

An Overview of

Object-Oriented Design Metrics

Daniel Rodriguez Rachel Harrison

RUCS/2001/TR/A

March 2001

Keywords: Empirical Software Engineering, metrics, object-oriented design

Research Group: ASE

Grant Awarding Body: Computer Science Department

Departmental Grant Number:

THE UNIVERSITY OF READING

DEPARTMENT OF COMPUTER SCIENCE

Abstract

It is stated that object-oriented technology approach to software

construction needs a specific set of metrics. This paper examines

object-oriented design metrics of common use as a means of

assessing of quality characteristics of objects-oriented systems.

The set of metrics described are the ones defined by Abreu,

Chidamber and Kemerer, and a subset of Lorenz and Kidd as

well as other traditional ones if extensive use. Each metric is

described based on a template composed of name, definition,

intent, interpretation guidelines, problems, and possible

improvements are discussed.

Table of contents

1. INTRODUCTION ... 4

2. VALIDITY OF METRICS ... 4

3. OBJECT-ORIENTED DESIGN METRICS .. 5

3.1. SYSTEM METRICS LEVEL .. 5
3.2. COUPLING LEVEL ... 9
3.3. INHERITANCE LEVEL .. 9
3.4. CLASS LEVEL ... 11
3.5. METHOD LEVEL ... 13

4. CONCLUSION ... 14

5. REFERENCES .. 15

1. Introduction

The use of metrics is in order to manage, predict and improve the quality of software product

is increasing popularity. There is a large different kind of metrics that need to be used in

projects (estimating, tracking…) but this paper focuses on Object-Oriented (OO) design

metrics. As use of the OO paradigm has become widely used, the advent of specific set of

metrics for these systems has also gained popularity in the last years. As the use of the OO

paradigm does not get quality by itself (there are examples of applications that are not robust,

maintainable or reusable, etc.), the goal using OO metrics is to assess the systems in order to

produce high-quality results.

Some traditional metrics or modifications of them can be useful within OO paradigm,

especially in the method level. However, in order to quantify the OO features (encapsulation,

information hiding, inheritance, polymorphism, and message-passing), authors have proposed

new sets of metrics. In this paper, metrics defined by Abreu [Abreu, 1996], Chidamber and

Kemerer (C&K) [Chidamber and Kemerer, 1994], a subset of Lorenz and Kidd (L&K)

[Lorenz and Kidd, 1994] and a few other relevant metrics are reviewed and explained. These

sets of metrics are explained according to a classification defined by Archer [Archer and

Stinson, 1995] to cover all the possible features and granularity of the OO systems. Each

metric is described based on a template considering important features of each metric such as,

how are it computed, some published thresholds, and assesses its appropriateness and

usefulness. Thresholds and interpretation guidelines are given as a mean to spot outliners.

Classes or methods that differ substantially from average values may indicate future

problems, ill-conceived abstractions or bad implementations, which are good candidates for

inspection or rework. Some empirical studies have been performed but there is still more

empirical work needed. [Lorenz and Kidd, 1994] have suggested some thresholds based on

some IBM projects in C++ and Smalltalk. Although some work about empirical validation has

been performed, much more work is necessary.

Section 2 of this paper considers the validity of metrics. Those are properties that metrics

should verify to be valid both theoretically and empirically. In section 3, a literature survey is

presented in a categorization according to the granularity of their intended measure. Finally,

section 4 presents some conclusions and future work.

2. Validity of Metrics

A set of metrics must make clear what aspects of quality they are trying to measure and who

they are directed at because there are different points of view about what means quality

(developers, managers, users). First of all, metrics should clarify what attributes of the

software that are going to be measured, how we should measure those attributes [Basili et al,

1995][Kitcheham et al, 1995][Fenton, 1994] so they are meaningful and related to the

product. Second, metrics as the mapping between entities of the real world and numbers,

should be validated theoretical and empirically. In addition, the chosen set of metrics should

be based on a properly defined quality model, incorporating ideas from many of the current

standard quality (from fixed hierarchical models (Boehm, McCall’s FCM) to more flexible

approaches such as the Goal-Question-Metric –GQM- [Basili and Rombach, 1988] or

Kitchenham’s QMS subsystem [Kitchenham et al, 1986]). The GQM and the Kitchenham’s

model help to construct a quality a requirements model and according to quality factors

(usability, integrity, efficiency, maintainability, reusability, interoperability, …). These

flexible models would help to clarify what quality aspects are considered and why.

