
A Constraint-based Job-Shop Scheduling Model
for Software Development Planning

Irene Barba, Carmelo Del Valle, and Diana Borrego

Dpto. Lenguajes y Sistemas Informáticos,
Universidad de Sevilla, Spain

{irenebr,carmelo,dianabn}@us.es

Abstract. This paper proposes a constraint-based model for the Job
Shop Scheduling Problem to be solved using local search techniques.
The model can be used to represent a multiple software process planning
problem when the different (activities of) projects compete for limited
staff. The main aspects of the model are: the use of integer variables
which represent the relative order of the operations to be scheduled, and
two global constraints, alldifferent and increasing, for ensuring feasibility.
An interesting property of the model is that cycle detection in the sched-
ules is implicit in the satisfaction of the constraints. In order to test the
proposed model, a parameterized local search algorithm has been used,
with a neighborhood similar to the Nowicki and Smutnicki one, which
has been adapted in order to be suitable for the proposed model.

Key words: job shop scheduling, local search, constraint satisfaction
problems, software development processes

1 Introduction

Software development has been modelled using a wide range of approaches. They
vary according to the focus of the analysis and they address successfully the
whole development process depending on how it is carried out. Many of the
software management tools use temporal information and ignore in some ways
the resources to be used, considering them unlimited, since they are based on
PERT and CPM analysis. These may not be adequate in different situations,
for example when smaller multiple projects are developed and project compete
for limited staff [10]. A job shop approach, traditional in manufacturing, may
represent an important aid since it can manage the interactions between projects
and resources in a natural way and enables to consider minimizing different goals,
as development time (makespan) and cost, while satisfying all the temporal and
resource constraints.

With this aim, a job shop scheduling model is presented in this paper, so that
it can represent a multiple software project to be planned. The equivalence of
terms used from both areas is in such a way that jobs correspond to single soft-
ware projects, and resources can represent each person or software development
team working in the projects.

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 1

2 Barba, Del Valle, Borrego

Constraint Programming (CP) has evolved in the last decade to a mature field
due to, among others, the use of different generic and interchangeable procedures
for inference and search, which can be used for solving different types of problems
[2, 12]. Although a separation of models and algorithms is desirable for reusability
issues, there is an influence between them that must be taken into account when
a good behavior of the whole resulting method is pursued. Most models that
have been used in CP have been tested using complete algorithms, and they are
not equally suitable for other algorithmic approaches such as local search [16].

This paper proposes a Constraint Satisfaction Problem (CSP) model for the
Job Shop Scheduling Problem (JSSP) to be solved using local search techniques,
that is, it defines the variables which determine a solution, the related constraints
of the problem involving those variables, and some possible neighborhoods. The
problem has been solved by different authors using local search [8, 11, 15], but
the novelty consist of the proposed model, based on including the ordering of the
operations directly in the variables and constraints of the CSP, so that further
definitions and developments of the main components of local search algorithms
would take advantage of this representation.

For such techniques, a very important issue is the defined neighborhood, that
is, the set of candidates to which the walk may continue from the current solution.
For JSSP, one of the best methods was proposed by Nowicki and Smutnicki [11],
whose neighborhood was more constrained than other previous approaches. An
adaptation and an extension of this neighborhood are proposed in this work, in
order to be suitable for the defined CSP model.

The rest of the paper is organized as follows. Section 2 presents a formula-
tion of the JSSP. Section 3 includes the main ideas of local search algorithms.
Section 4 describes the proposed model. Next, experimental results are shown
and analyzed. Finally, Section 6 presents some conclusions and future work.

2 Problem Definition

The Job Shop Scheduling Problem [1, 8] may be formulated as follows. We are
given a set of n jobs J1, ..., Jn and a set of m machines M1, ...,Mm. Each job Ji

consists of a sequence of ni operations opi1, ..., opi,ni
, which must be processed

in this order. Each operation opij must be processed for pij time units, without
preemption, on machine µij ∈ {M1, ..., Mm}. Each machine can only process
one operation at a time. So, two types of constraints are defined, the precedence
constraints among the operations of each job, and the resource constraints which
force to select a permutation order of the operations that use each machine.
These last constraints are the source of the NP-hard complexity of JSSP [4].

