ISSN 1988-3455

Actas de los Talleres de las Jornadas de Ingenieria del Software y Bases de Datos, Vol. 2, No. 1, 2008

QoS-Aware Services composition using Tabu
Search and Hybrid Genetic Algorithms

Jose Antonio Parejo
Pablo Fernandez
Antonio Ruiz Cortés

Dept. Computer Languages and Systems.
University of Sevilla

Abstract. In a distributed services oriented environment, having a myr-
iad of functionally equivalent services, Quality of Service(QoS) emerges
as the key differential factor. In this scenario organizations can dynami-
cally select partners for their core business processes expressed as Com-
posite Web Services (CWS). As a consequence, QoS-aware composition
should drive an effective selection by optimizing different factors and
meeting constraints according to preferences of organizations. QoS-aware
composition can be formulated as a NP-hard optimization problem. In
order to deal with this hard problem, different heuristic techniques (such
as genetic algorithms with different solution encodings or simulated an-
nealing) had been proposed in the literature. In this paper we apply
metaheuristic optimization techniques to this problem, specifically tabu
search and an hybrid genetic algorithm. We compare these techniques
with other proposals using experimental results, showing that our pro-
posals provide improvements.

1 Introduction

In a distributed environment of services, organizations can dynamically select
partners for their core business processes. Those business processes are imple-
mented as Composite Web Services (CWS), typically expressed using BPEL. In
this context, QoS properties (such as cost, performance and reliability) are key
factors for selecting and composing services. QoS-aware selection of concrete ser-
vices to support the composition can be formulated as an optimization problem
2] [4.

In this paper we afford the QoS-aware service selection problem using a frame-
work solution that boosts the adoption of different metaheuristic techniques
using a common runtime. Main contributions of the paper are shown below:

1. We pioneer the application of some heuristic techniques applied to this novel
problem, such as tabu search (TS) and a hybrid variant of genetic algorithm
(HGA).

2. We present the results of a empirical study of the performance of these
techniques compared with other heuristics, such as a basic genetic algorithm
(GA), and iterative steepest descent method (ISD). The results shown:

SISTEDES, 2008

55

Actas de los Talleres de las Jornadas de Ingenieria del Software y Bases de Datos, Vol. 2, No. 1, 2008

— Our implementation of the hybrid genetic algorithm performs better
than the rest of techniques on large instances of the problem -providing
better solutions for nearly all runs-.

— Our implementation of tabu search performs better than GA and ISD,
but show a less stable behavior than HGA and only performs better on
small-medium instances of the problem -between 10 and 30 tasks and
less than 300 candidate services- with short computation times.

The rest of the paper is organized as follows: Section 2 gives a formal defini-
tion of the Composite Web Service Selection problem. In section 3 we describe
optimization framework, and comment their advantages for the purpose of this
paper, while in section 4 we introduce innovative techniques to deal with the
problem. In section 5 we present the empirical study and discuss their results.
Section 6 describes context and related work. Finally, in section 7 conclusions
are drawn.

2 Composite Web Service Selection Problem definition

There are different languages that could be used to specify the composite web
services, from UML activity diagrams, to BPMN or BPEL. In the remainder of
the paper, we assume that the language used to express the composition contains
a set of basic construction blocks (This set is summarized in table 1).

Table 1. Basic building blocks of the composite web service description language

basic Building Block|Description

Sequence Denotes a sequential execution of a set of tasks

Switch Denotes an alternative choice of the execution between sets of tasks
Fork Denotes a parallel asynchronous execution of different sets of tasks
Loop Denotes an iterative execution of a sequence of tasks

The composition will be expressed in terms of abstract services (tasks in
the remainder of the paper). There exists a set of concrete candidate services
for each task, that are functionally equivalent but have different behavior in
terms of quality properties. In this sense, the solution space of the composite
web service selection problem, is defined by all the possible combinations of
candidate services for each task. We assume that each composite web service
includes a single entry and exit task.

Given the previous composite web service definition and constraints the con-
cept of execution path can be defined as in [3]: A sequence of tasks (abstract
services) {t1,ta,...,tn} such that ¢; is the initial task of the composition, ¢, is
the final task, and no t; belongs to alternative branches’. Execution paths will
be denoted by epy.

