of the different
processes and the different activities form an unknown process in a global way [15]. In the
case of business processes, each business process does not know the rest of the business
processes that take part in the orchestration to achieve a common objective. Therefore, in
the solution given in this paper each business process counts on a local diagnoser to carry
out the diagnosis tasks. These local diagnosers will communicate between them to carry out
the diagnosis based on external interactions. An important difference of our solution with
respect to previous ones is that it is not necessary to carry out a complete monitorization
of the business processes to know what activities are failing, so that we do not need to
perform the measurement of all the properties related to a running workflow instance. A
previous solution to this problem [8] applies chronicles recognition to monitor and diagnose
the behavior of software components.

The possible mistakes in a business process are: (a) the creation of a model that does
not correspond to the real problem, (b) one or more than one activities are not executed as
it was modelled, and (c) errors in the definition of the interactions between the activities of
a process, or between the activities of different processes.

In order to develop the business process diagnosis, an architecture and an algorithm are
proposed to obtain a precompiled structure that can be monitorizated depending on the
external interactions and makes possible an improvement of the temporal efficiency, since
this structure is prepared offline.

This work is organized as follows: Section 2 presents concepts related to centralized and
distributed diagnosis adapted to business process diagnosis. Section 3 shows the description
of the model of Business process related to distributed approach, and presents a motivating
example to explain our proposal. Section 4 presents the distributed algorithm using the
previous example. Finally, some conclusions and future work are presented.

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 14

Enactment

Evaluation

Design and
Analysis

Configuration

Fig. 1: Business process lifecycle.

2 Fault Diagnosis of Business Processes

Fault detection and identification of faulty activities of business processes are very important
from the strategic point of view of the industries, since the economic demands and required
environment conservation to remain in competitive markets.

This paper presents a new solution to diagnose business processes. In order to do that,
the monitorization of a running workflow instance takes place. But this monitorization is
only linked to some checkpoints, that must be determined previously. By means of this
monitorization and the execution of a choreography analysis, an equivalent structure is
obtained offline, which will be used to perform both local and global diagnosis, getting a
high computational efficiency. This equivalent structure represents the relations among the
different business processes and their external interactions, so that the local and global
diagnosis can be performed without any information about the internal interactions of the
different activities.

The diagnosis of the business processes will be carried out from information obtained
from the checkpoints, indicating whether the events of the processes are correct or incorrect.

The business process lifecycle consists of four phases related to each other and organized
in a cyclical way, where their dependencies can be detected. Fig. 1 represents the lifecycle
of a business process. In the Design and Analysis phase, an analysis of the environment
takes place, identifying needs and defining requirements, and finally designing and modelling
the business process. In the Configuration phase, the business process is implemented, and
the project preparation and realization is done. In the Enactment phase, an execution or
deployment of the business process is carried out. Finally, in the Evaluation phase, the
business process is monitored. The diagnosis process is included within the enactment phase,
where after the execution of the different activities it is possible to detect an abnormal
behavior of the choreography.

The kind of process choreography to diagnose S is formed by a finite set of business
processes {BP1, BP2, ..., BPn}, which are related among them using external interactions
{s1, s2, ..., sp}. Also, the choreography has start events {i1, i2, ..., iq} and end events {o1,
o2, ..., or}. This implies that, in the business process under study there are three types
of information: start and end events; internal interactions (only used within each business
process) and external interactions (events among activities of different business processes).
The external information is necessary to perform the local diagnosis.

Each business process (BPi) is formed by a set of activities ({Ai1, Ai2, . . . , Aik}). The
activities of a business process interchange incoming and outgoing interaction information.
The incoming interaction information represent the inputs and the outgoing interaction in-
formation contains the results of the different activities. Both kind of interaction information
are the internal and external interactions with activities in the same or in a different business
process respectively.

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 15

In local and distributed diagnosis, the concepts of Context Sets and Clusters were defined
[2], and in this paper these ideas are adapted for business process diagnosis:

Definition 2.1. Context Set (CS): Any subset of activities of a business process. There
are 2nactiv − 1 possible context sets, where nactiv is the number of activities of the business
process.

Defining a business process as a directed graph, where nodes represent the different
activities, and the directed edges are the internal and external interactions:

Definition 2.2. Cluster (C): A connected component of the graph. The clusters of each
business process will be taken into account in the local diagnosis process.

In our proposal, the process choreography (S) has an oracle which checks the end events,
that are the checkpoints, finding out if they are correct (OK) or incorrect (KO).

