i M. e e T | |~y A b Sy ? oo e S Bt BT U, " SRl SR i ooty | i RSO b ety SR Ribasrakiee i i sl i geererseaiiemaggee-nny iy, fipkeivioeds | pietiiie e cpacte— | gAML G - iigioRonnel aaee. ooy) grfdinesiow DESNERSard A ey e T el

R s S RS, SRR EEROY SCAr. NENEFNENGE Y Ay, Japiil

Using Genetic Algorithms to Generate Estimation Models

Using Genetic Algorithms to Generate Estimation Models

D. Rodriguez’, I.J. Cuadrado-Gallego® and J. Aguilar’

: Dept of Comp Sci . Dept of Comp Sci 3 Dept of Comp Sci
The University of Reading University of Alcala Univ Pablo De Olavide
PO Box 225, Whiteknights ~ Ctra Barcelona km 33.6 Ctra. de Utrera, km. 1

Reading RG6 6AY 28871 Alcala de Henares 41013 Sevilla

UK Madrid, Spain Spain
Abstract

Parametric software estimation models rely on the availability of historical project
databases from which estimation models are derived. In the case of large project
databases, problems can arise such as het-eroscedasticity where the size of a
project can in‘uence the accuracy of the estimation method.In such cases, a single
mathematical model may not properly be used to estimate projects of diverse
nature. In this work, we discuss how genetic algorithms can be applied to produce
segmented models, i.e., the generic algorithm searches for cut-points in the range
of a variable (e.g. Function Points), and di®erent estima-tion models can be used
at each side of the cut-point. A concrete case study using the ISBSG dataset is
reported. Resulis show that with a very low number of models instead of a single
one, the accuracy can be increased significantly.

Keywords:

Software Engineering, Effort estimation, Evolutionary algorithms, Genetic
Algorithms

1 Introduction

1.1Parametric estimation techniques are nowadays widely used to measure and/or
estimate the cost associated to software development [1]. The Parametric
Estimating Handbook (PEH) [6] defines parametric estimation as “a technique
employing one or more cost estimating relationships (CERs) and associated
mathematical relationships and logic". Parametric techniques are based on
identifying significant CERs that obtain numerical estimates from main cost
drivers that are known to affect the effort or time spent in development.
Parametrics uses the few important parameters that have the most significant cost
impact on the software being estimated.

Parametric based estimation requires historical project databases as the empirical
baseline for the models. During the last decade, several organizations such as the
International ~ Software Benchmarking Standards Group (ISBSG
hitp://www.isbsg.orgf) have started to collect project management data from a variety
of organizations. One important aspect of the process of deriving models from

TWSM/MetriKon 2006 17

Rodriguez, Cuadrado-Gallego, Aguilar

such databases is the heterogeneity of the data. Heteroscedasticity (i.e.
nonuniform variance) is known to be a problem affecting data sets that combine
data from heterogeneous sources [7]. When using such databases, classical
regression models that derive a single mathematical model results in poor
adjustment to data and subsequent poor accuracy. This is due to the fact that a
single model can not capture the diversity of distribution of different segments of
the database points. As an illustrative example, the straightforward application of
a standard linear regression in the Reality tool of the ISBSG 8 database
distribution results in measures of a correlation coefficient of 0.43 and a relative
absolute error of 80% which are poor figures of quality of adjustment.

In this work, we use genetic algorithms to search for cut-points in the range of a
variable (e.g. Function Points), so that different regression models can be used
depending on the value of such variable and the accuracy of the estimates can be
largely improved.

The rest of this paper is structured as follows. In Section 2, the ISBSG repository
and data used are described. Section 4 describes the overall results of the
clustering process. Section ?? provides the discussion of the empirical evaluation
of the approaches described. Finally, conclusions and future research directions
are described in Section 3.

2 The ISBSG Repository

The International Software Benchmarking Standards Group (ISBSG), a non-
profit organization, maintains a software project management repository from a
variety of organizations. In this work, we have used ISBSG release 8, which
contains 2028 projects and more than 55 attributes per project. The attributes can
be classified as follows:

e Project context such as type of organization, business area, and type of
development.

e Product characteristics such as application type user base.

e Development characteristics such as development platform, languages,
tools, etc.

e Project size data: di®erent types of function points (IFPUG, COSMIC,
etc.)

e Qualitative factors such as experience, use of methodologies, etc.

