
On the Correlation between Static Measures and Code
Coverage using Evolutionary Test Case Generation

Javier Ferrer, Francisco Chicano, y Enrique Alba

Departamento de Lenguajes y Ciencias de la Computación
Universidad de Málaga, Spain

{ferrer,chicano,eat}@lcc.uma.es

Resumen. Evolutionary testing is a very popular domain in the field of search based
software engineering that consists in automatically generating test cases for a given
piece of code using evolutionary algorithms. One of the most important measures used
to evaluate the quality of the generated test suites is code coverage. In this paper we
want to analyze if there exists a correlation between some static measures computed
on the test program and the code coverage when an evolutionary test case generator
is used. In particular, we use Evolutionary Strategies (ES) as search engine of the test
case generator. We have also developed a program generator that is able to create
Java programs with the desired values of the static measures. The experimental study
includes a benchmark of 3600 programs automatically generated to find correlations
between the measures. The results of this study can be used in future work for the
development of a tool that decides the test case generation method according to the
static measures computed on a given program.

Palabras clave: Evolutionary testing, branch coverage, evolutionary algorithms, evo-
lutionary strategy

1 Introduction

Automatic software testing is one of the most studied topics in the field of Search-Based
Software Engineering (SBSE) [8]. From the first works [10] to nowadays many approaches
have been proposed for solving the automatic test case generation problem. This great effort
in building computer aided software testing tools is motivated by the cost and importance
of the testing phase in the software development cycle. It is estimated that half the time
spent on software project development, and more than half its cost, is devoted to testing
the product [4]. This explains why the Software Industry and Academia are interested in
automatic tools for testing.

Evolutionary algorithms (EAs) have been the most popular search algorithms for gener-
ating test cases [8]. In fact, the term evolutionary testing was coined to refer to this approach.
In the paradigm of structural testing a lot of research has been performed using EAs and, in
particular, different elements of the structure of a program have been studied in detail. Some
examples are the presence of flags in conditions [2], the coverage of loops [5], the existence
of internal states [19] and the presence of possible exceptions [16].

The objective of an automatic test case generator used for structural testing is to find
a test case suite that is able to cover all the software elements. These elements can be
instructions, branches, atomic conditions, and so on. The performance of an automatic test
case generator is usually measured as the percentage of elements that the generated test
suite is able to cover in the test program. This measure is called coverage. The coverage
obtained depends not only on the test case generator, but also on the program being tested.
Then, we can ask the following research questions:

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 50

– RQ1 : Is there any static measure of the test program having a clear correlation with the
coverage percentage?

– RQ2 : Which are these measures and how they correlate with coverage?

As we said before, coverage depends also on the test case generator. Then, in order to
completely answer the questions we should use all the possible automatic test case generators
or, at least, a large number of them. We can also focus on one test case generator and answer
to the previous questions on this generator. This is what we do in this paper. In particular,
we study the influence on the coverage of a set of static software measures when we use an
evolutionary test case generator. This study can be used to predict the value of a dynamic
measure, coverage, from static measures. This way, it is possible to develop tools taking into
account the static measures to decide which automatic test case generation method is more
suitable for a given program.

The rest of the paper is organized as follows. In the next section we present the measures
that we use in our study. Then, we detail the evolutionary test case generator used in
Section 3. After that, Section 4 describes the experiments performed and discusses the
results obtained. Finally, in Section 5 some conclusions and future work are outlined.

2 Measures

The measures used in this study are six: number of sentences, number of atomic conditions
per condition, total number of conditions, nesting degree, coverage, and McCabe’s cyclomatic
complexity. The three first measures are easy to understand. The nesting degree is the
maximum number of conditional statements that are nested one inside another. In the
following paragraphs we describe in more detail the coverage and the McCabe’s cyclomatic
complexity.

In order to define a coverage measure, we first need to determine which kind of element is
going to be “covered”. Different coverage measures can be defined depending on the kind of
element to cover. Statement coverage, for example, is defined as the percentage of statements
that are executed. In this work we use branch coverage, which is the percentage of branches
exercised in a program. This coverage measure is used in most of the related papers in the
literature.