As remarked in [3], for each execution path epy a probability of execution fregy

ISSN 1988-3455 SISTEDES, 2008

ISSN 1988-3455

Actas de los Talleres de las Jornadas de Ingenieria del Software y Bases de Datos, Vol. 2, No. 1, 2008

-

Sequence

__. Probability of
Pa= ’

= Probability of
branch a =

branch b

I
|
|
Funclmnal:},— ?: : Tos &
| oo - - (30
I

-) QoS
Building Blocks Process Functional spec. of Tasks Candidate Properties
Types Strucutre (Abstract Web Services S;/r\(/?bes Of Candidate
WSDL) c Web Services
Entry Task —-----= >

- >
-2

QoS &y
>

| =
__{W}___>:

p+p,=1 IL___

|
|
|
Switch |
|
|
|
|-
Average
J— k= numberof
| Iterations
|
|
|
Loop |
|
|
|
L
| ;
. | G- — > [0g
| OoS ™
Fork | —>[F§:2‘;‘.’T":]““> - > Lo]
| | G- — >[5
|
|
Exit Task

Fig. 1. Building blocks, process specifications and concrete services

Concrete |
Service 1.M
Concrete |
Service 1 .M-1:‘_' Concrete
Concrete | Service N.L
Service 1.M-2 Concrete
I 1 — Service N.L-1
Liflal
Concrete ‘ [
Service 1.3 | 7 | Conerete
Concrete | | Service N.2
Service 1.2 | | Concrete
Conaele — | & Service N.1
Service 1.1

T[T~

T[T+]

Absfracl Abstract Abstract

Abslract Abstract

Service1 Service2 Serviced Service N-1Serviee N

Fig. 2. Solution encoding

SISTEDES, 2008

57

ISSN 1988-3455

Actas de los Talleres de las Jornadas de Ingenieria del Software y Bases de Datos, Vol. 2, No. 1, 2008

can be computed as the product of the probability of execution of the branch
conditions included in epy. For a composite web service described in any language
using the specified building blocks, and according to the stated constraints, all
possible execution paths can be built using a simple algorithm.

2.1 QoS Model for Composite Web Services

In this paper, the quality model is based on a set of quality dimensions, which
had been used in [3] and [5]. The approach to compute the global QoS of a
selection of concrete services for an abstract composite web service is similar to
the proposal stated in [5] and [7]. This formulation had been used extensively
in the literature with some variations, mainly in the treatment of loops [3] [22].
In our work loops are annotated with an average number of executions k, and
the computation of the overall quality values of the loop execution is based
on this value. In a similar way, each choice of a switch is annotated with a
probability of execution. In table 2 we summarize the aggregation functions
applied for each QoS property defined for the composition of web services. The

Table 2. Aggregation functions per QoS Attribute

QoS Property Aggregation Functions
Cost (c) Yo c
Time (t) Yor ot
Reliability (rel) [1, rel;

T
i=1"€Pq

Reputation (rep) L
Security (sec) min}, sec;
Custom attribute (atr) F(attr;)

i€l...n

fitness of a solution is computed by the evaluation of the set of execution paths
that conform the description of the composite web service multiplied by their
probability of execution freqr. We obtain the fitness of each execution path
using each quality properties of the selected concrete services for each task,
and applying a Simple Additive Weighting. The specific value of freqy for each
execution path is obtained by monitoring the execution of the composite web
service. In our model of composite web service selection it is possible to impose
global and local constraints on quality dimensions, and concrete web services
dependency constraints as in [3]. For the inclusion of the constraints in the fitness
function we have used a relative weight over the feasibility distance as in [5]. We
define the feasibility distance D () as the number of not meet constraints divided
by the total number of constraints. Our final Fitness function for a solution s is:

f’itness(s) = (]- - wfeasibility) * (Z fitness(epka 8) * f’“e(Ik) +wfeasibility * Df(S)

(1)

where:

SISTEDES, 2008

58

ISSN 1988-3455

Actas de los Talleres de las Jornadas de Ingenieria del Software y Bases de Datos, Vol. 2, No. 1, 2008

fitness(epr,) = Weost * Cost(epk, $) + Wiime * Time(epy, s) +
Wre * Reliability(epg, $) + Wrep * Reputation(epy, s) + Wsee * Security(epy, s)

(2)
From the previous definition, we can state that the value of wycqsivitity controls
the penality we apply to individuals that violate constraints.