However, before using the dataset, there are a number of issues to be taken into
consideration regarding data preparation in order to generate the 2 dataset used in
work. An important attribute is the quality rating given by the ISBSG which can
go from A (where the submission satisfies all criteria for seemingly sound data) to

18 Software Measurement Conference

3

Using Genetic Algorithms to Generate Estimation Models

D (where the data has some fundamental shortcomings). According to ISBSG
only projects classified as A or B should be used for statistical analysis so
therefore only projects with A or B quality where selected.

Instance projects that used other other estimation method than IFPUG, NESMA,
Albretch or Dreger were removed, since they represented smaller portions of the
database. The differences between IFPUG and NESMA methods are considered
to have a negligible impact on the results of function point counts [5]. Counts
based on Albretch techniques were not removed since in fact IFPUG is a revision
of these techniques, similarly, the Dreger method refers to the book [2], which is
simply a guide to IFPUG counts. We also have selected NormalisedWorkEffort
attribute as the dependent variable for generating linear regressions in the fitness
function. The normalized work effort is an estimate of the effort for the whole
software life-cycle even if the project did not cover all the phases in the software
development life-cycle. The dataset used in this work with their attribute
considered are:

Reality Dataset - DSI This dataset is provided the ISBSG as part of the Reality
Checker tool provided as part of the repository. The Reality dataset if
composed of 709 instances and 6 attributes (DevelopmentType,
DevelopmentPlatform, LanguageType, ProjectElapsedTime,
NormalisedWorkE®ort, UnadjustedFunctionPoints).

NormWE Dataset - DS2 This dataset is composed of 1390 instances and 15

attributes (FP, VAF, MaxTeamSize, DevelopmentType,
DevelopmentPlatform, LanguageType, ~ DBMSUsed, MethodUsed,
ProjElapTime, ProjInactiveTime, PackageCustomisation,
RatioWEProNonPro, TotalDefectsDelivered, NormWorkEff, NormPDR).
$
/J/’
. -
' i —
s T e
= : - i
£ ol o
i /‘/‘"’ I
A .
b
ci;zf épz cp n =

Function Points

Figure 1: Single vs. Multiple models

IWSM/MetriKon 2006 19

Rodriguez, Cuadrado-Gallego, Aguilar

3 Applying Evolutionary Computation to the ISBSG Repository

Evolutionary computation provides an interesting approach for dealing with the
problem of generating multiple parametric models. In this case, the search space
comprises a set of cut-points, so a di®erent parametric estimation model can be
used for the intervals that comprise such cut-points. Two critical factors in®uence
the cut-points obtained by using evolutionary algorithms: (i) the selection of an
internal representation of the search space (coding) and (ii) the defnition of an
external function that assigns a value of goodness to the potential solutions

(fitness).
31 Evolutionary Computation in a Nutshell

Evolutionary Algorithms (EA) are a family of computational models inspired by
the concept of evolution and natural selection. These algorithms employ a
ramdomised search method to find approximate optimal solutions to a particular
problem [3]. Generally, this approach is applied to search spaces that are too
large to use exhaustive techniques.

Based on a generally constant size population of individuals, an EA follows an
iterative procedure based on selection and recombination operators to generate
new individuals in the search space. Such individuals are usually represented by
a finite string of symbols called chromosome. They encode a possible solution
in a given problem search space which comprises of all possible solutions to the
problem. The length of the string and the population size are completely
dependent of the problem in hand and the finite string of symbol alphabet can
be binary, real{valued encodings, tree representations, etc. The population
simulates natural evolution in the sense that iteratively good solutions
(individuals) generate other solutions (offsprings) to replace bad ones retaining
many features of their parents. Therefore, a critical factor is to know how good
is a solution which depends on a fitness function, so that high{fitness
individuals stand a better chance of reproducing, while others are likely to
disappear. Another critical factor is how new solutions are formed. This is
usually carried out using two genetic operators named crossover and mutation.
Crossover creates a new individual combining parts of its parents
representation. Finally, mutation changes randomly a small part of the string
that represents the individual.