Each business process involved in the process choreography has its own set of activities
and requirements. Furthermore, each business process has associated an agent, which is in
charge of the propagation and diagnosis tasks:

Definition 2.3. SAgenti: Agent associated to BPi that process incoming interaction
information, performs local diagnosis and sends outgoing interaction information.

3 Motivating Example

In order to explain our proposal, we are going to use the example shown in Fig. 2, where
there are four business processes, (BP1, BP2, BP3 and BP4).

In the example, the different business processes with their respective information are:

– BP1 with the start event {i1} and {s1, s2} as external interactions.
– BP2 with the start event {i2} and {s1, s2, s3, s4, s5, s6, s7} as external interactions.
– BP3 with no start events and {s3, s4, s5, s6, s7, s8, s9, s10, s11} as external interactions.

Fig. 2: Example of Business Processes.

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 16

– BP4 with the start event {i3} and {s6, s7, s9, s10, s11} as external interactions.

The rest of the interactions in the processes and the activities are internal, and the are only
known by the own process internally.

Each business process has a table where the relation between the non internal events
and the rest of process (BP1, BP2, BP3 and BP4 for our example) is stored. That is, each
business process knows how it is connected to other business processes by means of the
different external interactions. Each business process does not know how the rest of the
business processes are formed, only knows from what business processes have to receive
incoming interaction information and towards what business processes have to send outgoing
interaction information.

Once all the business processes know whether they are related to any incorrect output
events, the diagnosis is solved locally in each business process (selfdiagnosis for each business
process).

4 Logic and Distributed Algorithm

The SAgent of each business process connected to the end events of the receives information
from an oracle about what end events are correct or incorrect. Based on this information,
an algorithm which involves the process choreography takes place, and each SAgent can
determine the local diagnosis that can be merged with the rest of the business processes. To
carry out the steps of this algorithm, it is necessary to send interaction information among
the different SAgents. For this reason, we suppose that the sending of information is always
possible. In general, the distributed diagnosis process has four different phases to obtain the
global diagnosis. Although we are going to use an example to explain all the relevant details,
the main steps of the algorithm are:

– Determining the local clusters: In each business process involved in the process,
an offline choreography analysis is executed by the SAgent. The results of this step are
the different clusters (according to definition 2.2) of each business process, that form
an equivalent structure which is used in the rest of the steps to improve the temporal
efficiency of the diagnosis process.

– Receiving the oracle: Each SAgent related to the end events ({o1, o2, o3, o4, o5, o6,
o7} in the example shown in Fig. 2) receives incoming interaction information from the
oracle with the information about the outputs that fail.

– Propagation phase: When a SAgent receives incoming interaction information with
the information about what external interactions can be failing, an internal algorithm
to decide which interactions could be correct or incorrect takes place. As a result of
this algorithm, each SAgent sends outgoing interaction information to the SAgents of
its neighbor business processes informing about the correct and incorrect interactions
detected. This interaction information will travel from the business processes related to
the end events ({o1, o2, o3, o4, o5, o6, o7} in the example) to the business processes
that receive the start events ({i1, i2, i3} in the example).

– Local diagnosis phase: Depending on the received interaction information, each SAgents
has to decide if the local diagnosis is necessary.

In order to improve the computational complexity, the first step of the algorithm to
determine the local clusters is perform offline and only once, so that the next steps are
based on the precompiled structure to carry out the diagnoses.

The steps of this algorithm are represented in Fig. 3, and will be explained in more detail
using the example shown in Fig. 2.

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 17

Offline analysis Online process

Determining
the local
clusters

Receiving
the oracle

Propagation
phase

Local
diagnosis

phase

Fig. 3: Steps of the algorithm.

4.1 Determining the Local Clusters

In order to obtain the clusters of each business process, a choreography analysis takes place.
Each SAgent derives the local clusters, which are formed by a set of activities linked through
external and internal interactions (structural dependence), and not connected through in-
ternal interactions with the activities of a different cluster.