2.2 General solution encoding

In order to apply optimization techniques to our problem we must provide a
suitable encoding of solutions. In our solution encoding we have used a structure
similar to the vector-based encoding described in [5]. Solutions are encoded as a
vector of integer values, with a size equal to the number of tasks. Each value in
this vector represents the concrete service selected for each task. In figure 2 we
show the structure graphically.

3 Optimization Framework

Most metaheuristic approaches for discrete optimization problems are usually
implemented from scratch. In this paper we have used FOM [15] (Framework
for Optimization using Metaheuristics), an object-oriented framework that can
be used as a general tool for solving optimization problems using metaheuris-
tics. The basic idea behind the framework is to separate the problem from the
metaheuristic algorithms used to solve it. This separation allows to fully reuse
different metaheuristic optimization components, and partially reuse problem
definition in terms of the framework. In this sense, different metaheuristic tech-
niques can benefit from a common solution encoding. Moreover, typically local
search techniques based on neighborhood exploration (such as tabu search or
simulated annealing), can use a common neighborhood generation structure.
From this point of view, the usage of the framework for the purpose of this
paper is fully justified, because we need to implement different heuristics and
compare their results. In so doing, the usage of the framework reduces signifi-
cantly the implementation effort and providing other benefits such as declarative
configuration and parametrization of termination criteria, monitoring of different
parameters during optimization process (including heuristic-specific parameters
such as population diversity or number or rejected tabu moves per iteration).

4 Description of the Proposed Techniques

4.1 Tabu Search

Tabu search is based on a intelligent exploration of the solutions neighborhood
[11], and had been extensively used because of their simplicity and practical

SISTEDES, 2008

59

ISSN 1988-3455

Actas de los Talleres de las Jornadas de Ingenieria del Software y Bases de Datos, Vol. 2, No. 1, 2008

effectiveness. In order to apply this technique to our problem, we must define
the neighborhood of our solutions. Given a solution S defined using our general
solution encoding, a different solution S,, will be a neighbor of S if there exists a
simple move that applied to S, has as result S. We define a simple movement as
change in the selected concrete service for a given task defined in the composition.
One of the most basic intelligent exploration strategies in tabu search is the
usage of recent memory, that is usually implemented using a tabu list in order
to avoid reverse moves -that typically generate cycles in the search path and
lost of effectiveness-. In our implementation we use a fixed size list with a most
recently used policy of insertion. In addition to the core tabu technique, our
search algorithm incorporates an aspiration condition. This extension allows that
tabu conditions do not prohibit the exploration of really promising solutions. In
this sense, if a tabu move improves the best solution found, it will be applied.

4.2 Hybrid Genetic Algorithm

Genetic algorithms maintain a population of individuals that represent more or
less efficient solutions to the problem [12]. This population evolves along genera-
tions until a termination criterion is reached. During each generation, operators
are applied to the individuals generating changes in the individuals and the
whole population. Our initial population is generated randomly, and we use the
standard two-points crossover operator [9] and a mutation operator that selects
the concrete service associated to a task and selects randomly a different service
from the set of candidates.

Local improver: Various strategies of hybridization have been suggested in
the literature when using genetic algorithms [18]. The usage of hybrid techniques
allows to escape from local optima convergence and improve the convergence
speed to the global optimum. In this paper we use a local improvement proce-
dure. This procedure is based on an iterative neighborhood search so that a given
solution is replaced with best neighbor found. In our initial implementation we
explored the whole neighborhood of each individual of the population. However,
the computational cost of this exploration for each individual prevents from the
execution of enough evolution iterations to provide a sufficient diversification of
search in the solution space. In this work we propose the random exploration of
a percentage of the neighborhood.