Evolutionary algorithms (EAs) are a family of computational models inspired
by the concept of evolution. These algorithms employ a randomized search
method to find solutions to a particular problem [7]. This search is quite
di®erent from the other learning methods mentioned above. An EA is any
populationbased model that uses selection and recombination operators to
generate new sample examples in a search space [8]. The EA search can move
much more abruptly, replacing a parent individual with an offspring less likely

20 Software Measurement Conference

Using Genetic Algorithms to Generate Estimation Models

to fall into the same kind of local minima which can happen with the other
methods. EAs have been used in a wide variety of optimization tasks [9], [10]
including numerical optimization and combinatorial optimization problems,
although the range of problems to which EAs have been applied is much
broader. The main task in applying EAs to any problem consists in selecting an
appropriate representation (coding) and an adequate evaluation function
(fitness). In classical EAs the members of the population (typically maintaining
a constant-size) are represented as fixed-length strings of binary digits. The
length of the strings and the population size are completely dependent on the
problem. The population simulates natures behavior, since the relatively good
solutions produce offspring which replace ones that are relatively worse,
retaining many of the features of their parents. The estimate of the quality of a
solution is based on a fitness function, which determines how good an
individual within the population in each generation is. New individuals
(offspring) for the next generation are formed by using (normally) two genetic
operators: crossover and mutation. Crossover combines the features of two
individuals to create several (commonly two) individuals. Mutation operates by
randomly changing several components of a selected individual.

We compare the benefits of the techniques by using linear regression and least
median square as prediction techniques before and after characterising the
database using the classical Mean Magnitude of Relative Error (MMRE) and
Pred(%).

In Software Engineering, the standard criteria for a model to acceptable are
Pred(25) ? 0.75 and MMRE ? 0.25. "

MMRE is computed as , where in a sample of size n, i is the estimated value for
the i-th element, and ei is the actual value.

Pred(%) is defined as the number of cases whose estimations are under the %,
divided by the total number of cases. For example, Pred(25)=0.75 means that
T5% of cases estimates are within the inside 25% of its actual value.

@relation AttribSelecc.Final-weka. filters.unsupervised.attribute. Remove-R20-
25-weka.filters.supervised.instance.StratifiedRemoveFolds-S0-N3-F1

3.1.1 Coding

In this paper, we used positive integers for our coding method as it more natural
to the software engineering attributes that we are interested in such as function
points. In this way, every interval is encoded by one natural number, leading to
a reduction of the search space size when compared with binary strings typically
used by generic algorithms.

For example, if we consider 1 cut-point in the range of FunctionPoints 2 [0,
1500], we could generate a cut-point ¢1 = 750 such that an individual of the
population will be [750]. Then, we can generate 2 regression models; the first

TWSM/MetriKon 2006 21

Rodriguez, Cuadrado-Gallego, Aguilar

one using projects which their Function Points values 2 [0, 750] and another
one with the rest of the projects 2 [751, 1500]. Similarly, if we have 2 cut-points
per individual, (e.g. [350, 850], we can generate 3 regression models, etc.

3.1.2 Fitness Function

The fitness function must be able to discriminate between correct and incorrect
classifiations of samples. Finding an appropriate function is not a trivial task, due
to the noisy nature of most databases. The evolutionary algorithm minimizes (or
maximizes) the fitness function f for each individual of the population. We have
used some of the evaluation methods provided by Weka [9] and particulary for
this work, we have used the relative absolute error value:

1 — o]+ e — e
fon =7 + .. e, — T

{1

where p1; p; , pnare the predicted values and a1; a2; , anare the actual values and
monS

Such actual and predicted values are generated by classical regression techniques
[7], which are a kind of algorithmic techniques which looks for an equational
model to fit a set of observed data values. Linear Regression (LR) is the classical
linear regression model. It is assumed that there is a linear relationship between a
dependant variable (e.g., efforr) with a set of or independent variables, i.e.,
attributes (e.g. size in function points, team size, development platform, etc.). The
aim is to adjust the data to a model so that y = By +B1x; + Boxa + ... + + Bxic + €.