Cyclomatic complexity is a complexity measure of code related to the number of ways
there are to traverse a piece of code. This determines the minimum number of inputs needed
to test all the ways to execute the program. Cyclomatic complexity is computed using the
control flow graph of the program: the nodes of the graph correspond to indivisible groups
of sentences of a program, and a directed edge connects two nodes if the second sentence
might be executed immediately after the first sentence. Cyclomatic complexity may also
be applied to individual functions, modules, methods or classes within a program and is
formally defined as follows:

v(G) = E −N + 2P ; (1)

where E is the number of edges of the graph, N is the number of nodes of the graph and P
is the number of connected components.

In Figure 1, we show an example of control flow graph (G). It is assumed that each
node can be reached by the entry node and each node can reach the exit node. The max-
imum number of linearly independent circuits in G is 9-6+2=5, and this is the cyclomatic
complexity.

The correlation between the cyclomatic complexity and the number of software faults
has been studied in some research articles [3, 7]. Most such studies find a strong positive
correlation between the cyclomatic complexity and the defects: the higher the complexity

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 51

Fig. 1. The original graph of the McCabe’s article

the larger the number of faults. For example, a 2008 study by metric-monitoring software
supplier Energy [6], analyzed classes of open-source Java applications and divided them into
two sets based on how commonly faults were found in them. They found strong correlation
between cyclomatic complexity and their faultiness, with classes with a combined complexity
of 11 having a probability of being fault-prone of just 0.28, rising to 0.98 for classes with a
complexity of 74.

In addition to this correlation between complexity and errors, a connection has been
found between complexity and difficulty to understand software. Nowadays, the subjective
reliability of software is expressed in statements such as “I understand this program well
enough to know that the tests I have executed are adequate to provide my desired level of
confidence in the software”. For that reason, we make a hard link between complexity and
difficulty of discovering errors.

Since McCabe proposed the cyclomatic complexity, it has received several criticisms.
Weyuker [18] concluded that one of the obvious intuitive weaknesses of the cyclomatic com-
plexity is that it makes no provision for distinguishing between programs which perform very
little computation and those which perform massive amounts of computation, provided that
they have the same decision structure. Piwowarski [12] noticed that cyclomatic complexity
is the same for N nested if statements and N sequential if statements.

In connection with our research questions, Weyuker’s critic is not relevant, since coverage
does not take into account the amount of computation made by a block of statements.
However, Piworarski’s critic is important in our research because the nesting degree of a
program is inverse correlated with the branch coverage as we will show in the experimental
section.

3 Test Case Generator

Our test case generator breaks down the global objective (to cover all the branches) into sev-
eral partial objectives consisting of dealing with only one branch of the program. Then, each
partial objective can be treated as a separate optimization problem in which the function
to be minimized is a distance between the current test case and one satisfying the partial
objective. In order to solve such minimization problem EAs are used. The main loop of the
test data generator is shown in Fig. 2.

In a loop, the test case generator selects a partial objective (a branch) and uses the opti-
mization algorithm to search for test cases exercising that branch. When a test case covers
a branch, the test case is stored in a set associated to that branch. The structure composed
of the sets associated to all the branches is called coverage table. After the optimization
algorithm stops, the main loop starts again and the test case generator selects a different

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 52

Select a Partial

Objective

Optimization

Algorithm

End

Continue?
yes

no

Test Case Generator

Test case

Objective function

Program

Fig. 2. The test case generation process

branch. This scheme is repeated until total branch coverage is obtained or a maximum num-
ber of consecutive failures of the optimization algorithm is reached. When this happens the
test data generator exits the main loop and returns the sets of test cases associated to all
the branches. In the rest of this section we describe two important issues related to the test
case generator: the objective function to minimize and the optimization algorithm used.