The typical objective, used in this work, is to find a feasible solution, mini-
mizing the makespan, Cmax = maxi=1..n{Ci}, where Ci is the completion time
of job Ji, i.e. the completion time of opi,ni .

Figure 1 shows the disjunctive graph representation for a simple example of
the problem, with n = 3 and ni = 3, ∀i. In a disjunctive graph G = (V, C, D),
we have a set V of nodes which correspond to the operations of the job-shop,

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 2

drg
Stamp

Title Suppressed Due to Excessive Length 3

a set C of directed arcs corresponding to the precedence constraints, and a set
D of undirected arcs which connect the operations that use the same machine.
A solution to the problem consists of fixing a direction for the undirected arcs,
being feasible if there are no cycles.

op
11
 op
12
 op
13

op
23
op
22

op
33
op
32

op
21

op
31

Fig. 1. A disjunctive graph for a job shop problem.

3 Constraint-Based Local Search

Most solving algorithms for CSPs proposed in the CP area are complete, and
lastly local search is being considered as promising for solving large instances of
complex problems [16], where complete algorithms fail. The constraints from the
CSP model may be used for guarantying feasibility of the solutions explored, or
even using their possible (degree of) violation as a guide for the search. Most of
ideas associated to local search algorithms in other areas can be used for solving
CSPs, or in our case, a Constraint Optimization Problem (COP).

Local search algorithms move iteratively through the set of feasible solutions.
For those movements, a neighborhood for the current solution is determined in
each iteration as a set of the solutions that can be selected as the next solution,
and that can be obtained from the current solution with small changes. Depend-
ing on the method of choosing the next solution from neighborhood and the
criteria for stopping the iterative sequence of movements, different algorithms
can be defined [6]. In order to test the proposed model, we have used a basic
tabu search algorithm [5] containing the main components that have been proved
useful in local search, as described in Section 4.4.

4 Our Proposal

4.1 The CSP Model

A CSP is defined by a set of variables V , a set of domains of values for each vari-
able D and a set of constraints that involve the variables C. Typical CSP models
for the JSSP state the start times stij of the operations opij as the variables of the
CSP [3], and the constraints are divided in two groups, precedence constraints

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 3

drg
Stamp

4 Barba, Del Valle, Borrego

(stij +pij ≤ sti,j+1) and resource constraints (stij +pij ≤ stkl∨stkl +pkl ≤ stij ,
opij and opkl using the same machine). Our proposed CSP model is based on
using the CSP variables to establish the execution orden of the operations of the
JSSP, resulting in a simple model.

Let ΠJ be a JSSP with a set J of n jobs, a set M of m machines, and a set
O of #ops operations. The proposed model has the following components:

– Each operation opij is represented as an integer variable of the CSP vij ,
therefore the set of variables is V = {vij , 1 ≤ i ≤ n, 1 ≤ j ≤ ni}.

– The domain of each variable vij is D(vij) = [1..#ops],∀vij ∈ V .
– The set C of constraints contains two types of items:

1. Precedence Constraints: The value of each variable vij has to be less
than the value of all the variables corresponding to the following oper-
ations in the same job: vij < vik,∀vij , vik such that j < k. In order to
improve the efficiency and to obtain a clearer model, a new constraint
(increasing) has been used between the operations of each job. It is de-
fined on a sequence of variables {v1, v2, . . . , vn} and it is equivalent to
the satisfaction of the conditions v1 < v2 < . . . < vn.

2. Resource Constraints: In order to satisfy that each machine can pro-
cess only one operation at the same time, all the variable values are
forced to be different from the others (alldifferent constraint is used),
i.e., each solution is a permutation of the set {1, 2, . . . , #ops}.

An interesting property of the model, using the increasing and alldifferent
constraints, is that cycle detection in the disjunctive graph is implicit in the
satisfaction of the constraints, so no solution of the CSP will contain cycles.