5 Experimental Results

We have tested our composite web service problem model and algorithms in wide
set of instances. Those instances are randomly generated based on a problem
model by a problem generator. Additionally, we have designed experiments that
are executed a repeatedly for each generated problems. The execution of the
algorithms had been performed on a 2.7 GHz Dual Core Intel CPU, with 2

SISTEDES, 2008

60

ISSN 1988-3455

Actas de los Talleres de las Jornadas de Ingenieria del Software y Bases de Datos, Vol. 2, No. 1, 2008

Table 3. Statistic Data models used to generate our problem instances

Data

Stat. Dist. (Small-Medium)

Stat. Dist. (Medium-Large)

Tasks

Uniform(min:4, min:20)

Uniform(min:20, max:60)

Execution paths

min:4 max: 20

Tasks per execution path

Uniform

Uniform()
(min:4, max:20)

Uniform(min:20 max: 60)
Uniform(min:10, max:60)

Candidate services per task| Uniform(min: 2, max:15) | Uniform(min: 15, max:30)
Value of Cost Uniform(min:0.1, max:1) | Uniform(min:0.1, max:1)
Value of Time Uniform(min:0.1, max:1) | Uniform(min:0.1, max:1)

Value of Reliability

Uniform(min:0.9 max:1)

Uniform(min:0.9 max:1)

Value of Reputation

Value of Security

Uniform(min:0.1, max:1)
Uniform(min:0.5, max:1)

Uniform(min:0.1, max:1)
()

Uniform(min:0.5, max:1

GB of RAM. In table 3 we summarize the data used to generate our problem

instances.

In our experimental results we have applied 4 different optimization tech-
niques, whose parameters are summarized below:

— A basic genetic algorithm (GA).

Population size: 50 individuals.
Crossover probability: 0.7
Mutation probability: 0.1
Random selection for mutation.

e Tournament of three individuals for selection for Crossover.
— The hybrid genetic algorithm described previously in this work (HGA).
e Population size: 50 individuals.
e Crossover probability: 0.7 (it is also the value of death rate, because the
size of our population is constant)

medium.

Mutation probability: 0.2
Random selection for mutation.
Tournament selection for Crossover of three individuals.

Percentage of explored neighbors: 5 for small size problems and 2 for

— The tabu search algorithm described previously in this work (TS).
e Memory structure of 40 moves for small problem instances and 100 moves
for medium, with a most recently used policy.
e An aspiration criteria to select better than current optimal solutions.
— Iterative Steepest Descent [19]using random initial solutions (ISD).

General parameters of the experiment:

— Weight of QoS properties: weost=0.4, Wtime=0.2,w0p¢;=0.1, Wyep=0.1, Wge=0.2.

— Feasibility Weight: wteasipitity =0.5.

— Global Constraints:

e Costj=0.8*(Max length of computed execution Paths)
e Timej=0.8*(Max length of computed execution Paths)

SISTEDES, 2008

61

ISSN 1988-3455

Actas de los Talleres de las Jornadas de Ingenieria del Software y Bases de Datos, Vol. 2, No. 1, 2008

Fig. 3. Performance of metaheuristics for small-medium size composite web services

— Number of repeated executions for each problem instance and execution
time: 5

— Number of problems generated for each problem size: 5

The results shown in figure 3 and 4, represent the average fitness obtained
by the different heuristics to the problems generated with small and medium
size problem models. Both figures show the performance of heuristics obtained
with different computation times ranging from 100 milliseconds to 10 seconds.
Figure 3 shows that for execution times minor to 2 seconds and small problem
sizes, T'S performs better than the rest of the heuristics, and that HGA performs
better than GA. For longer execution times, HGA performs better than the rest
but the difference with TS is relatively small. Figure 4 shows that for medium
size problem instances the results are different. The size of the neighborhood of
solutions in this kind of problem makes T'S perform bad for short execution times
-the search is not diversified enough, because TS performs a smaller number of
iterations. HGA shows the best and stable performance of all the heuristics
evaluated in this case. All solutions found as final results for each technique
were feasible.

However, our proposals have a main drawback: the parameters of this heuris-
tics must be well tuned to obtain good results. When using tabu search during
our experimentation phase we must fine tune the size of memory, because for
many instances of the problems search cycles obtaining poor results, a strategy
of long term memory could help to overcome this problem. Moreover, our hy-
bridization strategy is based on exploration of the neighborhood, the percentage
of the neighborhood explored for each individual is a key factor to determine.
The algorithm provides results similar to a basic GA if this percentage is small.
If this percentage is high, the exploration can obtain good improvements but our
algorithm can evolve less generations and results are worst than using a basic
GA. Moreover, experiments with bigger problem instances show that basic GA
provides better results because of the growth of the neighborhood size.

