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Abstract

One of the problems found in generic project databases, where the data is collected from 
different organizations, is the large disparity of its instances. In this chapter, we characterize 
the database selecting both attributes and instances so that project managers can have a 
better global vision of the data they manage. To achieve that, we first make use of data min-
ing algorithms to create clusters. From each cluster, instances are selected to obtain a final 
subset of the database. The result of the process is a smaller database which maintains the 
prediction capability and has a lower number of instances and attributes than the original, 
yet allow us to produce better predictions.
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Introduction

Successful software engineering projects need to estimate and make use of past data since 
the inception of the project. In the last decade, several organizations have started to col-
lect data so that companies without historical datasets can use these generic databases for 
estimation. In some cases, project databases are used to compare data from the organization 
with other industries, that is, benchmarking. Examples of such organizations collecting data 
include the International Software Benchmarking Standards Group (ISBSG, 2005) and the 
Software Technology Transfer Finland (STTF, 2004).
One problem faced by project managers when using these datasets is that the large number 
of attributes and instances needs to be carefully selected before estimation or benchmarking 
in a specific organization. For example, the latest release of the ISBSG (2005) has more 
than 50 attributes and 3,000 instances collected from a large variety of organizations. The 
project manager has the problem of interpreting and selecting the most adequate instances. 
In this chapter, we propose an approach to reduce (characterize) such repositories using 
data mining as shown in Figure 1. The number of attributes is reduced mainly using expert 
knowledge although the data mining algorithms can help us to identify the most relevant 
attributes in relation to the output parameter, that is, the attribute that wants to be estimated 
(e.g., work effort). The number of instances or samples in the dataset is reduced by selecting 
those that contribute to a better accuracy of the estimates after applying a version of the M5 
(Quinlan, 1992) algorithm, called M5P, implemented in the Weka toolkit (Witten & Frank, 
1999) to four datasets generated from the ISBSG repository. We compare the outputs before 
and after, characterizing the database using two algorithms provided by Weka, multivariate 
linear regression (MLR), and least median squares (LMS). 
This chapter is organized as follows: the Techniques Applied section presents the data min-
ing algorithm; The Datasets section describes the datasets used; and the Evaluation of the 
Techniques and Characterization of Software Engineering Datasets section discusses the 
approach to characterize the database followed by an evaluation of the results. Finally, the 
Conclusions section ends the chapter.

Figure 1. Characterizing dataset for producing better estimates
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Techniques Applied

Many software engineering problems like cost estimation and forecasting can be viewed 
as classification problems. A classifier resembles a function in the sense that it attaches a 
value (or a range or a description), named the class, C, to a set of attribute values A1, A2,... 
An, that is, a classification function will assign a class to a set of descriptions based on the 
characteristics of the instances for each attribute. For example, as shown in Table 1, given 
the attributes size, complexity, and so forth, a classifier can be used to predict the effort. 

Table 1. Example of attributes and class in software engineering repository

A1 -Size … An- Complexity C - Effort
a11 … a11 c1

… … … …
a11 … anm cn

In this chapter, we have applied data mining, that is, computational techniques and tools 
designed to support the extraction, in an automatic way, of the information useful for deci-
sion support or exploration of the data source (Fayyad, Piatetsky-Shapiro, & Smyth, 1996). 
Since data may not be organized in a way that facilitates the extraction of useful information, 
typical data mining processes are composed of the following steps:

• Data Preparation: The data is formatted in a way that tools can manipulate it, merged 
from different databases, and so forth.

• Data Mining: It is in this step when the automated extraction of knowledge from 
the data is carried out. Examples of such algorithms and some usual representations 
include: C4.5 or M5 for decision trees, regression, and so forth.

• Proper Interpretation of the Results: Including the use of visualization tech-
niques.

• Assimilation of the Results.

Within the available data mining algorithms, we have used M5 and linear regression classi-
fiers implemented in the Weka toolkit, which have been used to select instances of a software 
engineering repository. The next sub-sections explain these techniques in more detail. 