To know if an activity is working correctly is possible analyzing their outputs, inputs
or other activities related to it by external or internal interactions. Within each cluster,
there exist internal subsets (IS). The idea of an IS is to build a set of activities where the
external and internal interactions are in more than one activity to derive the diagnosis using
choreography analysis. In order to clarify it, new notations are used:

External(Aij) are the external interactions (shared information) for the activity Aij

Internal(Aij) are the internal interactions (private information) for the activity Aij

Definition 4.1. Internal Subset (IS) for a cluster in a business process BPi is a set of
activities, where for each one of its activities Aij :

∀ v | v ∈ Input(Aij): v ∈ {i1, . . ., iq}
∨ (v ∈ Internal(Aij) ∧ ∃ Aik �= Aij | Aik ∈ IS | v ∈ Output(Aik))
∨ (v ∈ External(Aij) ∧ ∃ Aik �= Aij | Aik ∈ IS | v ∈ Output(Aik))
∨ (v ∈ External(Aij) ∧ v ∈ External(Ajk) | Ajk ∈ BPj �= BPi)

∀ v | v ∈ Output(Aij): v ∈ {o1, . . ., or}
∨ (v ∈ Internal(Aij) ∧ ∃ Aik �= Aij | Aik ∈ IS | v ∈ Input(Aik)) ∨ (v ∈ External(Aij))

and for the set of activities that form each internal subset IS:

∀ v | v ∈ Input(IS): v ∈ Input(Aij) ∧ Aij ∈ IS ∧ (v ∈ {i1, . . ., iq} ∨ v ∈ External(Aij))
∀ v | v ∈ Output(IS): v ∈ Output(Aij) ∧ Aij ∈ IS

∧ (v ∈ {o1, . . ., or} ∨ (v ∈ External(Aij) ∧ �∃ Aik �= Aij | Aik ∈ IS ∧ v ∈ External(Aik)))

For the example, the different clusters calculated by the SAgents are:

– SAgent1: {A11, A12, A13, A14, A15 and A16}
– SAgent2: {A21, A22 and A23} and {A24, A25, A26, A27, A28 and A29}
– SAgent3: {A31} and {A32 and A33}
– SAgent4: {A41, A42 and A43} and {A44 and A45}

For example, the activities {A21, A22, A25} form a new cluster with three internal
subsets as it is shown in Fig. 4.

This new cluster works as a black box for the rest of the SAgents, and its activities can
be connected with other clusters by external interactions.

In general, the different SAgents form a new system where the external interactions
establish the local connection between the different business processes, as it is shown in Fig.
5. This obtained structure will be used in the rest of the algorithm to carry out the diagnosis
process. This structure, customized for the diagnosis process, is prepared offline, and will be
used to perform the local diagnosis phase, building a table with the relations between the
activities and the external interactions that compose each business process.

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 18

A21 A22
A21

i2

s4

s3

A21 A23
o3

Fig. 4: A local cluster with three ISs.

4.2 Receiving the Oracle

The process choreography depends on an oracle which is able to determine the end events
that can be failing.

Each SAgent related to the end events ({o1, o2, o3, o4, o5, o6, o7} in the example shown
in Fig. 2) receives interaction information from the oracle with the information about all
the end events, indicating whether they are wrong or correct. In case of all the end events
are correct, it is not necessary any propagation or diagnosis, because all the activities are
working correctly. When at least an end event is wrong, the process to determine what
activity does not work correctly starts. The diagnosis process starts in this step.

4.3 Propagation Phase

In order to explain next steps of the algorithm, these new definitions have to be introduced:
Definition 4.2. Possible Incorrect Event (PIE): It is an external interaction related to

an incorrect end event. An interaction is related to an end event if when the interaction
changes, the end event also changes.

Definition 4.3. Correct Event (CE): It is an external interaction related to a correct
end event. If an interaction is related to a correct end event and an incorrect end event
simultaneously, the interaction is defined as a Correct Event, since we suppose that two
incorrect activities cannot generate a correct end event.

Depending on the end events, it is possible to know if the process choreography is working
correctly. In order to know which activities are failing, the external interactions between the
business processes are used to infer which interactions are failing. For example, for the local
cluster shown in Fig. 4, being s3 a PIE and s4 a CE. It means that the activity A21 is
failing, but it is not possible because if the external interaction s4 is correct, the activity
A21 would be correct. It means that the external interaction s3 considered as a PIE actually

A21 A22

A21
i2 s1 o3

s3

A31

A32

A41 A42

A44 A45

s7i3 s3

s8s9 s10

s9s7

o7s6
s11

A11 A12 A13 A15
A16

A11 A12 A13 A15

A11 A12 A13 A14

A11 A12

i1 o2

o1
s1

s2

BP1 BP3

BP4

BP2

A24 A26 A27 A29

A24 A26 A27 A28

A24 A26 A27

A24 A25

s2 s8 o6

s6
o4

o5

A21 A23

A24

s4

s5

A33s5 s8

s4

A41 A43 s10

s11

Fig. 5: Clusters and ISs of the process choreography.

