
Integrating the Development of Data Mining and Data
Warehouses via Model-driven Engineering

Jose Zubcoff1, Jesús Pardillo2, Jose-Norberto Mazón2, and Juan Trujillo2

1 Department of Sea Sciences and Applied Biology,
University of Alicante, Spain

Jose.Zubcoff@ua.es
2 Department of Software and Computing Systems,

University of Alicante, Spain
{jesuspv,jnmazon,jtrujillo}@dlsi.ua.es

Abstract. Data mining is one of the most important analysis techniques to auto-
matically extract knowledge from large amount of data. Nowadays, data mining is
based on low-level specifications of the employed techniques typically bounded to
a specific analysis platform. Therefore, data mining lacks a modelling architecture
that allows analysts to consider it as a truly software-engineering process. Bearing
in mind this situation, we propose a model-driven approach which is based on (i) a
conceptual modelling framework for data mining, and (ii) a set of model transforma-
tions to automatically generate both the data under analysis (that is deployed via
data-warehousing technology) and the analysis models for data mining (tailored to
a specific platform). Thus, analysts can concentrate on understanding the analysis
problem via conceptual data-mining models instead of wasting efforts on low-level
programming tasks related to the underlying-platform technical details. These time
consuming tasks are now entrusted to the model-transformations scaffolding. The
feasibility of our approach is shown by means of a hypothetical data-mining scenario
where a time series analysis is required.

Keywords: data mining, data warehouse, model-driven engineering, model transfor-
mation, multidimensional modelling, conceptual modelling.

1 Introduction

Data-mining techniques allow analysts to discover knowledge (e.g. patterns and trends)
in very large and heterogeneous data sets. Data mining is a highly complex task which
requires a great effort in preprocessing data under analysis, e.g. data exploration, cleansing,
and integration [1]. Therefore, some authors suggest the suitability of data-warehousing
technologies [2] for improving the conventional knowledge discovery process by means of
providing an integrated and cleansed collection of data over which data-mining techniques
can be straight applied [3,4]. However, current data-mining literature has been focused on
the presenting new techniques and improving the underlying algorithms [5], whilst the most
known software platforms do not apply the data warehousing principles in data-mining
design. To overcome this situation, several mechanisms have been proposed [6,7,8,9] to model
data mining techniques in conjunction with data-warehousing technology from the early
stages of design (i.e. conceptual). These data-mining models do not only support analysts in
using and understanding the required data-mining techniques in real-life scenarios, but also
allow designers to document the data-mining techniques in detail. Hence, these data-mining
models are truly blueprints that can be used to manually obtain the required data-mining
metadata as a basis of the implementation in a certain data-mining platform. However, this
highly-complex task is only accessible to expert analysts and requires too much effort to be
successfully completed [3,10].

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 75



Model-driven Engineering of Data Mining and Data Warehouses 2

In this work, we will go beyond the definition of new models, here we define a model-
driven engineering [11] approach for data-mining. Moreover, we propose the use of a well-
known visual modelling standard, the “unified modelling language” (UML) [12] for facili-
tating the design and implementation tasks. In order to spread the usage of data-mining
models to a broader scope of analysts and reduce the required effort our approach automati-
cally generate a vendor-specific data-mining implementation from a conceptual data-mining
model, taking into consideration the deployment of underneath data warehouse (i.e. data
under analysis).

¢

Data Modelling Analysis Modelling

Implementation

D
at

a 
E

xp
lo

ra
tio

n

Data
Warehouse

Fig. 1. Modelling example of a time-series analysis in data warehouses

Running example. In order to illustrate the discussion, in Fig. 1, we show an example of
data-mining conceptual modelling. In this example, a small organisation is trying to highlight
patterns and trends in the evolution of the fish-species population along time. Therefore,
a time-series analysis has to be modelled [9]. Together with this data-mining technique,
the data under analysis can be specified by exploring the underlying multidimensional data
of the data warehouse. This crucial phase is done at a high level of abstraction, that is
at conceptual level, focusing only on data mining concepts and avoiding platform specific

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 76



Model-driven Engineering of Data Mining and Data Warehouses 3

details. This process is represented in the middle of Fig. 1. Finally, to obtain the results,
our approach provides the required transformations for mapping the data-mining conceptual
models to a vendor-specific data-mining implementation3.