M5 and M5P

The main problem in linear regression is that the attributes must be numeric so that the 
model obtained will also be numeric (simple equations in a dimensions). As a solution to 
this problem, decision trees have been used in data mining for a long time as a supervised 



4   Dolado, Rodríguez, Riquelme, Ferrer-Troyano & Cuadrado

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of 
Idea Group Inc. is prohibited.

learning technique (models are learned from data). A decision tree divides the attribute space 
into clusters with two main advantages. First, each cluster is clearly defined in the sense that 
new instances are easily assigned to a cluster (leaf of the tree). The second benefit is that the 
trees are easily understandable by users in general and by project managers in particular. 
Each branch of the tree has a condition which reads as follows: attribute ≤ value or attribute 
> value that serve to make selections until a leaf is reached. Such conditions are frequently 
used by experts in all sciences in decision making.
Decision trees are divided into model trees in which each leaf represents the average value 
of the instances that are covered by the leaf and regression trees in which each leaf is a 
regression model. Examples of decision trees include a system called CART (Classification 
and Regression Trees) developed by Breiman (1984), ID3 (Quinlan, 1986) improved into 
C4.5 (Quinlan, 1993), and M5 (Quinlan, 1992) with the difference that in M5 the nodes 
represent linear regressions rather than discrete classes.
The M5 algorithm, the most commonly used classifier of this family, builds regression trees 
whose leaves are composed of multivariate linear models, and the nodes of the tree are chosen 
over the attribute that maximizes the expected error reduction as a function of the standard 
deviation of output parameter. In this work, we have used the M5 algorithm implemented 
in the Weka toolkit (Witten & Frank, 1999), called M5P. Figure 2 shows Weka’s output 
for the M5P algorithm for one of the datasets that we used for this chapter. In this case, 
the M5P algorithm created 17 clusters, from LM1 to LM17. The normalized work effort 
(NormWorkEff) is the dependent variable, and a different linear model is applied depending 
on the number of Function Points (FP) and productivity (NormPDR). The clusters found 
can assign to the dependent variable either a constant or a linear equation (in the majority of 
the cases); in this case, each cluster or region is associated with linear equations (Figure 2, 
right column) In the example shown in Figure 2, the M5P algorithm created 17 leaves, and 
we will use FP and NormPDR to select the appropriate linear model. In this case, the tree 

Figure 2. Weka’s M5P output

FP <= 389.5 :
|   NormPDR <= 16.5 :
|   |   NormPDR <= 6.65 : LM1 (305/8.331%)
|   |   NormPDR >  6.65 : LM2 (318/5.402%)
|   NormPDR >  16.5 :
|   |   NormPDR <= 37.25 :
|   |   |   FP <= 147 : LM3 (124/5.751%)
|   |   |   FP >  147 : LM4 (107/10.878%)
|   |   NormPDR >  37.25 :
|   |   |   FP <= 161 :
|   |   |   |   NormPDR <= 56.9 : LM5 (34/8.323%)
|   |   |   |   NormPDR >  56.9 :
|   |   |   |   |   FP <= 57 : LM6 (9/17.555%)
|   |   |   |   |   FP >  57 : LM7 (34/27.858%)
|   |   |   FP >  161 : LM8 (37/58.384%)
FP >  389.5 :
|   NormPDR <= 8.05 :
|   |   FP <= 1520.5 :
|   |   |   NormPDR <= 2.65 : LM9 (62/3.559%)
|   |   |   NormPDR >  2.65 :
|   |   |   |   FP <= 610 : LM10 (50/6.205%)
|   |   |   |   FP >  610 :
|   |   |   |   |   NormPDR <= 5.7 : LM11 (38/5.155%)
|   |   |   |   |   NormPDR >  5.7 : LM12 (29/3.989%)
|   |   FP >  1520.5 : LM13 (47/23.679%)
|   NormPDR >  8.05 :
|   |   NormPDR <= 28.75 :
|   |   |   FP <= 1411.5 :
|   |   |   |   FP <= 674 : LM14 (67/11.599%)
|   |   |   |   FP >  674 : LM15 (45/26.176%)
|   |   |   FP >  1411.5 : LM16 (44/79.363%)
|   |   NormPDR >  28.75 : LM17 (40/160.629%)

Where:

LM num: 1
NormWorkEff =
0.6701 * FP
+ 5.8478 * MaxTeamSize
+ 16.1174 * DevType=New_Development, Re-development
+ 16.4605 * DevPlatf=MR
+ 7.5693 * ProjElapTime
- 9.4635 * ProjInactiveTime
+ 0.4684 * TotalDefectsDelivered
+ 12.4199 * NormPDR
+ 461.1827
LM num: 2

…

LM num: 17
NormWorkEff =
22.1179 * FP
- 15457.3164 * VAF
+ 36.5098 * MaxTeamSizy
- 634.6502 * DevType=New_Development,Re-development
+ 37.0267 * DevPlatf=MR
+ 1050.5217 * LangType=2GL,3GL,ApG
+ 328.1218 * ProjElapTime
- 90.7468 * ProjInactiveTime
+ 370.2088 * NormPDR
+ 5913.1867
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generated is composed of a large number of leaves divided by the same variables at differ-
ent levels. The tree could be simplified adding a restriction about the minimum number of 
instances covered by each leaf; for example, saying that there should be 100 instances per 
leaf will generate a simpler tree but less accurate.
Figure 3 also shows the tree in a graphical way. Each leaf of the tree provides further infor-
mation within brackets. For example, for LM1, there are 308 instances and an approximate 
error in that leaf is 8.331%.