SISTEDES, 2008

62

ISSN 1988-3455

Actas de los Talleres de las Jornadas de Ingenieria del Software y Bases de Datos, Vol. 2, No. 1, 2008

Fig. 4. Performance of metaheuristics for medium-large size composite web services

6 Related Work

Dynamic selection and late binding of web services are amongst the more promis-
ing capabilities that SOA brings. In fact it has been identified as a main research
area in SOA systems [14], and therefore is being addressed as a main research
field by both academy and industry. In this area, QoS-aware composite web
services selection appears as a challenging problem. Two kind of optimization
strategies had been formulated for this problem in literature [22] [2]:

— Local service QoS-Aware selection. In those approaches, the best candidate
service for each task is selected according to the quality properties and stated
preferences. This kind of methods has two main drawbacks:

e Obtained solutions are suboptimal respect to the overall quality of the
composite web service.

e Global constraints according the structure of the composite web service
and their quality properties can not be imposed

— Global composite service QoS-aware selection. The whole set of concrete
services that are used to implement the composite services are optimized
according to their QoS properties. Therefore, QoS global constraints from
the whole composition perspective can be formulated.

Global composite service QoS-aware optimal selection has been identified as a
NP-hard problem [2], [4]. In order to deal with this complex problem different
approaches have been proposed:

— Usage of Integer [22] [1],Linear [6] or Mixed (I/L) Programming
techniques [3] [17]. Although this approaches provide the global optimum
of the problem, and their performances is better for small size instances
of the problem, genetic algorithms outperforms these techniques for large
size instances [5]. Moreover metaheuristics are more flexible, because those
techniques can consider non-linear composition rules, constraints and fitness
function formulations [2].

SISTEDES, 2008

63

ISSN 1988-3455

Actas de los Talleres de las Jornadas de Ingenieria del Software y Bases de Datos, Vol. 2, No. 1, 2008

— Usage of heuristic techniques. Given the intractable nature of the prob-
lem, the usage of heuristics is a logical choice. In [13] some specific heuris-
tics are developed to solve the service composition problem. Applications of
metaheuristics to this problem, are present in the literature, mainly using
different Genetic Algorithm based approaches, incorporating variants to the
work presented in [5], either on the encoding scheme or the fitness function
or QoS model [10] [20] [21], or using population diversity handling techniques
(23] [24]. In [8] a multi objective evolutionary approach is used to identify
a set of optimal solutions according to different quality properties without
generating a global ranking. In [16] fuzzy logic is used to relax the QoS con-
straints, in order to find alternative solutions when it is not possible to find
any solution to the problem. Some authors have proposed the usage of sim-
ulated annealing [21]. Our work starts from [5], using a similar QoS model
adding some additional quality properties and a modified, simple additive
weighting fitness function. Moreover we adopted the executions paths based
description of process structure used in [3] among others.

7 Conclusions

In this paper we address the optimal QoS-aware selection in composite web ser-
vices. We had proposed metaheuristic based algorithms: hybrid genetic algorithm
and tabu search, and compared their performance against other two techniques:
iterative steepest descent, and a basic Genetic Algorithm. Experimental results
show that hybrid genetic algorithm performs better than the basic version for
small and medium problem sizes, and that the tabu search based algorithm is
not better except for small problem instances and short run times (that can
be caused by the absence of long term memory). Future work will perform a
more intensive experimentation and tunning of parameters for each technique
and analysis of behavior under stronger constraints, in order to confirm the
conclusions obtained here, and the usage of other metaheuristics such as ant
systems and simulated annealing or different optimization techniques such as
Linear/Integer Programming solvers.

8 Acknowledgments

This work has been partially supported by the European Commission (FEDER)
and Spanish Government under CICYT project Web-Factories (TIN2006-00472),
and Andalusian Government project ISABEL (TIC-2533).

References

1. R. Aggarwal, K. Verma, J. Miller, and W. Milnor. Constraint driven web service
composition in meteor-s. In SCC' ’0/4: Proceedings of the 2004 IEEE International
Conference on Services Computing, pages 23-30, Washington, DC, USA, 2004.
IEEE Computer Society.

SISTEDES, 2008

64

ISSN 1988-3455

Actas de los Talleres de las Jornadas de Ingenieria del Software y Bases de Datos, Vol. 2, No. 1, 2008

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

D. Ardagna and B. Pernici. Global and local qos guarantee in web service selection.
In Business Process Management Workshops, pages 32-46, 2005.