Outline. The rest of the paper is structured as follows: the next Section outlines the related
work. Section 3.2 describes our model-engineering approach for data mining. A running
example is used through the paper to clarify every theoretical detail Finally, Section 4
exposes conclusions, also sketching the future work.

2 Related Work

Current approaches for data-mining design can be classified on those that are a general
description of data mining process, or those that are mathematical oriented and propose
solutions at a very low-abstraction level. Therefore, these approaches overlook the definition
of understandable artifacts which could be easily used by designers in a software engineering
process. The main standard proposed for the data mining process is the “cross industry
standard process for data mining” (CRISP-DM) [13]. This standard is a detailed description
of each of the six phases of the data mining process. This standard neither proposes a concrete
modeling tool nor present a conceptual model for data mining. CRISP-DM is focused on the
description of how to perform a data mining task.

An overview of current data-mining modelling languages is provided in Table 1. The
“common warehouse metamodel” (CWM) [12] and the “predictive model markup language”
(PMML)45 are really standards for the metadata interchange proposed by vendor-independent
consortiums (OMG and DMG, respectively) between data-mining applications based on
XML, but they cannot be used as analysis artefacts. The “data mining extensions” (DMX)6
is a SQL-like language for (textually) coding data-mining models in the Microsoft Analy-
sis Services platform, and therefore it is difficult to gain understanding of the data-mining
domain. In addition, some data-mining libraries have been also proposed as a modelling
mechanism. Two of the most known are the “extended library for Prudsys embedded solu-
tions” (XELOPES)7 (derived from CWM) and Weka8. They provide an entire framework to
carry out data mining but, once again, they are situated at very low-abstraction level, since
they are code-oriented and they do not contribute to facilitate understanding of the domain
problem. On the other hand, there are software architectures related to data mining such
as the “pattern-base management system” (PBMS)9 designed to store and manage patterns
obtained from the usage of data-mining techniques, but they cannot be considered a truly
modelling proposal as we state herein.

All of these approaches have the same drawback, since they are focused on solving the
technical scaffolding instead of providing analysts with intuitive artefacts to specify data
mining. To the best of our knowledge, only the proposal described in Zubcoff et al. [6,7,8,9]
provides a modelling framework (named as CDM in Table 1) to define data-mining tech-
niques at a high-abstraction level by using the “unified modelling language” (UML) [12].
However, these UML-based models are mainly used as documentation. In this paper, we
propose to extend this modelling framework as a first step in turning data mining into a
3 The code is included in the appendix A
4 URL: www.dmg.org/pmml-v3-2.html (March 2008)
5 In Table 1, we exclude PMML due to the space constraints. PMML is similar to CWM but it is
a language (Type field) coded in XML schema (Technology).

6 URL: msdn2.microsoft.com/en-us/library/ms132058(VS.90).aspx (March 2008)
7 URL: www.prudsys.com/Produkte/Algorithmen/Xelopes (March 2008)
8 URL: www.cs.waikato.ac.nz/ml/weka (March 2008)
9 URL: www.pbms.org (March 2008)

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 77



Model-driven Engineering of Data Mining and Data Warehouses 4

Table 1. Comparison of data-mining modelling languages

Language CDM [6,7,8,9] CWM XELOPES DMX Weka
Type metamodel metamodel library query language library

Technology UML profiles MOF Instance CWM Extension SQL-like Java
Subject interaction interoperability interoperability querying computation

computation
Abstraction high middle middle low low
Complexity low medium high medium high
User type analysts data managers data managers data miners data miners
Expertise low medium high medium high

real software engineering process (see Fig. 1). Specifically, we use model-driven engineer-
ing concepts to (i) specify data-mining analysis in two technology-independent models (the
multidimensional-data model of the underlying data warehouse and the data mining tech-
nique model), and (ii) provide transformations to automatically deploy data and analysis
specifications into their physical implementations.