Constructing the M5 Decision Tree

Regarding the construction of the tree, M5 needs three steps. The first step generates a 
regression tree using the training data. It calculates a linear model (using linear regression) 
for each node of the tree generated. The second step tries to simplify the regression tree 
generated in the previous search (first post-pruning) deleting the nodes of the linear models 
whose attributes do not increase the error. The aim of the third step is to reduce the size of 
the tree without reducing the accuracy (second post-pruning). To increase the efficiency, M5 
does the last two steps at the same time so that the tree is parsed only once. This simplifies 
both the number of the nodes as well as simplifying the nodes themselves. 
As mentioned previously, M5 first calculates a regression tree that minimizes the variation 
of the values in the instances that fall into the leaves of the tree. Afterwards, it generates a 
lineal model for each of the nodes of the tree. In the next step, it simplifies the linear models 
of each node by deleting those attributes that do not reduce the classification error when 
they are eliminated. Finally, it simplifies the regression tree by eliminating subtrees under 
the intermediate nodes. They are the nodes whose classification error is greater than the 
classification error given by the lineal model corresponding to those intermediate nodes. In 
this way, taking a set of learning instances E and a set of attributes A, a simplified version 
of the M5 algorithm will be as follows:

Figure 3. Graphical view of the M5P tree
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Proc_M5 (E,A)
begin
R : = create-node-tree-regression
R : = create-tree-regression (E,A,R)
R : = simplify-lineal-models (E,R)
R : = simplify-regression-tree (E,R)
Return R
End

The regression tree, R, is created in a divide-and-conquer method; the three functions (cre-
ate-tree-regression, simplify-lineal-models and simplify-regression-tree) are called in a recursive 
way after creating regression tree node by (create-node-tree-regression).
Once the tree has been built, a linear model for each node is calculated and the leaves of the 
trees are pruned if the error decreases. The error for each node is the average of the differ-
ence between the predicted value and the actual value of each instance of the training set 
that reaches the node. This difference is calculated in absolute terms. This error is weighted 
according to the number of instances that reach that node. This process is repeated until all 
the examples are covered by one or more rules.

Transformation of Nominal Attributes

Before building the tree, all non-numeric attributes are transformed into binary variables so 
that they can be treated as numeric attributes. A variable with k values is transformed into 
k-1 binary variables. This transformation is based on the Breiman observation. According 
to this observation, the best splitting in a node for a variable with k values is one of the k-1 
possible solutions once the attributes have been sorted. 

Missing Values

A quite common problem with real datasets occurs when the value of a splitting attribute 
does not exist. Once the attribute is selected as a splitting variable to divide the dataset into 
subsets, the value of this attribute must be known. To solve this problem, the attribute whose 
value does not exist is replaced by the value of another attribute that is correlated to it. A 
simpler solution is to use the prediction value as the value of the attribute selected or the 
average value of the attribute for all the instances in the set that do not reach the node, but 
can be used as the value of the attribute. 

Heuristics

The split criterion of the branches in the tree in M5 is given by the heuristic used to select 
the best attribute in each new branch. For this task, M5 uses the standard deviation as a 
measure of the error in each node. First, the error decrease for each attribute used as split-
ting point is calculated. 



A Two Stage Zone Regression Method for Global Characterization   7

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission 
of Idea Group Inc. is prohibited.

Smoothing

In the final stage, a regularization process is made to compensate discontinuities among 
adjacent lineal models in the leaves of the tree. This process is started once the tree has 
been pruned and especially for models based on training sets containing a small number of 
instances. This smoothing process usually improves the prediction obtained. 

Linear Regression and Least Median Squares

Linear regression (LR) is the classical linear regression model. It is assumed that there is a 
linear relationship between a dependant variable (e.g., effort) with a set of or independent 
variables, that is, attributes (e.g., size in function points, team size, development platform, 
etc.). The aim is to adjust the data to a model so that 

 y = β0 + β1 x1 + β2 x2 + ... + + βk xk + e. 