3.1 Objective Function

Following on from the discussion in the previous section, we have to solve several minimiza-
tion problems: one for each branch. Now we need to define an objective function (for each
branch) to be minimized. This function will be used for evaluating each test case, and its
definition depends on the desired branch and whether the program flow reaches the branch-
ing condition associated to the target branch or not. If the condition is reached we can
define the objective function on the basis of the logical expression of the branching condi-
tion and the values of the program variables when the condition is reached. The resulting
expression is called branch distance and can be defined recursively on the structure of the
logical expression. That is, for an expression composed of other expressions joined by logical
operators the branch distance is computed as an aggregation of the branch distance applied
to the component logical expressions. For the Java logical operators & and | we define the
branch distance as1:

bd(a&b) = bd(a) + bd(b) (2)
bd(a|b) = min(bd(a), bd(b)) (3)

where a and b are logical expressions.
In order to completely specify the branch distance we need to define its value in the

base case of the recursion, that is, for atomic conditions. The particular expression used
for the branch distance in this case depends on the operator of the atomic condition. The
operands of the condition appear in the expression. A lot of research has been devoted
in the past to the study of appropriate branch distances in software testing. An accurate
branch distance taking into account the value of each atomic condition and the value of its
operands can better guide the search. In procedural software testing these accurate functions
1 These operators are the Java and, or logical operators without shortcut evaluation. For the sake

of clarity we omit here the definition of the branch distance for other operators.

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 53

are well-known and popular in the literature. They are based on distance measures defined
for relational operators like <, >, and so on [9]. We use these distance measures used in the
literature.

When a test case does not reach the branching condition of the target branch we cannot
use the branch distance as objective function. In this case, we identify the branching condi-
tion c whose value must first change in order to cover the target branch (critical branching
condition) and we define the objective function as the branch distance of this branching
condition plus the approximation level. The approximation level, denoted here with ap(c, b),
is defined as the number of branching nodes lying between the critical one (c) and the target
branch (b) [17].

In this paper we also add a real valued penalty in the objective function to those test
cases that do not reach the branching condition of the target branch. With this penalty,
denoted by p, the objective value of any test case that does not reach the target branching
condition is higher than any test case that reaches the target branching condition. The exact
value of the penalty depends on the target branching condition and it is always an upper
bound of the target branch distance. Finally, the expression for the objective function is as
follows:

fb(x) =
{

bdb(x) if b is reached by x
bdc(x) + ap(c, b) + p otherwise (4)

where c is the critical branching condition, and bdb, bdc are the branch distances of branching
conditions b and c.

Nested branches pose a great challenge for the search. For example, if the condition
associated to a branch is nested within three conditional statements, all the conditions of
these statements must be true in order for the program flow to proceed onto the next one.
Therefore, for the purposes of computing the objective function, it is not possible to compute
the branch distance for the second and third nested conditions until the first one is true.
This gradual release of information might cause efficiency problems for the search (what
McMinn calls the nesting problem [11]), which forces us to concentrate on satisfying each
predicate sequentially.

In order to alleviate the nesting problem, the test case generator selects as objective in
each loop one branch whose associated condition has been previously reached by other test
cases stored in the coverage table. Some of these test cases are inserted in the initial popu-
lation of the EA used for solving the optimization problem. The percentage of individuals
introduced in this way in the population is called the replacement factor and is denoted by
Rf . At the beginning of the generation process some random test cases are generated in
order to reach some branching conditions.

3.2 Optimization Algorithm

EAs [1] are metaheuristic search techniques loosely based on the principles of natural evo-
lution, namely, adaptation and survival of the fittest. These techniques have been shown
to be very effective in solving hard optimization tasks. They are based on a set of tenta-
tive solutions (individuals) called population. The problem knowledge is usually enclosed in
an objective function, the so-called fitness function, which assigns a quality value to the
individuals. In Fig. 3 we show the main loop of an EA.