3 Model-driven Architecture for Data Mining in Data Warehouses

Our model-driven engineering approach for data mining advocate defining the underneath
data warehouse (i.e. data under analysis) together with the data-mining technique. In this
section, both tasks are explained, as well as the required transformations to obtain the data-
mining implementation. Furthermore, our running example is used through this section to
clarify the theoretical details.

3.1 Deployment of Data under Analysis

This section explains how to develop the underlying data warehouse required for data-mining
to provide integrated and cleansed data. The data warehouse is based on a multidimensional
model which defines the required data structures, namely facts and dimensions and their
respective measures, hierarchies and attributes. Multidimensional modelling resembles the
traditional database design [4]. First, a conceptual design phase is performed whose output
is an implementation-independent and expressive conceptual multidimensional model for the
data warehouse. A logical design phase then aims to obtain a technology-dependent model
from the previously defined conceptual multidimensional model. This logical model is the
basis for the implementation of the data warehouse. In previous work, we have aligned this
process with a model-driven approach [14,15,16,17] in order to support designers to develop
a conceptual multidimensional model and the automatic derivation of its corresponding
implementation.

A conceptual multidimensional model for the running example is provided in the Fig. 2.
This conceptual model has been defined by using our UML profile for multidimensional
modelling [18]. A capture fact have been designed together with a set of four dimensions:
fish, ship, time, and location. For each dimension, several levels are defined that form a
hierarchy of aggregation. Locations have a <site, marine area, region> hierarchy, fish have
a <species, genus, family> hierarchy, and the time dimension has the typical <day, week,
month, quarter, year> hierarchy. Finally, ships have no hierarchies to be described, thus
presenting only one aggregation level with data of the ship.

From this conceptual model, an implementation of the required data structures can be
automatically obtained tailored to several specific platforms, e.g. relational [19] or multidi-
mensional [20].

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 78



Model-driven Engineering of Data Mining and Data Warehouses 5

Species

<<oid>>latinName
<<da>>name

Captures

<<fa>>individuals
<<fa>>biomass
<<fa>>depth

<<da>>name

MarineAreaSite

<<oid>>coords

ShipData

<<oid>>license
<<da>>name

Week

<<da>>number

Month

<<oid>>name

Time
{isTime}

Location

Quarter Day

Fish Genus

Year

Region

Family

Ship

Fig. 2. The conceptual multidimensional model of the repository

3.2 Transformations for Model-driven Data Mining

Whilst the derivation of the data under analysis is traditionally performed through a three-
step process, analysis techniques such as data mining present different requirements for
their development. In this section, a model-driven engineering approach for the deployment
of data-mining models together with the data under analysis is described.

Fig. 3. The conceptual model of the time series analysis

The novelty of our approach is twofold: (i) it is based on defining vendor-neutral models
of data-mining techniques together with the model of the underlying data warehouse, and
(ii) the deployment of those data-mining techniques is done automatically. Therefore, on
one hand, we use a modelling approach [6,7,8,9] for defining platform-independent models
for several data-mining techniques. This approach is a high-level vendor-neutral modelling

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 79



Model-driven Engineering of Data Mining and Data Warehouses 6

language to visually and easily specify analysis by means of applying data-mining techniques.
Following the running example of Fig. 1, from the underlying multidimensional-data model
of fish captures, an analyst can explore this model and specify its data-mining needs by the
conceptual modelling of a time-series analysis in this case. Specifically, this conceptual model
has been defined by using the UML extension presented in [9]. Therefore, a carp captures by
month analysis for the individuals of each captures time series can be easily specified and
carried out. The conceptual model defined for the required analysis is shown in Fig. 3. The
analysis model also includes a time axis is specified in increments of months and a filter for
the carp specie. Nevertheless, additional parameters of the data-mining technique can be
also specified such as a minimum data support or a suggestion of the series periodicity.