[Kitchenham et al, 1995] describe a list of features, which must hold for a metric to be valid.

For direct metrics, which are the ones that involves no other attribute or entity (length,

duration of testing process, number of defects…), those properties are:

1. For an attribute to be measurable, it must allow different entities to be distinguished

from one another.

2. A valid metric must obey the representation condition.

3. Each unit contributing to a valid metric is equivalent.

4. Different entities can have the same attribute value.

For indirect metrics, i.e. when direct metrics are combined (ex., programmer productivity =

LOC/persons month of effort, etc), these feature are:

1. The metric should be based on an explicitly defined model of the relationship between

certain attributes.

2. The model must be dimensionally consistent.

3. The metric must not exhibit any unexpected discontinuities.

4. The metric must use units and scale types correctly.

The representation condition, as described by [Fenton and Pfleeger, 1997], asserts that a

measurement mapping M must map entities into numbers and empirical relations into

numerical relations in such a way that the empirical relations preserve and are preserved by

the numerical relations. For example, if A is taller than B if and only if M (A)> M(B).

Empirical methods provide corroborating evidence of validity. Using statistical and

experimental techniques assesses the usefulness and relevance of metrics [Basili et al, 1995]

[Schneidewind, 1992].

3. Object-Oriented Design Metrics

A representative set of metrics are explained according to a classification defined by Archer

[Archer and Stinson, 1995] to broad all the possible features and granularity of OO.

3.1. System metrics level

There are system metrics that can be derived from class metrics with statistics, as relative

measures, identifying systems that deviate from the norm. Unusual trends or characteristics of

the system under construction can be spotted and corrected.

The MOOD (Metrics for Object oriented Design) set of metrics of Abreu and [Abreu and

Melo, 1996] operate at System level. They refers to a basic structural mechanism of the OO

paradigm as encapsulation (MHF and AHF), inheritance (MIF and AIF), polymorphishm

(PF) and message-passing (COF). The set of metrics are:

Method Hiding Factor (MHF). [Abreu and Melo, 1996]

Definition MHF is defined as the ratio of the sum of the invisibilities of all methods

defined in all classes to the total number of methods defined in the system

under consideration.

The invisibility of a method is the percentage of the total classes from which

this method is not visible.

In other words, MHF is the ratio of hidden methods –protected or private

methods- to total methods.

  

 

 



 



TC

i
id

TC

i

CM

m

CM

MV
MHF

id

mi

1

1

)(

1
1

where Md(Ci) is the number of methods declared in a class, and

 
 

1

,_
1



 

TC

CMvisibleis
MV

TC

j
jmi

mi

and:

 
otherwise

 Mcallmay C i j

0

1
,_

mij






iff

CMvisibleis jmi

That is, for all classes C1,… ,Cn, a method counts as 0 if it can be used by,

another class, and 1 if it cannot.

TC = Total number of classes in the system under consideration.

In languages such as C++, where there is the concept of protected method, the

method is counted as a fraction between 0 and 1:

 
1

)(




TC

CDC
MV

i
mi

Intent MHF is proposed to measure the encapsulation (the relative amount of

information hidden).

Guides and

comments

[Abreu and Melo, 1996] have found that as MHF increases, the defect density

and the effort spent to fix is expected to decrease.

Inherited methods are not considered.

Attribute Hiding Factor (AHF). [Abreu and Melo, 1996]

Definition AHF is defined as the ratio of the sum of the invisibilities of all attributes

defined in all classes to the total number of attributes defined in the system

under consideration.

In other words, AHF is the ratio of hidden attributes –protected or private- to

total attributes.

  

 

 



 



TC

i

id

TC

i

CA

m

CA

AV
AHF

id

mi

1

1

)(

1
1

where:

 
 

1

,_
1




 

TC

CAvisiblesi

AV

TC

j
jmi

mi

and:

 
otherwise

 Mcallmay C i j

0

1
,_

mij






iff

CAvisibleis jmi

TC = Total number of classes in the system under consideration.

Intent AHF is also proposed to measure the encapsulation (amount of information

hidden).

