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Abstract. This paper reports an empirical study that uses clustering
techniques to derive segmented models from software engineering repos-
itories, focusing on the improvement of the accuracy of estimates. In
particular, we used two datasets obtained from the International Soft-
ware Benchmarking Standards Group (ISBSG) repository and created
clusters using the M5 algorithm. Each cluster is associated with a linear
model. We then compare the accuracy of the estimates so generated with
the classical multivariate linear regression and least median squares. Re-
sults show that there is an improvement in the accuracy of the results
when using clustering. Furthermore, these techniques can help us to un-
derstand the datasets better; such techniques provide some advantages
to project managers while keeping the estimation process within reason-
able complexity.
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1 Introduction

Effort estimation is one of first and more important activities that project man-
agers face at the beginning of each project. Accurate estimates are an integral
part of all process improvement activities. The current state-of-practice for effort
and cost estimates entails the use one of the many public (e.g., COCOMO [2])
or private (e.g., PRICE S [13]) parametric models. Both public or commercial
models use classical regression as their foundation for deriving equations from
historical project databases. During the last decade, several organizations such
as the International Software Benchmarking Standards Group (ISBSG) [10] have
started to collect project management data from a variety of organizations. In
this way, companies without historical datasets could use these generic databases
for estimation or companies already collecting data could compare themselves
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with other industries, i.e., benchmarking. One problem faced by project man-
agers using such databases is the heterogeneity of the projects (e.g., the latest
release of the ISBSG has more than 50 attributes and 3000 instances). Specifi-
cally, heterocestacity (non-uniform variance) is known to be a problem affecting
datasets that combine data from heterogeneous sources. For example, a straight-
forward application of least square regression using the 709 projects, which can
be obtained from the Reality estimation tool accompanying the ISBSG reposi-
tory, results in measures of median relative error of 280% and less than 23% of
the estimates are within the 75% of actual values. This leads to poor estimates
in the software engineering. In this paper, we describe an empirical study on
the appropriateness of model trees, i.e., a decision tree with a linear regression
model for each subset, with relation to predictive quality. Concretely, we derived
several datasets from the ISBSG repository and also compare the outputs of
using M5 with multivariate Linear Regression (LR) and Least Median Squares
(LMS) .

This paper is organized as follows. Section 2 and 3 describe respectively the
methods of analysis and evaluation techniques used in this paper. Section 4
describes the datasets used for this analysis and the results of applying the
methods of analysis, followed by a discussion (Section 5). Finally, Section 6
concludes the paper and outlines our future work.

2 Related Work

2.1 Regression Models

Regression techniques [16] are a kind of algorithmic techniques which looks for
an equational model to fit a set of observed data values.

Linear Regression (LR) is the classical linear regression model. It is assumed
that there is a linear relationship between a dependant variable (e.g., effort) with
a set of or independent variables, i.e., attributes (e.g. size in function points, team
size, development platform, etc.). The aim is to adjust the data to a model so
that y = β0 + β1x1 + β2x2 + ... + + βkxk + e.

The linear least square method finds the line that minimises the sum of
squared errors. A problem with this method is that it assumes a normal dis-
tribution and cannot cope well with outliers. Regression analysis can be made
more robust for outliers using the least median squares method. Least median
square regression analysis is suitable for small data-sets, and it is sensitive to
abnormal observations and errors. Least Median Square (LMS) is a robust re-
gression technique that includes outlier detection.

2.2 Rules, Decision Trees and Model Trees

A rule-based system [9] consists of a library of rules of the form: if (assertion)
then action. Such rules are used to elicit information or to take appropriate
actions when specific knowledge becomes available. These rules reflect a way
to reason about the relationships within the domain. Their main advantage is
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their simplicity. However, they are mainly appropriate for deterministic prob-
lems, which is not usually the case in software engineering [1]. To overcome this
problem, rules can also contain a certainty measure in the premises and/or in
the conclusions.

Decision trees [3] are used for predicting or explaining outputs from obser-
vations. In such a tree, each node is a leaf indicating a class or an internal
decision node that specifies some test to be carried out. If the output values
conform to intervals, then the decision trees are called regression trees, whereas
if they do correspond to a nominal or ordinal scale they are called classification
trees. There are many tree-building algorithms such as C4.5 (Quinlan, 1993)
which determine which attributes best classifies the remaining data, and then
the tree is constructed iteratively. The main advantage of decision trees is their
immediate conversion to rules that can be easily interpreted by decision-makers.
For numeric prediction in data mining, it is common to use regression trees
or model trees [3]. Both techniques build a decision tree structure where each
leaf is responsible for a particular local regression of the input space, in our
case the software engineering dataset. The difference between them is that while
a regression tree generates constant output values for subsets of input data
(zero-order models), model trees generate linear (first-order) models for each
subset.