On the other hand, this language is not directly implemented in any data-mining plat-
form, and thus, it only acts as a blueprint of the executable analysis. Therefore, the model-
transformation configuration has to be described in order to consider every kind of tar-
get platform from this platform-independent modelling language. In Fig. 4, we provide an
overview of the required model-transformation architecture, stressing some of the current
data-mining standards and platforms in the market.

The conceptual data-mining modelling framework in data warehouses (Zubcoff et al. [6,7,8,9])
is shown at the top of this model-driven architecture. Fig. 4 also shows the transformation
paths to derive several implementations through mapping data-mining models to other lan-
guages that really have established an executable environment: CWM, XELOPES, DMX,
or Weka acting as bridge. Depending to the characteristics of the analysis itself (e.g., the
required technique) or the data-mining solution available (e.g., it can only be open-source
platforms), we choose one of the transformation paths. Furthermore, Depending on the
target-language representation, model-to-model or model-to-text transformations could be
needed. Therefore, some of the data-mining solutions that are able to interpret the pre-
vious modelling languages are also represented in Fig. 4. On the lower side, some of the
data-mining platforms are also represented. Whereas there are standards such as CWM
that are vendor-neutral and many CWM-compliant tools can be considered (Oracle Miner,
CWM4ALL, etc.), others such as DMX are commonly restricted to the platform for which
they are originally were thought (the Microsoft’s in this case).

Fig. 4. Model-transformation architecture for data mining

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 80



Model-driven Engineering of Data Mining and Data Warehouses 7

From a technical point of view, we propose the usage of the “model-driven architec-
ture” (MDA) [12] in order to implement these transformations between data-mining models.
Within an MDA-based approach the “query/view/transformation” (QVT) language can be
used as a standard mechanism for defining formal relations between MOF-compliant models
that allows the automatic derivation of a implementation. Nevertheless, there are transfor-
mations that are applied from models (i.e., MOF-based) to implement code (i.e., textual
modelling languages). In these cases, MDA offers the “MOF models to text transformation”
(Mof2Text) language that allows us to specify transformations by means of textual templates
in order to automatically derive the corresponding implementation.

3.3 Example Data-mining Transformation for a Specific Platform

Herein, we follow our running example for carrying out a time-series analysis of fish-species
population (see Fig. 1), in order to automatically derive the implementation for a specific
software platform. Specifically, in this paper, we employ the Microsoft Analysis Services10
as the target platform. As we previously shown, this platform provides the DMX language
to code data-mining models. Therefore, given the time-series analysis model of Fig. 1, we
have designed the required mapping from this model into DMX code. Due to the space
constraints, we exclude an abstract specification of the involved mapping, also omitting an
example transformation of the data under analysis that can be found in [16]. Nevertheless,
in Fig. 5, it is shown the implementation of this mapping (left-hand side) over the Eclipse
development platform. In order to accomplish this task, we have used the MOFScript11
plug-in for this platform. MOFScript is a transformation-language implementation of the
Mof2Text standard language that enable us to specify model-to-text transformations in the
“model-driven architecture” (MDA) [12] proposal. On the right-hand side, the resulting DMX
code for the time-series analysis of Fig. 1 is shown.

Fig. 5. Example of a Mof2Text transformation and the generated code

10 URL: www.microsoft.com/sql/solutions/bi (March 2008)
11 URL: www.eclipse.org/gmt/mofscript (March 2008)

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 81



Model-driven Engineering of Data Mining and Data Warehouses 8

Given Fig. 5, the mapping overview is as follows: each time-series analysis (represented
by some kind of modelling element in the source metamodel)12 is mapped into a data-mining
model in DMX (MINING MODEL instruction). Every parameter of the analysis technique is
also mapped into their DMX counterpart. In addition, the unspecified parameters in the
conceptual model are later explicitly defined in the implementing code. On the other hand,
each data under analysis (taken from the multidimensional model of the underlying data
warehouse) is mapped into a data-mining attribute in DMX (by defining a table and then
creating its corresponding column). Once the mapping is correctly established, the MOF-
Script engine can interpret this one in order to translate a certain conceptual model of
time-series analysis to the DMX code, and thus, implementing it in the Microsoft Analysis
Services platform. Finally, within this solution, analysts can consult the data-mining results
(see the bottom-side of Fig. 1) by visualising the obtained patterns and trends and extracting
new knowledge from them.