Guides and

comments

Ideally this metric should be always 100%. Systems as a rule should try to

hide nearly all instance data. Design guidelines suggest that public attributes

should not be used because are generally considered to violate the rules of OO

encapsulation since they expose the object's implementation. In benefit of

performance, some times is avoided the use of the use of accessors and

modifiers methods (getters and setters methods).

Comments

Method Inheritance Factor (MIF). [Abreu and Melo, 1996]

Definition MIF is defined as the ratio of the sum of the inherited methods in all classes of

the system under consideration to the total number of available methods

(locally defined plus inherited) for all classes.

MIF measure directly the number of inherited methods as a proportion of the

total number of methods.

 

 






TC

i

TC

i

ia

ii

CM

CM
MIF

1

1

where:

     iiidia CMCMCM 

and:

Md(Ci) = the number of methods declare in a class

Ma(Ci) = the number of methods that can be invoked in association with Ci

Mi(Ci) = the number of methods inherited (and not overriden in Ci).

TC = Total number of classes in the system under consideration.

Intent Abreu proposes that MIF is a measure of inheritance, and consequently as a

means of measure the level of reuse.

It is also a aid to the assessment of testing needed.

Guides and

comments

The use of inheritance is seen as a trade-off (see inheritance metrics below).

Empirical studies related to inheritance are [Daly et al, 1996] and [Harrison,

199x].

Attribute Inheritance Factor (AIF). [Abreu and Melo, 1996]

Definition AIF is defined as the ratio of the sum of inherited attributes in all classes of

the system under consideration to the total number of available attributes

(locally defined plus inherited) for all classes.

It is defined in an analogous fashion to MIF. AIF measure directly the number

of inherited attributes as a proportion of the total number of attributes.

 

 






TC

i
ia

TC

i
ii

CA

CA
AIF

1

1

where:

     iiida CACACA i 

And:

Ad(Ci) = the number of attributes declared in a class

Aa(Ci) = the number of attributes that can be invoked in association with Ci

Ai(Ci) = the number of attributes inherited (and not overriden in Ci).

TC = Total number of classes in the system under consideration.

Intent AIF as a way to express the level of reuse in a system.

Guides and

comments

Too much reuse trough inheritance makes worst the understandability and

testability.

Polymorphism Factor (PF). [Abreu and Melo, 1996]

Definition PF is defined as the ratio of the actual number of possible different

polymorphic situation for class Ci to the maximum number of possible distinct

polymorphic situations for class Ci.

PF is the number of methods that redefine inherited methods, divided by the

maximum number of possible distinct polymorphic situations.

 

    










TC

i
iin

TC

i
i

CDCCM

CM
PF

1

1
0

where:

   )(ioinid CMCMCM 

and:

Mn (Ci) = the number of new methods

Mo (Ci) = the number of overriding methods

DC (Ci) = the descendants count

TC = Total number of classes in the system under consideration

Intent A measure of polymorphism potential.

Guides and

comments

Polymorphism arises from inheritance. Abreu claims that in some cases,

overriding methods reduce complexity, so increasing undestandability and

maintainability.

It is an indirect measure of the dynamic binding in a system.

This metric does not satisfy the all properties of Kitchenham because in a

system without inheritance, the value of PF will be undefined. Therefore, it

exhibits a discontinuity [Harrison et al, 1998].

Coupling Factor (CF). [Abreu and Melo, 1996]

Definition CF is defined as the ratio of the maximum possible number of couplings in the

system to the actual number of couplings not imputable to inheritance.

That is, this metrics counts the number of inter-class communications.

  
TCTC

CCclientis
CF

TC

i

TC

j
ji



  

2

1 1
,_

where:

otherwise

CCCCiff
clientis

scsc 







0

1
_

The client-supplier relationship (Cc  Cs) represents means that the client

class, Cc, contains at least one non-inheritance reference to a feature of the

supplier class, Cs.

TC = Total number of classes in the system under consideration.

Intent Coupling is viewed as a measure of increasing complexity, reducing both

encapsulation and potential reuse and limiting understandability and

maintainability.

Guides and

comments

CF can be an indirect measure of the attributes to which it was said to related:

complexity, lack of encapsulation, lack of reuse potential, lack of

understandability, lack of maintainability.