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 19

it is not an incorrect event. If an interaction is correct all the activities associated to the IS
of this interaction are correct. A PIE will be an IE if it has at least one activity that is not
a correct activity. This idea is described in the following definition:

Definition 4.4. Incorrect Event (IE): Given the set ExternalInteractions(ISi) that are
output events of ISi, e is an IE if it is a PIE and ∃ Akl ∈ ISi | ∀ ISj : j ∈ 1 . . . n ∧ i �= j

� ∃ e’ : e’ is a CE ∧ v’ ∈ ExternalInteractions(ISj) ∧ Akl ∈ ISj

On this step of the algorithm, some interaction information is exchanged between the
business processes. This is information about the CE s and PIE s, and the traffic direction
goes from the clusters related to the end events {o1, . . . , or} to the clusters which provide
them the start events {i1, . . . , iq}.

Therefore, according to the previous definition, the definition of CE is reinforced with
this new concept, since a CE is also a event that is not an Incorrect Event.

In the previous step of the algorithm, the oracle sends the evaluation of the end events
to the SAgents with clusters related to them, indicating which ones are correct (OK) or
incorrect (KO). In this step these SAgents are able to infer what external interactions are
CE s or IE s according to definition 4.4, and to send this interaction information to the
business processes to which they are linked through their input events.

In order to do that, each SAgent needs to receive the information about all the outputs
os a cluster before inferring whether the external interactions of that cluster are CE s or IE s.
Therefore, the propagation will take place as the information of the outputs of the clusters
is known by the SAgents. This is not a linear process since several business process can
have clusters with a dependency between them. This is, for example, if a business process
BPa has the clusters Cx and Cy, and another business process BPb has the cluster Cz,
it is possible that Cx depends on Cz, that depends on Cy. In this example, to carry out
the propagation, the SAgent of BPa waits for all the information about the outputs of Cx
to propagate to Cz. In the same way, the SAgent of BPb will propagate from Cz to Cy
when it has all the information about Cz. So, both SAgents have interchanged interaction
information in both directions.

The interaction information sent by the SAgents are of the form shown in Fig. 6.

OKOK Message source

KOKO Message incorrect
events sourcecorrect

events

correct
events

Fig. 6: Format of the interaction information.

These messages carry the following information:

– OK/KO field: type of information.
– Correct events field: the external interactions labelled as CEs by the SAgent of the

business process source of the interaction information.
– Incorrect events field: the external interactions labelled as PIEs by the SAgent of

the business process source of the interaction information.
– Source field: indicates the source of the interaction information. It can be a neighbor

business process or the oracle to indicate the beginning of the diagnosis process.

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 20

The procedures in the algorithms 1, 2, 3 and 4 describe the behavior of a SAgent after
receiving an OK or a KO interaction information.

Algorithm 1: Receiving a KO interaction information
Input: interactionInformation(KO, XOK , XKO, BPi)
begin

label as CEs the external interactions which are in XOK ;
foreach external interaction e in XOK do

if e is not labelled as CE then
label e as PIE;

if the SAgent has received the incoming interaction information from all the
business processes related to the outputs of the cluster C then

checkEvents(C);
propagateInformation(C);

if the SAgent has not received the incoming interaction information from all the
business processes related to its outputs then

wait for the rest of the incoming interaction information;
end

Algorithm 2: Receiving an OK interaction information
Input: interactionInformation(OK, XOK , BPi)
begin

label the external interactions which are in XOK as CEs;
if the SAgent has received the incoming interaction information from all the
business processes related to the outputs of the cluster Cx then

checkEvents(Cx);
propagateInformation();

if the SAgent has not received the incoming interaction information from all the
business processes related to its outputs then

wait for the rest of the incoming interaction information;
end

Algorithm 3: Procedure for labelling events as correct or incorrect
checkEvents(Cluster C):
begin