3.2 Mutation

Mutation, in analogy to biological mutation, is is used to maintain greater diversity
from one generation of a population of chromosomes to the next one. In this study,
we have used uniform mutation [8], which replaces the value of the chosen gene with
a uniform random value within the range specified by the user. We have select a
range of 30% either side on the cut-point. To do so, we just multiply the gene int he
selected chromosome by 1+30*random(), where random() is a function that returns a
real value between 0 and 1.

3.2.1 Algorithm

The algorithm used is the typical sequential covering evolutionary algorithm [4].
Table 7? gives the values of the parameters involved in the evolutionary process.

22 Software Measurement Conference

Using Genetic Algorithms to Generate Estimation Models

Table 1: Parameters of the evilutionary algorithm

Parameter Value
Population size 0
Generations 50
Croseover probability 15
Individual Mutation probability 02

The method of generating the initial population consists of randomly selecting
natural number with the range of the Function Points attribute. A termination
criterion is reached when the individuals of the population have converged or the
maximum number of generations has been reached.

4 Results and Discussion

The problem of heterostecasticity of software engineering datasets has been
reported elsewhere [7]. An simple approach to alleviate this problem and a way to
improve the general accuracy of classical regression estimation models, it is to
use multiple of models depending on a variable of interest. As a case study using
Weka for this work, a simple application of the classical linear regression to the
ISBSG datasets gives the following expressions:

HormalizedWorkEffort = HormalisediorkEffort =
2940.544% + DevPlat=MF MR + 4.5892 + FP +
2075.5142 + LangType=ApG,3CL,2CL + 174.4262 + MarTeamBize +
447 2816 = ProjElapsedTine + 979.7268 * DevIype=Newlev Ra-dov +
6.151 + UnadjustvedFPs + 4391 .62311 * DevType=Ra~dev +
~4283.9478 ~1864.7412 » LangType=2CL,30L, ApG +

3B1.5574 # ProjElapTime +
-817.8424 # ProjInactiveline +
2628.9819 Fhgluston=Yes +

-B270.6752

And Table 4 provides a summary of di®erent error measures. These values are
pretty poor for any data mining or software engineering standards, let alone
project managers in need of decision making tools.

Table 2: Summary error for the D81 and D52 datasets

[ET D&2
Corvelation coefficient (1438 0.781
Mean absolute error 51002 342050
Root mean squared ervor 1197386 T463.64
Relative absolnte error B01% 59.56%

Root relative squared error 0.9% 6244%

However, Tables 3 and 4 show how the error can be significantly reduced if we
divided the dataset according to a variable of interest. In this study, Function
Points has been selected as it seems the most natural one to when we used to

ITWSM/MetriKon 2006 23

Rodriguez, Cuadrado-Gallego, Aguilar

estimate the e®ort based on the size of a project. Table 4 also shows the errors
and cut-point values in for the DS2 dataset. As in Table 4 the largest
improvements occur with a very low number of cut-points. Figure 2 shows how
creating a low number of cut-points can improve the the accuracy significantly. In
the Reality (DS1) dataset, the accuracy improves 30% with just 2 cut-points, i.c.,

3 models. With the DS2 dataset, Figure 2 shows how the error monotonically
decreases as we were expecting

Table 3: Frror and Ont-poinés for DS1

Error Cut-Points in the FP axis

912 [i7H]

5466 1378, 1580]

48.35 (1434, 1609, 2036]

alLE0 [T21,1247, 1484, 1553]

56.1 [135, 904, 1292, 1473,1747)

5144 [457, 1210, 1215, 1534, 1535, 2433

4554 [382, 1045, 1163, 1245, 1400, 1503, 2064]

55.76 (330, 509,1005, 1351, 1506, 1638, 2130, 2378]
58.83 [247, 498, 648, G4, 1243, 1452, 1807, 2052, 2248]
63.04 [140, 356, 380, 1083, 1101, 1984, 1477, 1612, 2011, 2441)