D. Ardagna and B. Pernici. Adaptive service composition in flexible processes.
Software Engineering, IEEE Transactions on, 33(6):369-384, 2007.

P. A. Bonatti and P. Festa. On optimal service selection. In WWW ’05: Proceedings
of the 14th international conference on World Wide Web, pages 530-538, New
York, NY, USA, 2005. ACM.

G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani. An approach for qos-aware
service composition based on genetic algorithms. In GECCO ’05: Proceedings of
the 2005 conference on Genetic and evolutionary computation, pages 1069-1075,
New York, NY, USA, 2005. ACM.

V. Cardellini, E. Casalicchio, V. Grassi, and F. L. Presti. Efficient provisioning
of service level agreements for service oriented applications. In IW-SOSWE ’07:
2nd international workshop on Service oriented software engineering, pages 29-35,
New York, NY, USA, 2007. ACM.

J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut. Quality of service for
workflows and web service processes. Web Semantics: Science, Services and Agents
on the World Wide Web, 1(3):281-308, April 2004.

D. Claro, P. Albers, and J. Hao. Selecting web services for optimal composition.
In Proc. Int?l Conf. Web Services (ICWS 205), 2005.

J. Dreo, A. Petrowski, and E. Taillard. Metaheuristics for Hard Optimization.
Springer, 2003.

C. Gao, M. Cai, and H. Chen. Qos-driven global optimization of services selection
supporting services flow re-planning. In Advances in Web and Network Technolo-
gies, and Information Management, Lecture Notes in Computer Science, pages
516-521. Springer, 2007.

F. Glover. Tabu search: part i. ORSA Journal on Computing, 1:190-206, 1989.
D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine learning.
Addison Wesley, 1989.

M. C. Jaeger, G. Miihl, and S. Golze. Qos-aware composition of web services: An
evaluation of selection algorithms. In Lecture Notes in Computer Science, Lecture
Notes in Computer Science, pages 646—661. Springer, 2005.

M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented
computing: State of the art and research challenges. IEEE Computer, 40(11):38—
45, November 2007.

J. A. Parejo, J. Racero, F. Guerrero, T. Kwok, and K. Smith. Fom: A framework
for metaheuristic optimization. Lecture Notes in Computer Science, 2660:886-895,
2003.

M. D. Penta and L. Troiano. Using fuzzy logic to relax constraints in ga-based
service composition. In GECCO °05: Proceedings of the 2005 conference on Genetic
and evolutionary computation, June 2005.

Y. Qu, C. Lin, Y. Wang, and Z. Shan. Qos-aware composite service selection
in grids. Grid and Cooperative Computing, 2006. GCC 2006. Fifth International
Conference, pages 458-465, Oct. 2006.

J. Renders and S. Flasse. Hybrid methods using genetic algorithms for global op-
timization. IEEE Trans. on Systems, Man, and Cybernetics. Part B: Cybernetics,
26(2), 1996.

J. A. Snyman. Practical Mathematical Optimization: An Introduction to Basic
Optimization Theory and Classical and New Gradient-Based Algorithms. Springer,
2005.

SISTEDES, 2008

65

ISSN 1988-3455

Actas de los Talleres de las Jornadas de Ingenieria del Software y Bases de Datos, Vol. 2, No. 1, 2008

20.

21.

22.

23.

24.

S. Su, C. Zhang, and J. Chen. An improved genetic algorithm for web services
selection. In Distributed Applications and Interoperable Systems, volume 4531/2007
of Lecture Notes in Computer Science, pages 284—295. Springer, 2007.

H. Wang, P. Tong, P. Thompson, and Y. Li. Qos-based web services selection.
icebe, 0:631-637, 2007.

L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang.
Qos-aware middleware for web services composition. [EEE Trans. Softw. Eng.,
30(5):311-327, 2004.

C. Zhang, S. Su, and J. Chen. Efficient population diversity handling genetic
algorithm for qos-aware web services selection. In Computational Science ¢ ICCS
2006, volume 3994/2006 of Lecture Notes in Computer Science, pages 104-111.
Springer, 2006.

C. Zhang, S. Su, and J. Chen. Diga: Population diversity handling genetic algo-
rithm for qos-aware web services selection. Comput. Commun., 30(5):1082-1090,
March 2007.

SISTEDES, 2008

66