/*definition 4.4*/
foreach event e labelled as a PIE do

if C ∈ ISi and Akl is an activity of ISi and not exists another ISj that
contains Akl with an event e′ labelled as a CE and e′ is different from e and e′

belongs to Output(ISj) then
label e as an IE;

else
label e as a CE;

foreach output event e labelled as IE do
label as PIE the events which are inputs of the ISs where e is an output;

end

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 21

Algorithm 4: Procedure for propagating information
propagateInformation (Cluster C):
begin

foreach BPi related to C by the set of interactions X do
if exists a subset of events Xi which are inputs of C and outputs of BPi and
are labelled as PIEs then

send the interaction information (KO,X − Xi, Xi, this) to the SAgenti;
else

send the interaction information (OK, X, this) to the SAgenti;

end

The different clusters are connected by means of external interactions. For example, if
o5, o6, and o7 are KO, and the rest of the end events are OK, the sent information is as
follows:

– The oracle sends interaction information to SAgent1, SAgent2 and SAgent4 indicating
that o5, o6, and o7 are the incorrect end events.

– SAgent4 has all the information about the outputs of one of its clusters. Therefore, it
labels o7 as IE and propagates to SAgent3 and SAgent2 that s11 and s6 are PIEs.

– SAgent3 has all the information about the outputs of one of its clusters (s11 is PIE). It
propagates to SAgent2 that s5 and s8 are incorrect.

– SAgent2 has all the information about its biggest cluster (o5, o6, s5 and s6 are incorrect,
and o4 is OK). According to definition 4.4, s2 and s8 are CEs, and this is the information
propagated to SAgent3 and SAgent1.

– SAgent3 had different kinds of information about s8 (CE and PIE simultaneously),
therefore s8 is labelled as a CE. SAgent3 can determine that s4, s9 and s10 are CE s.

– etc.

This process finishes when all the SAgents have propagated all the interaction informa-
tion about the inputs of all their clusters, so that the local diagnosis phase can start.

4.4 Local Diagnosis Phase

Using the information collected from the previous step, the local diagnosis is executed by
the SAgents which have any IE events.

The local diagnosis process has two phases (offline and online):

(i). To build a signature matrix: With the information obtained from Section 4.1, a
signature matrix is created. This matrix relates each external interaction and end events
of the business process with the activities of the ISs where this interaction participates.
The matrix has number of interactions and end events rows and number of activities
columns. This process is done only once, storing precompiled information. The con-
struction of the matrix is an adaptation of the algorithm presented in [3] for business
processes. An example is shown in Fig. 7(a) that represents the signature matrix for one
of the clusters of BP2 in the example.

(ii). When the IEs are known, only the part of the matrix related to the possible wrong
activities is analyzed. It means that only the rows of the IEs and the activities non
related to any CE will participate in the local diagnosis. With this subset of relations
among interactions, end events and activities, the set of activities which are not working
correctly must be found. According to diagnosis theory, the best way to do that is
calculating the hitting sets and minimal hitting sets, whose definition is as follows:
Definition 4.5 Hitting Set (HS) for a collection of components C is a set of components
H ⊆ ⋃

S∈C S such that H contains at least one element for each S ∈ C. A HS of C is

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 22

A24 A25 A26 A27 A28 A29
o6 X X X X
o5 X X X X
s6 X X X
o4 X X
s5 X

A26 A27 A28
o6 X X
o5 X X X
s6 X X

A29
X

a) b)

Fig. 7: Signature matrix of a cluster of BP2.

minimal iff no proper subset of it is a HS of C. The minimal HSs for a set of sets are
formed by {H1,H2, . . . Hn}, where Hi is a minimal HS of components. The cardinality
of Hi (|Hi|) is the number of components of Hi. This definition can be adapted to
activities instead of components.
In the case of the matrix, each set will be formed by the activities of each row of the
matrix related to any IE, so that C = {S1,S2, . . . Sn}, where each Si is the set of software
processes related to each IE. In Fig. 7(b) appears the part of the signature matrix of
the cluster analyzed to perform the local diagnosis if o5 and o6 are KO and, therefore,
s6 is IE.
Finally, the minimal hitting sets are the diagnosis of the business processes. For the
example in Fig. 7(b) there are two minimal hitting sets, which are {A26} and {A27}.

(iii). The local diagnosis can be improved storing all the final diagnosis according to the
IEs. It means that if an IE has already been analyzed, the diagnosis will be very
efficient. Each SAgent counts on a local list where it stores the fault signature from the
local diagnosis executed until that moment, so that when a SAgent has to diagnose its
activities, previously it checks whether it has already done the same diagnosis before.
Each element of the lists contains two fields with the next information:
(a) External interactions labelled as IEs.
(b) Activities which can fail according to the IEs detected.
The local diagnosis results depend on the subset of external subsets which are IEs, since
two different analysis with the same set of IEs will obtain the same minimal hitting sets
of activities. Using a local list to store previous results makes possible a faster process
of diagnosis, because of the reutilization of the information obtained so that it is not
necessary to carry out the same analysis twice.