[Abreu and Melo, 1996] have found a positive correlation. As a coupling

among classes increases, the defect density and lack of maintainability

increase.

3.2. Coupling Level

Coupling is the use of methods or attributes defined in a class that are used by another class.

Classes interact with other classes to form a subsystem/system and this interaction can

indicate the complexity of the design. Representative metrics of this set are:

Coupling Between Objects (CBO). [Chidamber and Kemerer, 1994]

Definition CBO for a class is a count of the number of other classes to which it is

coupled. Coupling between two classes is said to occur when one class uses

methods or variables of another class. COB is measured by counting the

number of distinct non-inheritance related class hierarchies on which a class

depends.

Intent C&K suggest that it’s an indication of the effort needed for maintenance and

testing.

Guides and

comments

C&K view the more coupling in class, the more difficult to reuse. Classes

should be as independent from other classes as possible in order to promoting

reuse. Classes always have interdependencies, but if they are large, to

understand the design can be a nightmare and therefore, the reuse can be more

expensive than rewrite.

Classes with excessive coupling makes more difficult the maintenance and the

more rigorous the testing needs to be done.

Strong coupling complicates a system since a class is harder to understand,

change or correct by itself if it is interrelated with other classes. Systems with

low-coupling reduces complexity, improves modularity and promotes

encapsulation.

3.3. Inheritance Level

Inheritance relationship is viewed as a trade-off. It difficulties the understability and

maintainability of systems making hard to change the interface of a superclass. Cartwright

and Shepperd [Cartwright and Shepperd, 1996] report almost no use of inheritance, as

measured by the Depth of Inheritance Tree (DIT) and the Number Of Children (NOC)

metrics, at their UK telecommunications site. In [Chidamber et al, 1998] have also reported a

conscience lack in the use of inheritance in their analysis of an European bank because

Systems with the high inheritance levels are usually built on frameworks where most classes

are inherited from an existing hierarchy.

The use of composition can be a worth alternative to inheritance. Composition provides an

approach that yields easier to change code and deserves to take it into account when an aim is

reuse code.

The use of multiple inheritance generally is not recommended due to name collisions and lack

of understanbility in languages that allow method to be inherited from multiple superclasses

such as C++. Languages such as Java or Smalltalk only support single inheritance.

Representative metrics of this set are:

Depth of Inheritance Tree (DIT). [Chidamber and Kemerer, 1994]

Definition DIT measures the maximum level of the inheritance hierarchy of a class; the

root of the inheritance tree inherits from no class and is at level zero of the

inheritance tree. Direct count of the levels of the levels in an inheritance

hierarchy.

Intent According to C&K, DIT is intended to measure the class complexity, design

complexity and the potential reuse because the more deeper is a class, the

greater number of methods is likely to inherit.

Guides and

comments

Large inheritance depths indicate complex objects that may be difficult to test

and reuse. Small inheritance depths can indicate functional code that does not

take advantage of the inheritance mechanism.

L&K suggest a threshold of 6 levels for individual classes to indicate

excessive inheritance in Smalltalk and C++ projects.

[Cartwright and Shepperd, 1996] found a positive correlation between the DIT

metric and number of user-reported problems, casting doubt on the effective

use of inheritance.

The use of frameworks affects the DIT frameworks include several levels of

inheritance and often serve as the base for application objects.

In languages such as Java or Smalltalk objects always inherit from the Object

class, which adds one to DIT.

A problem with this metric is that DIT is not clearly defined, as there are

different features of inheritance. For example, As in DIT, this metric is not

clearly defined, as they are measuring different features of inheritance.

DIT can not be a valid measure of reuse due it can easily happen that a high

value of DIT reuse the same or less number of methods than a shallow, wide

hierarchy.

A support metric for DIT is the number of method inherited (NMI).

Number of Children (NOC). [Chidamber and Kemerer, 1994]

Definition NOC is the number of immediate subclasses subordinate to a class in the

hierarchy. NOC counts the number of subclasses belonging to a class.

Intent According to C&K, NOC indicate the level of reuse, the likelihood of

improper abstraction and as possible indication of the level of testing required.

Guides and

comments

Although a greater the number of children represents a greater reuse, it has the

following drawbacks:

A greater the likelihood of improper abstraction (misuse of sub-classing).