A solution for the constrained problem, in which a value for each CSP vari-
able is given, is a permutation of 1..#ops variables and can be represented by an
ordered sequence of operations S. With this sequence we associate an ”earliest
start schedule” by planning the operations in the order induced by the sequence,
resulting in a JSSP solution. We denote S(m) as the ordered sequence of oper-
ations that are executed on the machine m in the order fixed by the solution
represented by S. Figure 2 shows a solution for the problem of Fig. 1. First,
the value for each variable is shown and below is the corresponding solution S,
where the position a in the sequence represents the value of the variable S[a]
(vij = a ≡ S[a] = opij). Also, the ordered sequences corresponding to each
machine are shown. Finally, Fig. 2 shows a JSSP solution where all the arcs in
the graph are directed according to the fixed order in S. Notice that there can
be several solutions of the CSP problem that lead to the same schedule, for ex-
ample the solution S = {op21, op31, op32, op11, op12, op13, op22, op33, op23} for the
problem of Fig. 1 leads to the same schedule that the solution shown in Fig. 2.

From now, we will use PM(v) and SM(v) to refer to the predecessor and
successor variables of v on its machine, and similarly PJ(v) and SJ(v) on its job.
PM(PM(v)) is denoted by PM2(v) (the same for SM(v)) and so on. Moreover,
we denote m(v) as the machine in which the operation corresponding to the
variable v has to be executed.

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 4

drg
Stamp

Title Suppressed Due to Excessive Length 5

op

11

op

12

op

13

op

31

op

32

op

33

op

21

op

22

op

23

2
1
 8
 9
7
6
5
4
3

S

v

11

 = 2

v
21
 = 4

v
31
 = 1

v

12

 = 6

v
22
 = 5

v
32
 = 3

v
13
 = 8

v
23
 = 9

v

33

 = 7

S(m
1
)
op
31
 op
11
 op
22

S(m

2

)
op

21

op

12

op

33

S(m
3
)
op
32
 op
13
 op
23

op
11

op
23
op
22

op
12

op
21

op
13

op
33
op
32
op
31

Fig. 2. Example of a feasible solution

4.2 Cycle Detection

A solution for the problem consists of establishing directions for the undirected
arcs in the disjunctive graph (Section 2), being feasible if there not exists any
cycle. A cycle for a solution in the disjunctive graph is a closed directed (simple)
path, with no repeated vertices other than the starting and ending vertices.

We can see a cycle as a sequence of operations that contains two types of
edges:

– Precedence edges: are fixed by the problem.
– Resource edges: are given by the decisions made to solve the problem.

op

1i

op

1j

op

2k

op

2l

...

...

op
ab
 op
cd

v

ab

< v

cd

op

1i

op

1j

op

2k

op

2l

means

Fig. 3. A cycle in a disjunctive graph

All the possible cycles that can be formed in the graph involve, at least, two
machines and four operations, two belonging to one job, and two belonging to
another job, such as it is shown in the figure 3. In this figure it is possible to see
a cycle formed by four operations, two belonging to J1 (op1i and op1j) and two
belonging to J2 (op2k and op2l). In the sequence of operations appears, at least,

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 5

drg
Stamp

6 Barba, Del Valle, Borrego

two precedences edges, that connect operations using different machines. All the
operations that appear in the figure can be executed on different machines, so
the machines involved in this cycle can be between 2 and 4. It is important to
clarify that op1,j and op2,k do not have to be executed in the same machine (the
same for op1,i and op2,l).

It can be proven that any solution of the CSP, with the proposed model, will
contain no cycles.

4.3 Neighborhoods

For JSSP, most of the successful approaches use neighborhood based on reversing
critical operations (increasing their durations imply a larger makespan) that
must be processed on the same machine. One of the best methods was proposed
by Nowicki and Smutnicki [11], whose neighborhood was more constrained than
other previous approaches. The movements allowed were to reverse two adjacent
critical operations belonging to the same critical block (a sequence of critical
operations on the same machine) so that one of them is not an internal operation
in the block, excluding the swap between the first two operations of the first block
when the second one is internal, and the swap between the last two operations
of the last block when the first is internal.

We define a family of neighborhoods for the proposed model in which the
basic idea is to make a swap between the values of two variables corresponding
to operations of the same machine, i.e., between the relative order of those
operations in a solution, trying to change the order of operations belonging to
a critical path of a solution S (CP (S) from now), based on the Nowicki and
Smutnicki (NS from now) neighborhood.