Initially, the algorithm creates a population of µ individuals randomly or by using a
seeding algorithm. At each step, the algorithm applies stochastic operators such as selection,
recombination, and mutation (we call them variation operators in Fig. 3) in order to compute
a set of λ descendant individuals P’(t). The objective of the selection operator is to select
some individuals from the population to which the other operators will be applied. The

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 54

t := 0;

P(t) = Generate ();

Evaluate (P(t));

while not StopCriterion do

P′(t) := VariationOps (P(t));

Evaluate (P′(t));
P(t+1) := Replace (P′(t),P(t));
t := t+1;

endwhile;

Fig. 3. Pseudocode of an EA

recombination operator generates a new individual from several ones by combining their
solution components. This operator is able to put together good solution components that
are scattered in the population. On the other hand, the mutation operator modifies one
single individual and is the source of new different solution components in the population.
The individuals created are evaluated according to the fitness function. The last step of the
loop is a replacement operation in which the individuals for the new population P (t + 1)
are selected from the offspring P ′(t) and the old one P (t). This process is repeated until
a stop criterion is fulfilled, such as reaching a pre-programmed number of iterations of the
algorithm or finding an individual with a preset target quality. In the following we focus on
the details of the specific EAs used in this work to perform the test case generation.

We used an Evolutionary Strategy (ES) for the search of test cases for a given branch. In
an ES [14] each individual is composed of a vector of real numbers representing the problem
variables (x), a vector of standard deviations (σ) and, optionally, a vector of angles (ω).
These two last vectors are used as parameters for the main operator of this technique: the
Gaussian mutation. They are evolved together with the problem variables themselves, thus
allowing the algorithm to self-adapt the search to the landscape. For the recombination
operator of an ES there are many alternatives: each of the three real vectors of an individual
can be recombined in a different way. However, this operator is less important than the
mutation. The mutation operator is governed by the three following equations:

σ′i = σi exp(τN(0, 1) + ηNi(0, 1)) , (5)
ω′i = ωi + ϕNi(0, 1) , (6)
x′ = x + N(0, C(σ′, ω′)) , (7)

where C(σ′, ω′) is the covariance matrix associated to σ′ and ω′, N(0, 1) is the standard
univariate normal distribution, and N(0, C) is the multivariate normal distribution with
mean 0 and covariance matrix C. The subindex i in the standard normal distribution in-
dicates that a new random number is generated anew for each component of the vector.
The notation N(0, 1) is used for indicating that the same random number is used for all
the components. The parameters τ , η, and ϕ are set to (2n)−1/2, (4n)−1/4, and 5π/180,
respectively, as suggested in [15]. With respect to the replacement operator, there is a spe-
cial notation to indicate wether the old population is taken into account or not to form the
new population. When only the new individuals are used, we have a (µ, λ)-ES; otherwise,
we have a (µ + λ)-ES.

Regarding the representation, each component of the vector solution x is rounded to the
nearest integer and used as actual parameter of the method under test. There is no limit in
the input domain, thus allowing the ES to explore the whole solution space. This contrasts
with other techniques such as genetic algorithm with binary representation that can only
explore a limited region of the search space.

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 55

In the experimental section we have used two ESs: a (1+5) ES without crossover, that
we call (1+5)-ES, and a (25+5)-ES with uniform crossover, called (25+5)-ESc. In the latter
algorithm, random selection was used.

4 Experimental Section

In order to study the correlations between the static measures and the coverage, we first
need a large number of test programs. For the study to be well-founded, we require a lot of
programs having the same value for the static measures as well as programs having different
values for the measures. It is not easy to find such a variety of programs in the related
literature. Thus, we decided to automatically generate the programs. This way, it is possible
to randomly generate programs with the desired values for the static measures and, most
important, we can generate different programs with the same values for the static measures.

The automatic program generation raises a non-trivial question: are the generated pro-
grams realistic? That is, could them be found in real-world? Using automatic program
generation it is not likely to find programs that are similar to the ones who a programmer
would make. This is especially true if the program generation is not driven by a specifica-
tion. However, this is not a drawback in our study, since we want to analyze the correlations
between some static measures of the programs and code coverage. In this situation, “realistic
programs” means programs that have similar values for the considered static measures as
the ones found in real-world; and we can easily fulfil this requirement.