Least median squares (LMS) is a robust regression technique that includes outlier detection 
(Rousseeuw & Leroy, 1987) by minimizing the median rather than the mean. 
Goodness of fit of the linear models is usually measured by the correlation, co-efficient 
of multiple determination R2 and by the mean squared error. However, in the software 
engineering domain, the mean magnitude of relative error (MMRE) and prediction at level 
l—Pred (l)—are well known techniques for evaluating the goodness of fit in the estimation 
methods (see the Evaluation of the Techniques and Characterization of Software Engineer-
ing Datasets section).

The Datasets

The International Software Benchmarking Standards Group (ISBSG), a non-profit organiza-
tion, maintains a software project management repository from a variety of organizations. 
The ISBSG checks the validity and provides benchmarking information to companies 
submitting data to the repository. Furthermore, it seems that the data is collected from large 
and successful organizations. In general, such organizations have mature processes and 
well-established data collection procedures. In this work, we have used release 8, which 
contains 2,028 projects and more than 55 attributes per project. The attributes can be clas-
sified as follows:

• Project context, such as type of organization, business area, and type of develop-
ment;

• Product characteristics, such as application type user base; 
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• Development characteristics, such as development platform, languages, tools, and so 
forth;

• Project size data, which is different types of function points, such as IFPUG (2001), 
COSMIC (2004), and so forth; and

• Qualitative factors such as experience, use of methodologies, and so forth.

Before using the dataset, there are a number of issues to be taken into consideration. An 
important attribute is the quality rating given by the ISBSG: its range varies from A (where 
the submission satisfies all criteria for seemingly sound data) to D (where the data has some 
fundamental shortcomings). According to ISBSG, only projects classified as A or B should 
be used for statistical analysis. Also, many attributes in ISGSB are categorical attributes 
or multi-class attributes that need to be pre-processed for this work (e.g., the project scope 
attribute which indicates what tasks were included in the project work effort—planning, 
specification, design, build, and test—were grouped. Another problem of some attributes is the 
large number of missing instances. Therefore, in all datasets with the exception of the “reality 
dataset”, we have had to do some pre-processing. We selected some attributes and instances 
manually. There are quite a large number of variables in the original dataset that we did not 
consider relevant or they had too many missing values to be considered in the data mining 
process. From the original database, we only considered the IFPUG estimation technique 
and those that can be considered very close variations of IFPUG such as NESMA. 
We have used four datasets selecting different attributes including the one provided in the 
“reality tool” by ISBSG. In our study, we have selected NormalisedWorkEffort or Summa-
ryWorkEffort as dependent variables. The normalized work effort is an estimate of the full 
development life cycle effort for those projects covering less than a full development life 
cycle while the summary work effort is the actual work effort carried out by the project. For 
projects covering the full development life cycle and projects where the development life 
cycle coverage is not known, these values are the same, that is, work effort reported. When 
the variable summary work effort is used, the dataset included whether each of the life cycle 
phases were carried out, such as, planning, specification, building and testing.

DS1: The reality dataset is composed of 709 instances and 6 attributes (DevelopmentType, 
DevelopmentPlatform, LanguageType, ProjectElapsedTime, NormalisedWorkEffort, 
UnadjustedFunctionPoints). The dependent variable for this dataset is the Normalised-
WorkEffort. 

DS2: The dataset DS2 is composed of 1,390 instances and 15 attributes (FP, VAF, Max-
TeamSize, DevType, DevPlatf, LangType, DBMUsed, MethodUsed, ProjElapTime, 
ProjInactiveTime, PackageCustomisation, RatioWEProNonPro, TotalDefectsDe-
livered, NormWorkEff, NormPDR). The dependent variable for this dataset is the 
NormalisedWorkEffort. 

DS3. The dataset DS3 is composed of 1,390 instances and 19 attributes (FP, SummWorkEffort, 
MaxTeamSize, DevType, DevPlatf, LangType, DBMUsed, MethodUsed, ProjElapTime, 
ProjInactiveTime, PackageCustomisation, Planning, Specification, Build, Test, Impl, 
RatioWEProNonPro, TotalDefectsDelivered, ReportedPDRAdj). In this case, we did 
consider the software life cycle attributes (Planning, Specification, Build, Impl, Test), 
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and, therefore, we were able to use the summary work effort (SummWorkEffort) as 
the dependent variable.