For a variable v, σ(v) is defined as the set of the variables w satisfying the fol-
lowing condition: the swap between v and w in S (denoted as swap(v, w, S))
causes a swap between v and PM(v) on m(v) and this is the only swap
caused on m(v). The variables w that meet this condition are those between
PM2(v) (not included) and PM(v) (included) in S. We can see that the swaps
between v and variables that appear before PJ(v) in S lead to unsatisfiable
solutions. Then, σ(v), when v is not the first in its job and has, at least, two
predecessors on its machine, is defined as:

σ(v) = {w ∈ V | max(PJ(v), PM2(v)) < w ≤ PM(v)}

If PJ(v) and PM2(v) do not exist, the outer lower bound is 0. On the other
hand, if only one of them exists, the outer lower bound is established by it.
Lastly, all the variables which have the smallest value on their machine (i.e.,
which are executed first) do not have any possible swaps (σ = ∅).

In Fig. 4 different cases of possible swaps are shown. In Fig. 4.a, PJ(v)
appears before PM2(v), then the outer lower bound of the range of possibilities
is established by PM2(v). In Fig. 4.b, PM2(v) is before PJ(v), then it is given
by PJ(v). In Fig. 4.c, PJ(v) is after PM(v), so no swap for v can be realized.

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 6

drg
Stamp

Title Suppressed Due to Excessive Length 7

v
PM(v)
PM
2
(v)
PJ(v)
...
 ...
 ...
 ...
 ...

a) Possible swap(v) when PJ(v) <

b) Possible swap(v) when
 < PJ(v)

...

c) Any possible swap(v) when PM(v) < PJ(v)

v
PM(v)
PJ(v)
PM
2
(v)
...
 ...
 ...
 ...
 ...

...

v
PJ(v)
PM(v)
...
...
 ...
 ...
 ...
 ...

S

S

S

...

Fig. 4. Possible swaps for a variable v

In order to reduce and set a maximum number of neighbors for a solution, we
define a parameter δ, as the maximum number of possible swaps for a variable v,
from PM(v) toward variables appearing before it in S. It must be noticed that
δ has to be greater than 1 so that the algorithm can reach any possible solution,
taking into account the proposed model. According to this parameter, the set of
considered swaps for a variable, is defined as:

σδ(v) = {w ∈ V | max(PM(v)− δ, PJ(v), PM2(v)) < w ∧ w ≤ PM(v)}
A family of neighborhoods, N δ

1λ, depending on the possible variables to swap,
has been defined. For λ = 0, the idea is to swap variables that are at the
beginning or at the end of a critical block (CB from now, CB(v) for the CB
of a variable v), except the beginning of the first CB or the end of the last CB,
similar to NS neighborhood. These variables are given by the set V0(S):

V0(S) = {v ∈ CP (S) | v = SM(first(CB(v))) ∨ v = last(CB(v))}
where first(CB(v)) and last(CB(v)) are the first and the last operations of

CB(v), respectively. V0(S) contains the possible variables to be swapped in N δ
10

(Nδ
10 = {swap(v, w, S) | v ∈ V0(S) ∧ w ∈ σδ(v)}).
Due to the proposed model and the tabu search, it is possible to reach a

solution which an empty neighborhood. In order to overcome this problem and
get more diversification during the search, other more general neighborhoods
N δ

1λ, different from NS proposal, have been defined depending on a parameter
λ. For λ > 0, it is allowed to swap internal variables of CBs, more internal as λ
is increasing. The set of possible variables to swap, is now given by:

Vλ(S) = {v ∈ CP (S) | (v = SMλ+1(first(CB(v))) ∨ v = PMλ(last(CB(v))))

∧ λ ≤ #CB(v)/2}
Then, the neighborhood N δ

1λ is defined as Nδ
1λ = {swap(v, w, S) | v ∈

Vλ(S) ∧ w ∈ σδ(v)}. In order to allow swaps between all the non-critical op-
erations (belonging or not to CP), another neighborhood has been defined:
N δ

2 = {swap(v, w, S) | v ∈ V ∧ w ∈ σδ(v)}.

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 7

drg
Stamp

8 Barba, Del Valle, Borrego

S(m(v))
 ...
 ...
PM(v)
 v

S(m(w))
 ...
 w
 SM(w)
 ...
 ...