Our program generator takes into account the desired values for the number of atomic
conditions per condition, the nesting degree, the number of sentences and the number of
variables. With these parameters and other (less important) ones, the program generator
creates a program with a defined control flow graph containing several conditions. The main
features of the generated programs are:

– They deal with integer input parameters.
– Their conditions are joined by whichever logical operator.
– They are randomly generated.

Due to the randomness of the generation, the static measures could take values that
are different from the ones specified in the configuration file of the program generator. For
this reason, in a later phase, we used the free tool CyVis to measure the actual values for
the static measures. CyVis [13] is a free software tool for metrics collection, analysis and
visualization of Java based programs.

The methodology applied for the program generation is the following. First, we analyzed
a set of Java source files from the JDK 1.5, in particular, the package java.util; and we
computed the static measures on these files. In Table 1 we show a summary of this analysis.
Next, we used the ranges of the most interesting values obtained in this previous analysis as
a guide to generate Java source files having values in the same range for the static measures.
This way, we generate programs that are realistic with respect to the static measures, making
the following study meaningful. Finally, we generated a total of 3600 Java programs using
our program generator and we applied our test case generator with (1+5)-ES and (25+5)-
ESc to all of them 5 times. We need 5 independent runs of each algorithm because they are
stochastic algorithms: one single run is not meaningful; instead, several runs are required and
the average and the standard deviation are used for comparison purposes. The experimental
study requires a total of 3600 · 5 · 2 = 36000 independent runs of the test case generator.

4.1 Results

After the execution of all the independent runs for the two algorithms in the 3600 programs,
in this section we analyze the linear correlation between the static measures and the coverage.

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 56

Tabla 1. Range of values obtained in java.util library

Parameter Minimum Maximum

Number of Sentences 10 294
Nesting Degree 1 7

McCabe Cyclomatic Complexity 1 80

We use the Pearson correlation coefficient to study the degree of linear correlation between
two variables. This coefficient is usually represented by r, and is computed with the following
formula:

r =
∑n

i=1(xi − x)(yi − y)
(n− 1)SxSy

where xi and yi are the values of the samples, n is the number of cases, Sx and Sy are the
standard deviations of each variable.

First, we study the correlation between the number of sentences and the branch coverage.
We obtain a correlation of 13.4% for these two variables using the (25+5)-ESc algorithm
and 18.8% with the (1+5)-ES algorithm2. In Figure 4 we plot the average coverage against
the number of sentences for ES and all the programs. It can be observed that the number
of sentences is not a significant parameter and it has no influence in the coverage measure.
The results obtained with ESc are similar and we omit the corresponding graph.

Sentences

4003002001000

C
o
v
e
r_
E
S

100

80

60

40

20

0

Fig. 4. Average branch coverage against the number of sentences for ES in all the programs

In second place, we study the correlation between the number of atomic conditions
per condition and coverage. In Table 2 we show the average coverage obtained for all the
programs with the same number of atomic conditions per condition when ES and ESc are
used. From the results we conclude that there is no linear correlation between these two
variables. The minimum values for coverage are reached with 1 and 7 atomic conditions
per condition. This could seem counterintuitive, but a large condition with a sequence of
2 In order to save room, in the following we use ESc and ES to refer to (25+5)-ESc and (1+5)-ES,

respectively

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 57

logical operators, can be easily satisfied due to OR operators. Otherwise, a short condition
composed of AND operators can be more difficult to satisfy.

Tabla 2. Correlation between the number of atomic conditions per condition and average coverage
for both algorithms

At. Conds. ESc ES

1 83.59%21.69 77.74%23.49

2 82.85%20.33 78.54%21.82

3 85.15%19.82 81.39%21.53

4 88.04%16.42 83.23%19.87

5 85.06%19.19 80.50%21.53

6 84.16%19.58 79.12%23.09

7 81.24%21.18 76.26%23.74

r -0.50 % 0.30 %

Now we analyze the influence on coverage of total number of conditions of a program. In
Figure 5, we can observe that programs with a small number of conditions reach a higher
coverage than the programs with a large number of conditions. This could be interpreted as
large programs with many conditions are more difficult to test. If there are a lot of conditions,
this generates a lot of different paths in the control flow graph, this fact is also weighted
in the cyclomatic complexity. The correlation coefficient is −16.4% for ES and −21.6% for
ESc.