DS4. The dataset DS4 is very similar to DS3 but it uses the unadjusted function points (Un-
adjFP) and the value adjustment factor (VAF) instead of the adjusted function points 
(FP). It is also composed of 1,390 instances. The 20 attributes are VAF, SummWorkEffort, 
MaxTeamSize, DevType, DevPlatf, LangType, DBMUsed, MethodUsed, ProjElapTime, 
ProjInactiveTime, PackageCustomisation, Planning, Specification, Build, Test, Impl, 
RatioWEProNonPro, TotalDefectsDelivered, UnadjFP, and ReportedPDRAdj. It also 
uses the summary work effort (SummWorkEffort) as the dependent variable.

Evaluation of the Techniques and 
Characterization of Software Engineering 

Datasets

We compare the benefits of the techniques by using linear regression and the least median 
square as prediction techniques before and after characterizing the database using the clas-
sical mean magnitude of relative error (MMRE) and Pred(%). In software engineering, the 
standard criteria for a model to be acceptable are Pred(25) ≥ 0.75 and MMRE ≤ 0.25. 

• MMRE is computed as 




n

i i

ii

e
êe

n 1

1
, where in a sample of size n, êi is the estimated value 

for the i-th element, and ei is the actual value.
• Pred(%) is defined as the number of cases whose estimations are under the %, divided 

by the total number of cases. For example, Pred(25)=0.75 means that 75% of cases 
estimates are within the inside 25% of its actual value. 

Figure 4. M5P output
UnadjustedFunctionPoints <= 343 : LM1 (510/53.022%)
UnadjustedFunctionPoints >  343 : LM2 (199/318.225%)

where:

LM num: 1
NormalisedWorkEffort = 
 90.5723 * DevelopmentPlatform=MF,MR 
 + 63.5148 * LanguageType=ApG,3GL,2GL 
 + 628.9547 * LanguageType=3GL,2GL 
 + 184.9949 * ProjectElapsedTime 
 + 10.9211 * UnadjustedFunctionPoints 
 - 545.8004

LM num: 2
NormalisedWorkEffort = 
 10189.7332 * DevelopmentPlatform=MF,MR 
 - 5681.5476 * DevelopmentPlatform=MR 
 + 155.8191 * LanguageType=ApG,3GL,2GL 
 + 5965.379 * LanguageType=3GL,2GL 
 + 551.4804 * ProjectElapsedTime 
 + 4.3129 * UnadjustedFunctionPoints 
 - 8118.3275
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We will now explain how we proceeded using the reality dataset as it is the smallest of the 
four datasets used. Once we had our datasets ready, we applied the M5P algorithm using the 
Weka Toolkit. The M5P algorithm created two clusters, LM1 and LM2 (the other three data-
sets created a much larger number of clusters). The NormalisedWorkEffort is the dependent 
variable and a different linear model is applied depending on the UnadjustedFunctionPoints 
variable. The clusters found can assign to the dependent variable either a constant or a linear 
equation (in most cases). For example, for the reality dataset, M5P has produced only two 
branches that are interpreted as follows: if UnadjustedFunctionPoints is less than 343 then 
we apply LM1 to calculate the NormalisedWorkEffort (see Figure 4).
The categorical data of the linear regression function obtained by Weka is calculated sub-
stituting the value for the appropriate value wherever it occurs. For example, if we had an 
instance with DevelopmentPlatform equals to MF, LanguageType equals to ApG and Unad-
justedFunctionPoints less than 343 then the linear equation to apply would look like this: 

LM num: 1
NormalisedWorkEffort = 
 90.5723 * MF=MF,MR 
 + 63.5148 * ApG=ApG,3GL,2GL 
 + 628.9547 * ApG=3GL,2GL 
 + 184.9949 * ProjectElapsedTime 
 + 10.9211 * UnadjustedFunctionPoints 
 - 545.8004

For evaluating each categorical expression, if the value of the category on the left hand side 
is equal to any of the categories on the right hand side of the equation, then we substitute 
the entire equation with value 1; otherwise with the value 0. Following the example, we 
obtain: 

LM num: 1
NormalisedWorkEffort = 
 90.5723 * 1, MR 
 + 63.5148 * 1
 + 628.9547 * 0 
 + 184.9949 * ProjectElapsedTime 
 + 10.9211 * UnadjustedFunctionPoints 
 - 545.8004