The M5 algorithm builds trees whose leaves are associated to multivariate lin-
ear models and the nodes of the tree are chosen over the attribute that maximizes
the expected error reduction as a function of the standard deviation of output
parameter. In this paper, we have applied a version of M5, called M5P -Prime-
implemented in the WEKA toolkit [21] to the ISBSG dataset [10]. Weka’s M5
algorithm actually builds a decision tree which divides the attribute space in an
orthohedric clusters, with the border parallel to the axis. An advantage of model
trees is that they can be easily converted into rules; each branch of the tree has
a condition as follows: attribute ≤ value or attribute > value.

We will now explain how the M5 algorithm works using the Reality dataset,
which is a subset of the ISBSG repository with 709 projects used by the Reality
estimation tool accompanying the ISBSG repository and further explained in the
next section. For example, Weka’s M5 algorithm created only a decision node to
calculate the NormalisedWorkEffort, and therefore, two linear models, LM1 and
LM2:

UnadjustedFunctionPoints <= 343:
LM1 (510/53.022\%)
NormalisedWorkEffort =
90.5723 * DevelopmentPlatform=MF,MR
+ 63.5148 * LanguageType=ApG,3GL,2GL
+ 628.9547 * LanguageType=3GL,2GL
+ 184.9949 * ProjectElapsedTime
+ 10.9211 * UnadjustedFunctionPoints
- 545.8004

UnadjustedFunctionPoints > 343:
LM2(199/318.225\%) NormalisedWorkEffort =

10189.7332 * DevelopmentPlatform=MF,MR
- 5681.5476 * DevelopmentPlatform=MR
+ 155.8191 * LanguageType=ApG,3GL,2GL
+ 5965.379 * LanguageType=3GL,2GL
+ 551.4804 * ProjectElapsedTime
+ 4.3129 * UnadjustedFunctionPoints
- 8118.3275

The two branches generated are interpreted as follows: if UnadjustedFunc-
tionPoints, i.e. size of the system, is less than 343 then we apply LM1 otherwise
LM2. In this case, both LM1 and LM2 are lineal models where the Normalised-
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WorkEffort is the dependent variable; M5 however can assign to the dependent
variable either a constant or a linear equation (in the majority of the cases).

The categorical data of the linear regression function obtained by Weka is
calculated by substituting the value for the appropriate value wherever it occurs.
For example, if we had an instance with DevelopmentPlatform equals to MF,
LanguageType equals to ApG and UnadjustedFunctionPoints less than 343.

For evaluating each categorical expression, if the value of the category on the
left hand side is equal to any of the categories on the right hand side of the
equation, then we substitute the entire equation with value 1; otherwise with
the value 0. Following the example we obtain:

LM num: 1 NormalisedWorkEffort =
90.5723 * 1, MR
+ 63.5148 * 1
+ 628.9547 * 0
+ 184.9949 * ProjectElapsedTime
+ 10.9211 * UnadjustedFunctionPoints
- 545.8004

Further information provided by the M5 algorithm within brackets is as in-
terpreted as follows. For the LM1 branch, there are 510 instances and the error
in that leave is 53.022%; for LM2, there were 199 projects and the error was
318.225%.

3 Evaluation of the Techniques

We have created 2 subsets of the ISGBN repository. One of them, called the Re-
ality dataset, is included in the repository as part of the ISBSG Reality Checker
tool (used for effort estimation). Datasets are divided into training and test, such
that approximately 2/3 of the instances are used for training and the other 1/3
of the instances are used for testing, i.e. evaluation. This is a common practice
in data mining; other other techniques such as cross validation can be more ac-
curate, they are however more complex. In statistics as well as in data mining,
with linear regression models used in this work, the goodness of fit of a model
is usually measured by the correlation and by the mean squared error. In the
software Engineering domain however, it is common to compare the goodness
of each technique using the Mean Magnitude of Relative Error (MMRE) and
Pred(%), proposed by Conte et al. [4]:

– MMRE is calculated as 1
n ·

n∑

i=1

∣
∣
∣ei−ai

ei

∣
∣
∣, where n is the sample size , ei is the

estimated value for the i-th element and ai is the actual value.
– Prediction at Level l –Pred(l%)– is defined as the number of cases whose

estimations are under the l%, divided by the total number of cases. For
example, Pred(25) = 0.75 means that 75% of cases estimates are within the
inside 25% of its actual value.

In Software Engineering, standard criteria for a model to acceptable are roughly
Pred(25) ≥ 0.75 and MMRE ≤ 0.25 [6].
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4 Approach and Results

The International Software Benchmarking Standards Group (ISBSG), a non-
profit organization, maintains a software project management repository from a
variety of organizations. The ISBSG checks the validity and provides benchmark-
ing information to companies submitting data to the repository. Furthermore,
it seems that the data is collected form large and successful organizations. In
general, such organizations have mature processes and well established data col-
lection procedures. In this work, we have used release 8, which contains 2028
projects and more than 55 attributes per project.