[rolibim B s S = R F RN Y S

=

Table 4: Error and Cut-points for DS2

Error Cut-Points in the FP axis

36.48 [2562]

2805 [2081, 2238)

2394 1235, 1280, 1408]

20,57 [1266, 1250, 1373, 1667

10.66 [342, 535, 1039, 2041, 2474

IR B5 {339, 963, 1238, 1584, 1781, 2185]

6,75 [507, 1260, 1305, 1462, 2047, 2060, 2350]

1AL [356, 688, 1180, 1303, 1655, 1734, 2014, 2081]
1393 (321, 630, B62, SO0, 1014, 1861, 2004, 2160, 2663)
13.43 [229, 461, 705, 918, 062, 1218, 1389, 1666, 1893, 2484

[l < R B~ - - T

=

until we could hypothetically reach a value of perfect accuracy when we have as
many cut-points as values in the dataset. For practical purposes, it seems that 2 or
3 cut-points works best.

5 Conclusions and Future Work

With the inception of several organizations such as ISBSG, there are a number of
repositories of project management data. The problem faced by project managers
is the large disparity of the their instances so that estimates using classical
techniques is not accurate. In this work, we have shown how evolutionary
computation can be used to group instances from software engineering databases.
The algorithm searched for cut-points across the Function Points range so that

24 Software Measurement Conference

ELARE et peiicih, TRISITTESTSERGRCEr R, e ool rir _Jrnencdh gt

Using Genetic Algorithms to Generate Estimation Models

different regression models are created so that the error is minimized. In our case,
this was used

Fe, DB oo
PEITNE D2F -—a-—

i/
\
4 ;/
Q\‘&

[. e -

Ne. ofSupair®

Figure 2: Error vs. no of cut-points

to provide multiple estimation models or a segmented model, such that a range in
a variable of interest has an associated estimation model. Results with the ISBSG
dataset has proven that with just creating such submeodels across the range of a
variable of interest proves to be more accurate. The comparison of using
parametric models for each cluster and using the built{in cluster characterizations
has resulted in evidence that the parametric approach has an improvement in
average accumulated error, but not in overall predictive properties. Further work
will consist of further research into using di®erent parameters for the
evolutionary algorithm, fitness functions, etc. We are also looking into using
evolutionary computation for feature selection, i.e., attribute selection (in this
work, the attributes were selected manually using expert knowledge). More needs
to be done also understanding and comparing different clustering techniques to
create segmented models and its usefulness for project managers.

Acknowledgment

This research was supported by the Spanish Research Agency (CICYT TIN2004-
06689-C03).

References

[1] Boehm, B., Abts, C. and Chulani, S.. . Software Development Cost Estimation
approaches { a survey. USC Center for Software Engineering
Technical Report # USC-CSE-2000-505, 2000.

IWSM/MetriKon 2006 25

Rodriguez, Cuadrado-Gallego, Aguilar

(2]
(31

[4]
[3]
[6]

(7]

(8]

(9]

Dreger, J. Brian. Function Point Analysis. Englewood Cliffs, NJ: Prentice Hall,
1989.

Koza, J.R.: Genetic Programming. The MIT Press, Cambridge, Massachusetts,
1992.

Mitchell, T., Machine Learning. McGraw Hill, 1997.
NESMA . NESMA FPA Counting Practices Manual (CPM 2.0), 1996.

Parametric Estimating Initiative, Parameric estimating handbook, 2™ edition,
1999.

Stensrud, E., Foss, T., Kitchenham, B. and Myrtveit, L (2002). An Empirical
Validation of the Relationship Between the Magnitude of Relative Error and
Project Size. In Proceedings of the Eighth IEEE Symposium on Software Metrics

Goldberg, D. E. . Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading (MA), 1989.

Witten, LH. and Frank, E. Data Mining, Practical Machine Learning Tools and
techniques with Java Implementations. 2nd Edition. Morgan Kaufmann Publishers,
San Francisco, California, 2005.

(adapted to the MetriKon-Template by the editors)

Software Measurement Conference