From each cluster only those instances that were within the 25% of the actual value, that is, 
Pred (25), are selected to be part of the characterized database. 
Afterwards, we applied LR and LSM in all datasets before and after selecting instances. In 
the case of the reality dataset, the number of instances was reduced from 709 to 139 projects. 
We also created another dataset by selecting 139 instances randomly from the entire dataset 
(709 instances). Table 2 compares the MMRE, Pred(25), and Pred(30) results for the reality 
dataset where the columns named Before are the results obtained using the entire dataset; 
After columns are the results when applying LR and LSM with only the selected instances. 
Finally, Random columns are the result when we randomly selected a number of instances 
equal to the number of instances of the characterized dataset (139 in the case of the reality 
dataset). For the reality dataset, M5P allowed us to reduce the number of instances in the 
dataset from 709 to 139 (570 instances). 
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Table 3 shows the result for the DS2 dataset. M5P allowed us to reduce the number of 
instances in the dataset from 1,390 to 1,012 (378 instances). 
Table 4 shows the results for the DS3 dataset, and the number of instance was reduced by 
375. 
Table 5 shows the results for the DS4 dataset. In this case, the number of instances is re-
duced by 411. 
Although the general estimation accuracy of LMS and LR in the datasets used is quite 
low using the software engineering criteria, their performance is always improved when 

Table 2. DS1 dataset results (reality dataset)

LMS Linear Regression
Before 
(790 inst)

After
(139 inst)

Random
(139 inst)

Before 
(790 inst)

After
(139 inst)

Random (139 
inst)

MMRE 1.07 0.19 0.98 2.41 0.44 3.18
Pred(25) 0.18 0.73 0.24 0.14 0.34 0.10
Pred(30) 0.23 0.79 0.26 0.18 0.41 0.12

Table 3. DS2 dataset results

LMS Linear Regression
Before (1390 
inst)

After
(1012 inst)

Random
(1012 inst)

Before (1390 
inst)

After (1012 
inst)

Random (1012 
inst)

MMRE 0.63 0.45 0.75 2.10 1.12 2.05
Pred(25) 0.39 0.36 0.34 0.22 0.23 0.23
Pred(30) 0.47 0.42 0.41 0.27 0.27 0.27

Table 4. DS3 dataset results

LMS Linear Regression
Before 
(1390 inst)

After 
(1015inst)

Random 
(1015 inst)

Before (1390 
inst)

After 
(1015 inst)

Random
(1015 inst)

MMRE 0.68 0.46 0.81 2.35 0.88 2.09
Pred(25) 0.32 0.38 0.29 0.22 0.25 0.22
Pred(30) 0.38 0.46 0.36 0.26 0.26 0.25

Table 5. DS4 dataset results

LMS Linear Regression
Before
(1390 inst.)

After
(979 inst)

Random
(1015 inst)

Before
(1390 inst)

After 
(979 inst)

Random 
(979 inst)

MMRE 0.68 0.45 0.90 2.43 0.86 2.23
Pred(25) 0.30 0.37 0.30 0.22 0.27 0.19
Pred(30) 0.36 0.43 0.36 0.26 0.32 0.24
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selecting a fewer number of instances using M5P. Table 6 shows the differences before 
and after selecting the instances. It is worth noting that the best improvement is in the case 
where the difference in the number of instances is large. This seems to be quite logical as 
the larger the number of instances discarded by the data mining algorithm, the cleaner the 
dataset should be.

Conclusions

In this chapter, we characterized 4 datasets created from the ISBSG database selecting both 
attributes and instances so that project managers can have a better global vision of the data 
they manage. To achieve this, we first created several subsets of the ISBSG database using 
expert knowledge to select attributes. We then made use of Weka’s M5P data mining algorithm 
to create clusters. From these clusters, only those instances that were within the 25% of the 
actual value are selected to be part of the estimation model. When we compared the good-
ness of using linear regression and the least median square as prediction techniques using 
the mean magnitude of relative error (MMRE) and Pred(%), the smaller dataset produces 
better or as least similar results. The result is a new database which represents the original 
database but with fewer number of attributes and instances so that the project manager can 
get a much better grasp of the information of the database, improving the performance of 
the rest of activities.
Further work will consist of using data mining techniques for characterizing not only the 
instances but also the attributes (in this work, the attributes were selected manually using 
expert knowledge), by using bi-clustering. More needs to be done for understanding and 
comparing different clusterization techniques to create segmented models and analyzing its 
usefulness for project managers.
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Table 6. Differences when using LMS

Diff instances Diff MMRE Diff Pred 25 Diff Pred30
DS1 570 0.88 0.55 0.53
DS2 378 0.18 0.03 0.05
DS3 375 0.22 0.06 0.08
DS3 411 0.23 0.07 0.07
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