TotalNumberConditions

403020100

C
o
v
e
r_
E
S

100

80

60

40

20

0

Fig. 5. Average branch coverage against the total number of conditions for ES in all the programs

Let us analyze the nesting degree. In Table 3, we summarize the coverage obtained with
different nesting degree. If the nesting degree is increased, the branch coverage decreases
and vice versa. It is clear that there is an inverse correlation between these variables. The
correlation coefficients are −45.7% and −47% for ES and ESc respectively, what confirms
the observations. As we said in Section 3.1, nested branches pose a great challenge for the
search.

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 58

Tabla 3. Correlation between nesting degree and average coverage for both algorithms

Nesting ESc ES

1 96.03%5.74 93.56%8.15

2 94.07%8.85 89.97%11.29

3 90.02%13.67 85.29%16.71

4 85.06%16.43 80.09%19.18

5 77.83%22.53 72.02%23.90

6 73.02%24.80 67.47%24.66

7 64.45%25.96 58.41%27.16

r -47,00 % -45,70 %

Finally, we study the correlation between the McCabe cyclomatic complexity and cover-
age. In Figures 6 and 7, we plot the average coverage against the cyclomatic complexity for
ES and ESc in all the programs. In general we can observe that there is no clear correlation
between both parameters. The correlation coefficients are −4.8% and −8.6% for ES and ESc,
respectively. These values are very low, and confirms the observations: McCabe’s cyclomatic
complexity and branch coverage are not correlated. This is somewhat surprising, we would
expect a positive correlation between the complexity of a program and the difficulty to get
an adequate test suite. However, this is not true: McCabe’s cyclomatic complexity cannot be
used as a measure of the difficulty to get an adequate test suite. We can go one step forward
and try to explain this unexpected behaviour. Cyclomatic complexity is not correlated with
branch coverage because complexity does not take into account the nesting degree, which is
the parameter with a higher influence on branch coverage.

McCabe

140120100806040200

C
o
v
e
r_
E
S

100,000000

80,000000

60,000000

40,000000

20,000000

0,000000

Fig. 6. Average branch coverage against the McCabe’s cyclomatic complexity for ES in all the
programs

5 Conclusions

In this work we have analyzed the correlation between the branch coverage obtained using
automatically generated test suites and five static measures: number of sentences, number

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 59

McCabe

140120100806040200

C
o
v
e
r_
E
S
_
c

100,000000

80,000000

60,000000

40,000000

20,000000

0,000000

Fig. 7. Average branch coverage against the McCabe’s cyclomatic complexity for ESc in all the
programs

of atomic conditions per condition, number of total conditions, nesting degree and Mc-
Cabe’s cyclomatic complexity. The results show that there is a small correlation between
the branch coverage and the number of sentences, the number of conditions per conditions
and the number of total conditions. On the other hand, the nesting degree is the measure
that is more (inverse) correlated to the branch coverage: the higher the nesting degree the
lower the coverage. Finally, there is no correlation between McCabe’s cyclomatic complexity
and branch coverage, that is, cyclomatic complexity does not reflect the difficulty of the
automatic generation of test suites.

As future work we plan to advance in the analysis of static and dynamic measures of a
program in order to propose a reliable measure of the difficulty of generating adequate test
suites. In addition, we want to make an exhaustive study of the static measures in object-
oriented programs, using a larger number of static measures. Finally, we would like to design
new static measures able to reflect the real difficulty of automatic testing for specific test
case generators.

Acknowledgements

This work has been partially funded by the Spanish Ministry of Science and Innovation and
FEDER under contract TIN2008-06491-C04-01 (the M∗ project). It has also been partially
funded by the Andalusian Government under contract P07-TIC-03044 (DIRICOM project).