...
 w
 ...
SM(w)
 SM
2
(w)
 ...
 v
 ...

S'(
m(v))

S'(
m(w))

...
 v
 ...
SM(w)
 ...
 w
 ...

S

S'

...
 ...

...
 ...

...
 ...
v
 PM(v)

...
 w
SM(w)
 ...
 ...

SM
2
(w)

SM
...
(w)

SM
...
(w)

SM
...
(w)
SM
2
(w)

SM
...
(w)
SM
2
(w)

S(m(v))

...
 w
 ...
v

S'(m(v))

S
 ...

...
 ...
v
 w

S'
 ...
 v
 ...
w
...

...
 ...
w
 v

a) Swap between variables corresponding to operations executed in the same machine

b) Swap between variables corresponding to operations executed in different machines

Fig. 5. Swap between variables

The swap between v and w has the following consequences:

1. Swap between the execution order of v and PM(v), executed on the same
machine, which does not depend on w (change in m(v)).

2. If w 6= PM(v), i.e. m(w) 6= m(v), other changes will be given. If SM(w) < v,
then the execution orders of all the operations w′ satisfying m(w′) = m(w)
and w < w′ < v will be changed. Specifically, the relative order of all these
operations are moved forward on their machine (change in m(w)).

According to this, two types of movements can be given. First, the swap
between variables corresponding to operations executed on the same machine,
only one swap in S(m(v)) is given (Fig. 5.a). Secondly, the swap between vari-
ables corresponding to operations executed on different machines, that leads to
a swap in S(m(v)) and several swaps in S(m(w)), one for each direct or indirect
successor on the machine of w that is between w and v in S (Fig. 5.b). In Fig.
5 the neighbor for S is referred as S′.

4.4 The Parameterized Algorithm

Considering the defined neighborhoods, a local search algorithm has been de-
veloped (Alg. 1). Although any initial solution can be used, the choice of better
initial solutions usually allows to obtain better results, as it is found for the
NS method [9]. In this way, for the experiments of the next section, we have

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 8

drg
Stamp

Title Suppressed Due to Excessive Length 9

Algorithm 1: The parameterized local search algorithm
begin

determine an initial solution S randomly
best := S;
for it := 1 to NIterations do

if solution has not improved in last K iterations then

choose a neighbor S′ of best in Nδ
2 randomly;

else
λ := 0;
repeat

determine set Nδ
1λ of non-tabu neighbors of S;

if Nδ
1λ is not empty then

choose a best solution S′ in Nδ
1λ;

else
λ := λ + 1;

until S′ has been selected or λ > maxBlockSize(S)/2 ;

if S′ has not been selected (all of Nδ
1λ are empty) then

choose a neighbor S′ of S in Nδ
2 randomly;

S := S′;
if S improves best then

best := S;

end

used the INSA algorithm [11]. As indicated in Subsection 4.1, a schedule can be
represented by different solutions of the model. Thereby, for selecting the actual
initial solution a random procedure is used from the schedule obtained by the
INSA algorithm.

According to the evolution of the search, different neighborhoods are used in
order to select the next movement, which will correspond to a feasible solution.
In each iteration, a movement to the best neighbor of N δ

1,0 is attempted (λ = 0),
but, if the neighborhood is empty or all their members are in the tabu list, a
more extended neighborhood is searched, by increasing λ. If λ reaches the allowed
maximum value without finding a suitable next solution to visit, the more general
neighborhood N δ

2 is used, and now the neighbor is selected randomly. Nδ
2 is also

used when the algorithm has not found a better solution for a number K of
iterations. In this case, the algorithm returns to the best solution found so far.

Besides that, most of the computational cost of local search algorithms are
due to the evaluation of neighbors. In order to reduce its amount, several ap-
proaches have been proposed, such as that of Taillard [14], which evaluates the
neighbors using a lower bound estimation of the makespan in constant time,
instead of calculating it exactly. In the proposed algorithm, the selection of can-
didates is made in two steps. First, the best swap between two critical operations
is selected using the Taillard estimation of the expected makespan . After that,

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 9

drg
Stamp

10 Barba, Del Valle, Borrego

a variable is selected from the δ possibilities, choosing the one with the greatest
improvement in its slack because of the change.