More difficult to modify because it affects all its children have a heavy

dependence on the base class.

More testing is required.

It is an indicator of the potential influence a class can have on the design of

the system. If the design has a high dependence on reuse through inheritance,

and may be better to split off functionality into several classes.

Specialisation Index per Class (SIX). [Lorenz and Kidd, 1994]

Definition The specialisation index measures the extent to which subclasses override

(replace) behaviour of their superclasses.

methods ofnumber Total

level nestinghierarchy Class methods overriden ofNumber


tion indexSpecializa

This formulation weights more heavily overrides that occur farther down the

inheritance tree since these classes should be more specialised and less likely

to replace base behaviour.

Intent SIX provides a measure of the quality of sub-classing.

Guides and

comments

SIX may indicate that there are overridden methods in excess, so the

abstraction may not have been appropriate, since if much behaviour needs to

be replaced. A subclass should extend the superclass behaviour with new

methods rather than replacing or deleting behaviour through overrides.

Subclassing by specialisation means to create new classes that are a superset.

It is characterised by low number of method overrides, decreasing number of

added method and few or no deleted methods.

L&K suggest a value of 15% to help identifying classes for which remedial

action might be appropriate, that is, the superclass may not have much in

common with the subclass.

The more father down in a class hierarchy, the more specialised the subclass

should be.

Using frameworks, some methods are meant to be overridden and should not

be included in the count.

3.4. Class Level

These metrics identify characteristics within the class, highlighting different aspects of the

class abstractions and help identify where remedial action may be taken. Representative

metrics of this set are:

Response For a Class (RFC). [Chidamber and Kemerer, 1994]

Definition RFC is the count of the set of all methods that can be invoked in response to a

message to an object of the class or by some method in the class. This includes

all methods accessible within the class hierarchy.

RFC counts the occurrences of calls to other classes from a particular class.

RSRFC  where RS is the response set for the class.

The response set for the class can be expressed as:

   i
iRMRS 

where {Ri}=set of methods called by method i and {M}=set of all methods in

the class.

The response set of a class is a set of methods that can potentially be executed

in response to a message received by an object of that class. The cardinality of

this set is a measure of the attributes of objects in the class. Since it

specifically

Includes methods called from outside the class, it is also a measure of the

potential communication between the class and other classes.

Intent According to C&K, RFC is a measure of the complexity of a class through the

number of methods and the amount of communication with other classes.

Guides and

comments

RFC is an indicator of the effort of testing and debugging. The larger RFC, the

greater the complexity because a large number of methods can be invoked in

response to a message. Therefore, more allocation of testing time is required

since it requires a greater level of understanding.

There is ambiguity in definition of this metric forcing the user to interpret

[Harrison et al, 1996].

Weighted Methods per Class (WMC). [Chidamber and Kemerer, 1994]

Definition WMC measures the complexity of an individual class. If all methods are

considered equally complex, then WMC is simply the number of methods

defined in each class.

 


n

i
icWMC

1

where a Class C1 has M1, …Mn, methods with c1, …, cn complexity

respectively.

Intent C&K suggests that WMC is intended to measure the complexity of a class.

Therefore, it is an indicator of the effort needed to develop and maintain a

class.

Guides and

comments

Classes with large number of methods:

Require more time and effort to develop and maintain the class because it will

impact on subclasses inheriting all the methods.

Are likely to be more application specific, limiting the possibility of reuse.

L&K suggest a threshold of 20 and 40 instance methods, depending on if they

are UI (User Interface) classes or not.

In [Harrison et al, 1997] highlight some problems with this metric:

WMC is supposed to measure complexity but not definition of complexity is

given.

WMC as an indicator of the effort to develop a class, since a class containing a

single large method may take as long to develop as a class containing a large

number of small methods.

Therefore, it should be considered simply as a measure of class size.

Lack of Cohesion in Methods (LCOM). [Chidamber and Kemerer, 1994]

Definition LCOM measures the extent to which methods reference the classes instance

data.

Consider a class C1 con n methods M1, M2, …, Mn. Let {Ij} = set of instance

variables used by method Mi.