References

1. T. Bäck, D. B. Fogel, and Z. Michalewicz. Handbook of Evolutionary Computation. Oxford
University Press, New York NY, 1997.

2. André Baresel, David Wendell Binkley, Mark Harman, and Bogdan Korel. Evolutionary testing
in the presence of loop–assigned flags: A testability transformation approach. In International
Symposium on Software Testing and Analysis (ISSTA 2004), pages 108–118, 2004.

3. Victor Basili and Barry Perricone. Software errors and complexity: an empirical investigation.
ACM commun, 27(1):42–52, 1984.

4. Boris Beizer. Software testing techniques. Van Nostrand Reinhold Co., New York, NY, USA,
2nd edition, 1990.

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 60

5. Eugenia Dı́az, Raquel Blanco, and Javier Tuya. Tabu search for automated loop coverage in
software testing. In Proceedings of the International Conference on Knowledge Engineering and
Decision Support (ICKEDS), pages 229–234, Porto, 2006.

6. Mark Dixon. An objective measure of code quality. Technical Report, February 2008.
7. T.M. Khoshgoftaar and J.C. Munson. Predicting software development errors using software

complexity metrics. IEEE Journal on Selected Areas in Communications, 1990.
8. Phil McMinn. Search-based software test data generation: a survey. Software Testing, Verifi-

cation and Reliability, 14(2):105–156, June 2004.
9. Christoph C. Michael, Gary McGraw, and Michael A. Schatz. Generating software test data

by evolution. IEEE Transactions on Software Engineering, 27(12):1085–1110, December 2001.
10. Webb Miller and David L. Spooner. Automatic generation of floating-point test data. IEEE

Trans. Software Eng., 2(3):223–226, 1976.
11. David Binkley Phil McMinn and Mark Harman. Testability transformation for efficient auto-

mated test data search in the presence of nesting. Proceedings of the Third UK Software Testing
Workshop 2005, pages 165–182, 2005.

12. Paul Piwarski. A nesting level complexity measure. SIGPLAN, 17(9):44–50, 1982.
13. Vinay Iyer Pradeep Selvaraj. Cyvis. Sourceforge, 2005.
14. I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biol-

ogischen Evolution. Fromman-Holzboog Verlag, Stuttgart, 1973.
15. G. Rudolph. Evolutionary Computation 1. Basic Algorithms and Operators, volume 1, chapter

9, Evolution Strategies, pages 81–88. IOP Publishing Lt, 2000.
16. Nigel Tracey, John Clark, Keith Mander, and John McDermid. Automated test-data generation

for exception conditions. Software Practice and Experience, 30(1):61–79, 2000.
17. Joachim Wegener, Andre Baresel, and Harmen Sthamer. Evolutionary test environment for

automatic structural testing. Information and Software Technology, 43(14):841–854, December
2001.

18. E.J. Weyuker. Evaluating software complexity measures. IEEE Trans. Software Eng.,
14(9):1357–1365, 1988.

19. Yuan Zhan and John A. Clark. The state problem for test generation in simulink. In GECCO
’06: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pages
1941–1948. ACM Press, 2006.

Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de Datos, Vol. 3, No. 1, 2009

ISSN 1988–3455 SISTEDES, 2009 61

	adis-09-Barba-Scheduling
	adis-09-Blanco-Busqueda
	adis-09-Chicano-ACMC
	Ant Colony Optimization in Model Checking
	Francisco Chicano and Enrique Alba

	adis-09-Esteban-ahp
	Combinación de distribuciones de probabilidad con AHP
	Joseba Esteban López , José Javier Dolado Departamento de Lenguajes y Sistemas Universidad del País Vasco U.P.V./E.H.U. jose.esteban@ehu.es, dolado@si.ehu.es

	adis-09-Ferrer.Correlations
	adis-09-Gomez-Restricciones
	adis-09-Moreno-ISMOTE
	adis-09-Orta-ModeladoTI
	adis-09-Rosa.SocNet
	adis-09-Torres-Oraculos