4 Conclusion

Due to mathematical foundations of data-mining techniques, there are no formalised mech-
anisms to easily specify data-mining activities as a real software engineering process. In
this paper, we propose a model-engineering approach for overcoming this limitation. On one
hand, we provide a set of models to specify data-mining techniques in an vendor-neutral way
that are close to the way of analysts thinking about data-mining (i.e. conceptual models). On
the other hand, we provide transformations to automatically derive platform-specific mod-
els from the conceptual ones, altogether with the deployment of data under analysis [16,17].
Thus, analysts can only focus on data mining itself at an abstract level instead of distracting
by details related to a certain vendor data-mining solution whilst the model transformations
can automatically derive vendor-specific implementations in background for current data-
mining platforms. Furthermore, our approach for data-mining modelling is also concerned
about modelling the data under analysis, i.e. the data warehouse in order to provide analysts
with a way of quickly understand for being close to their way of thinking about data. The
data-mining techniques are smoothly integrated in this model.

Therefore, the great benefit of our approach is that, once we have established the model-
driven architecture for both data under analysis and analysis techniques for data mining,
analysts can model their data-mining related tasks easily in a vendor-neutral way whereas
the model-transformations scaffolding is entrusted to automatically implement them in a
certain platform.

Future Work. Our immediate future work covers other high-level mechanism to specify
data-mining related tasks. For instance, we will study how current goal-oriented approaches
for requirement analysis [21] can help us to guide the selection of data-mining solutions.
In addition, we are investigating on the integration of the proposed data-mining framework
together with the analysis technologies traditionally employed in the data-warehouse domain.

5 Acknowledgements

This work has been supported by the ESPIA (TIN2007-67078) project from the Spanish
Ministry of Education and Science, and by the QUASIMODO (PAC08-0157-0668) project
from the Castilla-La Mancha Ministry of Education and Science (Spain). Jesús Pardillo and
Jose-Norberto Mazón are funded by the Spanish Ministry of Education and Science under
FPU grants AP2006-00332 and AP2005-1360, respectively.
12 Please, see [9] for an additional explanation of the modelling primitives involved in a time-series

analysis.

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 82



Model-driven Engineering of Data Mining and Data Warehouses 9

References

1. Pyle, D.: Data Preparation for Data Mining. Morgan Kaufmann (1999)
2. Kimball, R., Ross, M.: The Data Warehouse Toolkit. Wiley (2002)
3. Inmon, W.H.: The Data Warehouse and Data Mining. Commun. ACM 49(4) (1996) 83–88
4. Rizzi, S., Abelló, A., Lechtenbörger, J., Trujillo, J.: Research in data warehouse modeling and

design: dead or alive? In: DOLAP. (2006) 3–10
5. Hand, D.J., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press
6. Zubcoff, J.J., Trujillo, J.: A UML 2.0 profile to design Association Rule mining models in the

multidimensional conceptual modeling of data warehouses. Data Knowl. Eng. 63(1) (2007)
44–62

7. Zubcoff, J.J., Pardillo, J., Trujillo, J.: Integrating Clustering Data Mining into the Multidi-
mensional Modeling of Data Warehouses with UML Profiles. In: DaWaK. (2007) 199–208

8. Zubcoff, J.J., Trujillo, J.: Conceptual Modeling for Classification Mining in Data Warehouses.
In: DaWaK. (2006) 566–575

9. Pardillo, J., Zubcoff, J., Trujillo, J.: Un perfil UML para el análisis de series temporales con
modelos conceptuales sobre almacenes de datos. In: IDEAS Workshop. (2007) 369–374

10. González-Aranda, P., M.E.M.S.S.J.: Towards a Methodology for Data mining Project Devel-
opment: The Importance of abstraction. In: In: ICDM Workshops (FDM). (2004) 39–46