There are n such sets {I1},...{In}. Let P = {(Ii, Ij) | Ii Ij = }, and Q = { (Ii, Ij)

| Ii Ij_ }. If all n sets {I1},..., {In} are then let P = .

otherwise

Qif
LCOM





 


P

0

QP

Example:

Consider a class C con 3 methods (M1, M2, M3). Let {I1} = {a, b, c, d, e}, {I2}

= {a, b, e}, and {I3} = {x, y, z}. {I1}  {I2} is nonempty but {I1}  {I3} and

{I2}  {I3} are null set. LCOM is the number of number of null intersections –

number of nonempty intersection), which in this case is 1.

Intent LCOM is a quality measure for the cohesiveness of a class by measuring the

number of common attributes used by different methods.

Guides and

comments

LCOM measure indicates the fitness of each class abstraction.

A high value of LCOM implies lack of cohesion, namely, low similarity and

the class may be a composition of unrelated objects. High cohesiveness of

methods within a class is desirable, since classes cannot be splited and

promotes the encapsulation.

Low cohesiveness increases complexity, thereby increasing the likelihood of

errors during the development process.

[Henderson-Sellers, 94] arises two problems with this metric. First, two

classes can have a LCOM=0 while one has more common variables than

other. And second, there are not guidelines about interpreting the values.

Therefore, Henderson-Sellers has suggested a new LCOM measure:

Consider a set of methods {MI} (I=1,…,m) assessing a set of attributes {Aj}

(j=1,…,a) and the number of methods that access each attribute to be (Aj),

then define LCOM* as:

 

m

mA
a

LCOM

a

j
j













 

1

1

*
1


If all methods access all attributes, then  (Aj) = ma, so that LCOM* = 0,

which indicates perfect cohesion.

If each method access only 1 attribute then  (Aj) = a and LCOM* = 1,

which indicates a lack of cohesion.

A value near zero for this metric indicates very high cohesion, where most

methods refer to most instance variables.

3.5. Method Level

Attributes and methods occur at the finest level of detail. These characteristics are known, and

techniques to analyse them are common but methods have the additional complexity of

calling objects other than the object that contains them.

In OO systems, traditional metrics such as Lines Of Code (LOC) and cyclomatic complexity

[McCabe, 1976] are usually applied to the methods. Methods are usually developed much like

procedures are in structured programming. However, they are less important in OO than in

functional programs due to: short methods and less conditional statements (ex., if , case

statements) and the complexity tend to be in the interaction of methods rather than within one

method.

The cyclomatic complexity metric has not been used extensively in with OO systems. This is

because the complexity found in a highly OO system will tend to be in the interaction of

methods rather than within one method.

Two traditional metrics are only briefly commented because are extensively used at method

level: cyclomatic complexity and size.

Lines of Code per method (LOC). [Lorenz and Kidd, 1994]

Definition LOC is the number of physical lines of active code (executable lines) that are

in a of code within the method. Size can be measured in a variety of ways.

These include counting all physical lines of code, the number of statements,

etc.

Intent Size of a method is used to evaluate the ease of understandability, reusability,

and maintainability of the code by developers and maintainers.

Guides and

comments

Thresholds for evaluating the size depend on the programming language and

the complexity of the method.

In OO systems, LOC should be low. L&K suggest a threshold of 24 LOC for

C++ methods and 8 for Smalltalk, being the outliner candidates for splitting

into smaller methods.

LOC for the same functionality varies with the programming language used

and the coding style/standard.

It is not a recommended metric to use in OO systems but it is easy to measure

and collect.

Number of Messages Send (NOM). [Lorenz and Kidd, 1994]

Definition NOM measures the number of messages sent in a method, segregated by type

of message.

The types include:

Unary, Messages with no arguments

Binary, messages with one argument, separated by a special selector name.

(concadenation and math functions).

Keyword, messages with one or more arguments.

Intent NOM quantifies the size of the method in a relative unbiased way.

Guides and

comments

L&K suggest a threshold of 9.

Languages as C++ can call to non-OO parts of the systems, that should not be

counted in the number of message sends.

4. Conclusion

A set of OO design metrics has been described with some interpretation guides as a way to

assess systems in order to produce of a robust, high-quality result. Each metric was described

considering important features such as, how to use it, interpretation guidelines, published

thresholds whenever is possible, and assesses its appropriateness and usefulness.