5 Experimental Results

ILOG JSolver [7] has been used for implementing the Algorithm 1, and for man-
aging the constraints of the problem. As stated before, the algorithm has several
parameters, δ, K (maximum number of iterations without improving the solu-
tion), and the tabu list size (TLS), that may affect its behavior, and its tuning
represents a non-trivial problem. Since the main interest of this work is not the
competitiveness of the algorithm proposed, but the CSP model which is defined,
a scenario for some comparative results was chosen, in which the algorithm would
be executed for a fixed number of 10000 iterations and , which were selected ran-
domly from the results of the INSA algorithm. For such situation, the value of
K was chosen to be 1000. For selecting δ and TLS, the algorithm was run on a
reduced set of instances for δ from 2 to 5 and from TLS from 5 to 10. The best
results on the minimal and average makespan of the best solution after 10000
iterations were found for δ = 2 and TLS = 6. The best results for δ = 2 can be
explained by the fact that for higher values of δ, there is more probability for
finding a variable w such that the swap between v and w will be feasible, which
would enforce the diversification strategy too much.

Table 1 shows the results of the algorithm for a larger set of JSSP bench-
marks, taken from the OR-library, and some harder instances from Taillard [13].
For each JSSP instance, the table shows some statistics about the algorithm used
in this work: the relative error of the best solution from the 100 restarts (BRE%)
with respect to the best known solution (UB, which is not proved optimal for
the values indicated by *), the mean relative error (MRE%) and the standard
deviation of relative error (SDRE%). Also, the mean computational time for
running the algorithm is given (RT). As reference, the results obtained by the
NS algorithm is shown in two situations: in the original form, that takes into
account several factors, and after 10000 iterations. As expected, the algorithm
is not fully competitive (as well as it has been developed in Java, many of its
components are not optimized) with that of Nowicki and Smutnicki, considered
as one of the best methods for solving the JSSP. Instead, the results shown must
be taken as a reference for further improvements of the algorithm or for different
approaches that can use the model.

6 Conclusions and Future Work

This paper proposes a CSP model for the Job Shop Scheduling Problem to
be solved using local search techniques. The model can be used to represent
a multiple software process planning problem when the different (activities of)
projects compete for limited staff. The main aspects of the model are the use
of integer variables which represent the relative order of the operations to be
scheduled and two types of global constraints for ensuring feasibility. Also, a

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 10

drg
Stamp

Title Suppressed Due to Excessive Length 11

Table 1. Results on a set of JSS instances

Proposed Model NS

Instance n m UB BRE% MRE% SDRE% RT BRE% RT BRE%104 RT104

FT10 10 10 930 2.25 3.95 0.96 8.72 0 0.68 0 0.25
ABZ7 20 15 656 9.90 13.98 2.16 64.40 2.28 4.62 3.20 0.84
LA02 10 5 655 0.45 3.80 1.83 3.02 0 0.10 0 0.11
LA19 10 10 842 2.49 6.25 1.82 10.52 0.11 0.83 0.11 0.35
LA21 15 10 1046 5.16 8.23 1.05 18.76 0.86 0.86 0.86 0.42
LA24 15 10 935 3.85 6.56 1.13 18.72 1.39 1.33 1.50 0.45
LA25 15 10 977 7.26 11.24 1.84 20.65 1.12 1.39 2.04 0.45
LA27 20 10 1235 6.96 12.07 2.03 30.73 1.94 1.27 1.94 0.51
LA29 20 10 1152 8.42 12.57 2.22 33.24 3.13 3.40 4.51 0.48
LA36 15 15 1268 7.09 11.42 1.25 38.61 0.79 3.66 2.76 0.62
LA37 15 15 1397 9.09 14.59 2.30 41.80 1.50 2.74 3.29 0.78
LA38 15 15 1196 5.85 8.09 0.99 41.72 1.84 2.75 2.59 0.65
LA39 15 15 1233 7.94 10.44 0.90 41.04 0.89 3.50 1.62 0.79
LA40 15 15 1222 7.03 10.28 1.02 36.52 1.64 2.40 2.13 0.62
TA02 15 15 1244 6.35 10.49 1.64 36.47 2.73 2.83 2.73 0.70
TA18 20 15 1396* 12.60 15.25 1.32 57.82 3.65 4.64 5.73 0.97
TA26 20 20 1645* 9.36 13.14 1.34 93.66 3.10 10.64 3.28 1.58
TA32 30 15 1795* 14.20 17.84 1.30 116.93 3.12 18.36 6.85 1.44

neighborhood for this model has been defined based on an adaptation of Nowicki
and Smutnicki one. The main focus is not on the competitiveness of the algorithm
which is proposed, but in the definition of the CSP model.