11. Bézivin, J.: Model Driven Engineering: An Emerging Technical Space. In: GTTSE. (2006)
36–64

12. Object Management Group: Common Warehouse Metamodel (CWM), Unified Modeling
Language (UML), Model Driven Architecture (MDA), Query/View/Transformation Language
(QVT), MOF Model to Text Transformation Language (Mof2Text). http://www.omg.org
(March 2008)

13. CRISP-DM Consortium: CRISP-DM, version 1.0. http://www.crisp-dm.org/ (may 2008)
14. Pardillo, J., Trujillo, J.: Integrated Model-driven Development of Goal-oriented Data Ware-

houses and Data Marts. (2008) In Press
15. Pardillo, J., Mazón, J.N., Trujillo, J.: Model-driven OLAP Metadata from the Conceptual

Models of Data Warehouses. (2008) In Press
16. Mazón, J.N., Trujillo, J.: An MDA approach for the development of data warehouses. Dec.

Support Syst. In Press (2007)
17. Mazón, J.N., Trujillo, J., Lechtenbörger, J.: Reconciling requirement-driven data warehouses

with data sources via multidimensional normal forms. Data Knowl. Eng. 63(3) (2007) 725–751
18. Luján-Mora, S., Trujillo, J., Song, I.Y.: A UML profile for multidimensional modeling in data

warehouses. Data Knowl. Eng. 59(3) (2006) 725–769
19. Mazón, J.N., Trujillo, J., Serrano, M., Piattini, M.: Applying MDA to the development of data

warehouses. In: DOLAP. (2005) 57–66
20. Mazón, J.N., Pardillo, J., Trujillo, J.: Applying Transformations to Model Driven Data Ware-

houses. In: DaWaK. (2006) 13–22
21. Mazón, J.N., Pardillo, J., Trujillo, J.: A Model-Driven Goal-Oriented Requirement Engineering

Approach for Data Warehouses. In: ER Workshops. (2007) 255–264

6 Appendix A. Code of the model-transformation example

texttransformation AST2DMX (in uml:"http://www.eclipse.org/uml2/2.0.0/UML") {
uml.Model::main() {

file (self.name + ".sql")
println ("-- Generated by MOFScript (" + date() + " " + time() + ")\n")
mapList_InstanceSpecification(self.packagedElement

->select(is: uml.InstanceSpecification | is.hasStereotype("AnalisisST")))
}
module::mapList_InstanceSpecification(isl: List) {

var fis: uml.InstanceSpecification = isl.first()

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 83



Model-driven Engineering of Data Mining and Data Warehouses 10

fis.map_InstanceSpecification()
isl.remove(fis)
isl->forEach(is: uml.InstanceSpecification) {

newline (1)
is.map_InstanceSpecification()

}
}
uml.InstanceSpecification::map_InstanceSpecification() {

var model: uml.Model = self.namespace
println ("CREATE MINING MODEL ’" + self.getAnalysisName() + "’ {")
mapList_Usage(model.packagedElement->select(u: uml.Usage |

u.client.first() = self and u.hasStereotype("IsCase") and
not u.esTiempo()))

var ctul: List = model.packagedElement->select(u: uml.Usage |
u.client.first() = self and u.esTiempo())

var ceul: List = model.packagedElement->select(u: uml.Usage |
u.client.first() = self and u.hasStereotype("IsInput"))

var cpul: List = model.packagedElement->select(u: uml.Usage |
u.client.first() = self and u.hasStereotype("IsPredict"))

var casoTiempo : uml.Usage = ctul.first()
var casoEntrada : uml.Usage = ceul.first()
var casoPronostico: uml.Usage = cpul.first()
var propTiempo : uml.Property = casoTiempo .supplier.first()
var propEntrada : uml.Property = casoEntrada .supplier.first()
var propPronostico: uml.Property = casoPronostico.supplier.first()
tab (1)
println ("’Time’ TABLE (")

tab (1)
propTiempo.map_Property()
println (",")
tab (1)
propEntrada.map_Property()
newline (1)
tab (1)
println (")")
var sl: List
sl.clear()
self.slot->forEach(s: uml.Slot) {