Finally, the global diagnosis Dg can be seen as the union of all the local diagnosis: Dg

= D1 ∪ D2 ∪ ... ∪ Dn, being n the number of business processes.
According to our example, Table 1 shows some example results of the self-diagnosis on

each business process, presenting what activities can be failing.

Table 1: Diagnosis Results for each Business Process

KO end BP1 BP2 BP3 BP4
events

{o5, o6, o7} - {A23} {A26} {A31} {A32} {A41} {SA44}
{A27} {A45}

{o2, o4} {A16} {A25} - -

{o3, o5, o7} - {A21} {A28} {A31} {A32} {A41} {SA44}
{A33} {A45}

{o1, o3, o4} {A14} {A22} {A25} - -

{o1, o2, o6} {A14, A15} {A29} - -
{A14, A16}

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 23

5 Conclusions and Future Work

In this work how to perform the diagnosis of business processes is presented. These business
processes work with public and private information (external and internal interactions), and
the diagnosis process can be performed without needing to know neither all the information
nor the business process model. By means of the use of previously compiled knowledge,
a high temporal efficiency is obtained, since the preparation of an equivalent structure is
performed offline.

Our proposal of fault diagnosis is an innovative solution to the diagnosis of business
processes, although it does not find the global minimal diagnosis, since the set of activities
found as a solution is not a global minimal hitting set.

As future work, we will work in the detection of other kinds of failures in business
processes, such as the errors derived from the creation of a model that does not correspond
to the real problem, or errors in the definition of the interaction between the activities of a
process, or between the activities of different processes.

Acknowledgment

This work has been partially funded by the Ministry of Education and Science of Spain (DPI2006-

15476-C02-01) and European Regional Development Fund(ERDF/FEDER).

References

1. R Bianchini and R Buskens, Implementation of on-line distributed system-level diagnosis theory.
2. D Borrego, M T Gómez-López and R M Gasca, Diagnosing distributed systems using only

structural and qualitative information. International Transactions on Systems Science and
Applications (to appear), 2008.

3. R Ceballos, M T Gomez-Lopez, R M Gasca and C del Valle, A compiled model for faults
diagnosis based on different techniques. AI Commun., Vol. 20, No. 1, 2007, pp. 7–16.

4. R Debouk, S Lafortune and D Teneketzis, Coordinated decentralized protocols for failure
diagnosis of discrete-event systems.

5. E Fabre, A Benveniste and C Jard, Distributed diagnosis for large discrete event dynamic
systems. 15th IFAC World Congress, Barcelona 2002.

6. P Frohlich, I de Almeida Mora, W Nejdl and M Schroeder, Diagnostic agents for distributed
systems. ModelAge Workshop 1997, pp. 173–186.

7. M T Gomez-Lopez, R M Gasca, C D Valle and S Pozo, Distributed model-based diagnosis
using object-relational constraint databases.. AINA (2) 2006, pp. 866–870.

8. X L Guillou, M O Cordier, S Robin and L Rozé, Chronicles for on-line diagnosis of distributed
systems. Research Report. ftp://ftp.irisa.fr/techreports/2008/PI-1890.pdf 2008.

9. J D Kleer, A Mackworth and R Reiter, Characterizing diagnoses and systems. Artificial
Intelligence 56, Vol. 2-3, 1992, pp. 197–222.

10. Y Pencole, Decentralized diagnosier approach: application to telecommunication networks. 13th
International Workshop on Principles of Diagnosis 2000, pp. 185–192.

11. G Provan, A model-based diagnosis framework for distributed systems.
12. R Reiter, A theory of diagnosis from first principles. Artificial Intelligence 32, Vol. 1, 1987,

pp. 57–96.
13. I Roychoudhury, G Biswas, X Koutsoukos and S Abdelwahed, Designing distributed diagnosers

for complex physical systems.. 16th International Workshop on Principles of Diagnosis 2005,
pp. 31–36.

14. R Su and W M Wonham, A model of component consistency in distributed diagnosis.. 15th
International Workshop on Principles of Diagnosis 2004, pp. 62–68.

15. M Weske, Business Process Management: Concepts, Languages, Architectures, Springer-Verlag,
2007.

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 24