Some problems and suggestions are also commented such some ambiguities in some of the

definitions, usefulness for its intention and even its validity. In the way forward, lessons

learned will help to overcome those problems. More work about empirical validation is

necessary using proven statistical and experimental techniques in order to improve their

interpretation. More clear interpretation guidelines for these metrics based on common sense

and experience are necessary.

5. References

[Abreu and Melo, 1996] F. Brito e Abreu, Walcelio Melo. Evaluating the impact of Object-

Oriented Design on Software Quality. Proceedings of 3rd International Software Metrics

Symp., Berlin,1996

[Archer and Stinson, 1995] Clark Archer, Michael Stinson. Object-Oriented Software

Measures. Technical Report CMU/SEI-95-TR-002,April 1995

[Basili and Rombach, 1988] V. R. Basili and H. Dieter Rombach, The TAME Project:

Towards Improvement-Oriented Software Environments, IEEE Transactions on Software

Eng., Vol. 14, No. 6, June 1988.

[Basili et al, 1995] V. R. Basili, L. Briand, and W. Melo, “A Validation of OO Design

Metrics as Quality Indicators,” Technical Report CS-TR-3443, 1995.

[Cartwright and Shepperd, 1996] Cartwright, M. and Shepperd, M., "An Empirical

Investigation of Object Oriented Software in Industry", Dept. of Computing, Talbot Campus,

Bournemouth University Technical Report TR 96/01, 1996.

[Chidamber and Kemerer, 1994] S. R. Chidamber and C. F. Kemerer, “A metric suite for

object oriented design,” IEEE Transactions on Software Engineering, pp. 476–493, 1994.

[Chidamber et al, 1998] Chidamber, S. R., D. P. Darcy, C.F. Kemerer. Managerial use of

object oriented software metrics: an exploratory analysis. IEEE Transactions on Software

Engineering, 24(8), pp629-639, Aug 1998

[Daly et al, 1992] J. Daly, A Brooks, J. Miller, M. Roper, and Murray Wood. Evaluating

inheritance Depth on the Maintainability of Object-Oriented Software. Empirical SE 1(2) Feb

96

[Fenton and Pfleeger, 1997] Norman E. Fenton, Shari Lawrence Pfleeger. Software Metrics.

A rigorous & Practical Approach. 2nd Edition. ITP, International Thomson Computer Press,

1997

[Fenton, 1994] N. E. Fenton, “Software measurement: a necessary scientific basis,” IEEE

Transactions on Software Engineering, vol. 20, no. 3, pp. 199–206, 1994.

[Harrison et al, 1997] Harrison, SJ Counsell, R Nithi, An Overview of Object-Oriented

Design Metrics, Proc. of the conference on Software Technology and Engineering Practice

(STEP), IEEE Press, pp. 230-237, Jul 1997, ISBN 08186 78402.

[Harrison et al, 1998] R. Harrison, S. Counsell and R Nithi. An evaluation of the MOOD Set

of Object-Oriented Software Metrics. IEEE Transaction on Software Engineering, Vol. 24,

No. 6,June 1998

[Henderson-Sellers, 1996] Henderson-Sellers, Brian. Object-Oriented Metrics Measures of

Complexity. Upper Saddle River, NJ: Prentice Hall, 1996.

[Kitchenham et al, 1986] B. A. Kitchenham, J. D. Walker, and I. Domville, “Test

specification and quality management ­ design of a QMS sub­systemfor quality requirements

specification”, Project Deliverable A27, Alvey Project SE/031, Nov 1986.

[Kitchenham et al, 1995] B. Kitchenham, S. L. Pleeger, and N. Fenton. Towards a Framework

for Software Measurement Validation. IEEE Transactions on Software Engineering, Vol. 21,

No. 12, pp 929-944,December 1995

[Lorenz and Kidd, 1994] Mark Lorenz and Jeff Kidd. Object Oriented Metrics. Englewood,

NJ: Prentice Hall, 1994.

[McCabe, 1976] McCabe, T. J. "A Complexity Measure," IEEE Transactions on Software

Engineering, 2(4), 308-320, 1976.

[Schneidewind, 1992] N. F. Schneidewind, “Methodology for validating software metrics,”

IEEE Transactions on Software Engineering, vol. 18(5), pp. 410–422, 1992.