if (not s.definingFeature.name.equals("numPeriodos")) {sl.add(s)}
}

mapList_Slot(sl)
newline (1)
var cl: List = model.packagedElement->select(c: uml.Constraint)
var c : uml.Constraint = cl.first()
var b : Boolean = true // not c.constrainedElement->select(u:uml.Usage).isEmpty()
print ("SELECT PredictTimeSeries(")
if (b) { print (c.specification.body.first() + ", ")}
var sl:List = self.slot->select(s:uml.Slot | "numPeriodos".equals(s.definingFeature.name))
var s : uml.Slot = sl.first()
println (s.value.first().value + ")")
tab (1)

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 84



Model-driven Engineering of Data Mining and Data Warehouses 11

println ("AS ’" + propPronostico.class.name + "_" + propPronostico.name + "’")
println ("FROM ’" + self.getAnalysisName() + "’;")

}
module::mapList_Usage(ul: List) {

var fu: uml.Usage = ul.first()
fu.map_Usage()
ul.remove(fu)
ul->forEach(u: uml.Usage) {

println (",")
u.map_Usage()

}
println (",")

}
uml.Usage::map_Usage() {

var p: uml.Property = self.supplier.first()
p.map_Property()

}
uml.Property::map_Property() {

var c: uml.Class = self.class
var s: String = c.name + "_" + self.name
tab (1)
if (c.hasStereotype("Fact")) {

print ("’" + s + "’ DOUBLE PREDICT")
} else if (c.getDimension().getValue("Dimension", "isTime")) { // assumes base

print ("’" + c.getDimension().name + "_" + s + "’ LONG KEY TIME")
} else {

print ("’" + c.getDimension().name + "_" + s + "’ TEXT KEY")
}

}
module::mapList_Slot(sl: List) {

var fs: uml.Slot = sl.first()
println ("} USING Microsoft_Time_Series (")
fs.map_Slot()
sl.remove(fs)
sl->forEach(s: uml.Slot) {println (","); s.map_Slot()}
newline (1)
println (");")

}
uml.Slot::map_Slot() {

var name: uml.LiteralString = self.definingFeature.name
tab (1)
if ("autoPerÃodo".equals(name)) {
} else if ("complejidad".equals(name)) {
} else if ("ventana".equals(name)) {
} else if ("minSoporte".equals(name)) {

’MINIMUM_SUPPORT = ’ self.value.first().value
} else if ("valoresAusentes".equals(name)) {
//} else if ("numPeriodos".equals(name)) {
} else if ("periodo".equals(name)) {

’PERIODICITY_HINT = ’
mapList_LiteralUnlimitedNatural(self.value)

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 85



Model-driven Engineering of Data Mining and Data Warehouses 12

}
}
module::mapList_LiteralUnlimitedNatural(lunl: List) {

var flun: uml.LiteralUnlimitedNatural = lunl.first()
"\’{"
flun.value
lunl.remove(flun)
lunl->forEach(lun: uml.LiteralUnlimitedNatural) {

’, ’ lun.value
}
"}’"

}
uml.InstanceSpecification::getAnalysisName(): String {

if (self.name <> null) {
result = self.name

} else if (self.ownedComment.first().body <> null) {
result = self.ownedComment.first().body

} else {
result = "AST_" + date() + "_" + time()

}
}
uml.Usage::esTiempo(): Boolean {

if (self.hasStereotype("Caso")) {
var p: uml.Property = self.supplier.first()
result = p.class.getDimension().getValue("Dimension", "isTime") // assumes a base

} else {
result = false

}
}
uml.Class::getDimension(): uml.Class { // assumes a base

self.ownedAttribute->forEach(p: uml.Property) {
if (p.name <> null) {

if (p.name.equals("D")) {
result = p.opposite.class.getDimension() // assumes opposite
break

}
} else {

if (p.opposite <> null) {
var c: uml.Class = p.opposite.class
result = p.opposite.class // assumes stereotyped by Dimension
break

}
}

}
}

}

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 2, No. 1, 2008

ISSN 1988–3455 SISTEDES, 2008 86