As future work, the algorithm and neighborhood should be improved for
solving more efficiently the JSSP. Also, we think that the proposed model can
be adapted for other similar sequencing problems in a direct way.

On the other hand, it is intended to extend the software development pro-
cess to other (more generic or specific) models and to adapt the corresponding
(planning and/or) scheduling models and solving algorithms.

Acknowledgments. This work has been partially supported by the Spanish
Ministerio de Educación y Ciencia through a coordinated research project(grant
DIP2006-15476-C02-01) and Feder (ERDF).

References

1. P. Brucker and S. Hnust, Complex Scheduling, Springer, 2006.

2. R. Dechter, Constraint Processing, Morgan Kaufmann Publishers, 2003.

3. R. Dechter, I. Meiri, and J. Pearl, ‘Temporal constraint networks’, Artificial Intel-
ligence, 49, 61–95, (1991).

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 11

drg
Stamp

12 Barba, Del Valle, Borrego

4. M. R. Garey, D. S. Johnson, and R. Sethi, ‘The complexity of flowshop and jobshop
scheduling’, Math. Oper. Res., 1(2), 117–129, (1976).

5. F. Glover and M. Laguna, Tabu Search, Blackwell Scientific Publishing, Oxford,
England, 1993.

6. H. H. Hoos and T. Stutzle, Stochastic Local Search. Foundations and Applications,
Morgan Kaufmann, 2005.

7. ILOG, ‘Ilog JSolver’, (2003).
8. A. Jain and S. Meeran, ‘Deterministic job-shop scheduling: Past, present, and fu-

ture’, European Journal of Operational Research, 113 (2), 390–434, (1999).
9. A. Jain, B. Rangaswamy, and S. Meeran, ‘New and Stronger Job-Shop Neighbour-

hoods: A Focus on the Method of Nowicki and Smutnicki (1996)’, Journal of Heuris-
tics, 6, 457-480, (2000).

10. C. A. Leonhard, and J. S. Davis, ‘Job-Shop Development Model: A Case Study’,
IEEE Software, 12 (2), 86-92, (1995).

11. E. Nowicki and C. Smutnicki, ‘A fast taboo search algorithm for the job-shop
problem’, Management Science, 42(6), 797813, (1996).

12. F. Rossi, P. van Beek, and T. Walsh, Handbook of Constraint Programming, Else-
vier, 2006.

13. E. Taillard, ‘Benchmarks for basic scheduling problems’, European Journal of Op-
erational Research, 64, 278-285, (1993).

14. E. Taillard, ‘Parallel Taboo Search Techniques for the Job-Shop Scheduling Prob-
lem’, ORSA Journal on Computing, 16(2), 108-117, (1994).

15. R. Vaessens, E. Aarts, and J. Lenstra, ‘Job-shop scheduling by local search’, IN-
FORMS Journal on Computing, 8, 302–317, (1994).

16. P. Van Hentenryck and L. Michel, Constraint-Based Local Search, The MIT Press,
2005.

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 12

drg
Stamp

	adis-09-Barba-Scheduling
	adis-09-Blanco-Busqueda
	adis-09-Chicano-ACMC
	Ant Colony Optimization in Model Checking
	Francisco Chicano and Enrique Alba

	adis-09-Esteban-ahp
	Combinación de distribuciones de probabilidad con AHP
	Joseba Esteban López , José Javier Dolado Departamento de Lenguajes y Sistemas Universidad del País Vasco U.P.V./E.H.U. jose.esteban@ehu.es, dolado@si.ehu.es

	adis-09-Ferrer.Correlations
	adis-09-Gomez-Restricciones
	adis-09-Moreno-ISMOTE
	adis-09-Orta-ModeladoTI
	adis-09-Rosa.SocNet
	adis-09-Torres-Oraculos