Before using the dataset, there are a number of issues to be taken into consid-
eration. An important attribute is the quality rating given by the ISBSG can be
from A (where the submission satisfies all criteria for seemingly sound data) to
D (where the data has some fundamental shortcomings). According to ISBSG
only projects classified as A or B should be used for statistical analysis. Also,
many attributes in ISGSB are categorical attributes or multi-class attributes
that need to be pre-processed for this work (e.g. the project scope attribute
which indicates what task were included in the project work effort –planning ,
specification, design, development and testing– were grouped). Another problem
of some attributes is the large number of missing instances. As a result, we had
to do some pre-processing. We selected some attributes and instances manually.
There are quite a large number of variables in the original dataset that we did
not consider relevant or they had too many missing values to be considered in the
data mining process. From the original database, we only considered the IFPUG
estimation technique and those that can be considered very close variations of
IFPUG such as NESMA [12] or Dreger [5] .

In our study, we have selected NormalisedWorkEffort or SummaryWorkEffort
as dependent variable provided by the ISBGN dataset . The normalized work
effort is an estimate of the effort for the whole software life-cycle even if the
project did not cover all the phases in the software development life-cycle. Sum-
mary work effort is the actual effort even if the project did not carry out the
whole life-cycle. Both values are the same for projects covering the whole life-
cycle or projects where it is not known if they covered the whole life-cycle. For
each dataset, we divided the dataset into a training and test using Weka utilities
to creates stratified cross-validation folds [7]. This means that per default class
distributions are approximately retained within each fold. The training dataset
contains approximately 2/3 of instances and the remaining 1/3 of instances was
used for validation.

We compared the outputs using algorithms provided by Weka’s M5 models,
Multivariate Linear Regression (MLR), or just Linear Regression (LR) for sim-
plicity, and Least Median Squares (LMS) for each dataset.

DS1. The Reality dataset if composed of 709 instances and 6 attributes (Devel-
opmentType, DevelopmentPlatform, LanguageType, ProjectElapsedTime, Nor-
malisedWorkEffort, UnadjustedFunctionPoints). The dependant variable that
we used for this dataset is the NormalisedWorkEffort. Table 1 compares the
goodness of the results for the reality dataset.
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Table 1. DS1. Reality dataset results

M5 LeastMedSq LR
Correlation coefficient 0.36 0.06 0.37
Mean absolute error 4829.08 5817.38 5244.29
Root mean squared error 15715.46 18583.45 15612.01
Relative absolute error 74.18% 89.36% 80.56%
Root relative squared error 93.54% 110.6143% 92.92%
MMRE 1.99 1.44 2.62
Pred(25) 0.20 0.17 0.13
Pred(30) 0.24 0.22 0.16

Table 2. DS2. Dataset results

M5 LeastMedSq LR
Correlation coefficient 0.87 0.8108 0.78
Mean absolute error 1191.08 3497.23 3340.26
Root mean squared error 7978.20 12437.35 9482.81
Relative absolute error 20.32% 59.67 % 56.99%
Root relative squared error 54.07% 84.30% 64.27%
MMRE 0.39 0.76 1.69
Pred(25) 0.70 0.29 0.23
Pred(30) 0.73 0.36 0.28

DS2. The dataset DS2 is composed of 1390 instances and 15 attributes (FP,
VAF, MaxTeamSize, DevType, DevPlatf, LangType, DBMUsed, MethodUsed,
ProjElapTime, ProjInactiveTime, PackageCustomisation, RatioWEProNonPro,
TotalDefectsDelivered, NormWorkEff, NormPDR). The dependant variable for
this dataset is the NormalisedWorkEffort.

5 Discussion

The M5 models provide some advantages from both quantitative and qualitative
point of view when compared with simpler regression methods. From a quatita-
tive point of view, we can conclude that the goodness, i.e., estimation accuracy,
of M5 is better than the classical linear regression or least mean squares (cf.
Tables 1 and 2). The M5 algorithm greatly improved estimates to levels that
could be considered as acceptable by the software engineering community. Also,
when compared with other techniques, the M5 algorithm is able to handle both
continuous and categorical variables.

In addition to greater accuracy, the M5 model provides other advantages from
a qualitative point of view. Firstly, each subset is clearly defined in the sense
that new instances are easily assigned to a local model. The second benefit is
that decision trees are easily understandable by users in general and by project
managers in particular as we can read them as rules. Each branch of the tree has
a condition as follows: attribute ≤ value or attribute > value. Such conditions are
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frequently used by experts in all sciences. Also, this provides a clear indication
of which variables are most important for prediction (as conditionals in the
branches of the tree). The leaves of the tree allow project managers to gain
further knowledge into the characteristics of the dataset.

6 Conclusions

This paper presented the results of applying the M5 algorithm as a estimation
technique to 2 datasets generated from the ISGSB repository. The M5 algorithm
assigns to each of the generated local model a linear regression formula. We also
applied the classical linear regression and least median squares and M5 for ef-
fort estimation. When we compared the goodness of such methods, results show
that there is an improvement in the accuracy of the results when using such local
models. Furthermore, M5 can help us to understand the datasets better; the tree
(rules) generated with M5 provides project managers with a better understand-
ing of what attributes are more important in a particular dataset. Finally, we
believe that M5 in particular and clustering techniques in general, provide some
advantages to project managers while keeping the estimation process within
reasonable complexity.

Further work will consist of using data mining techniques for characterizing
not only the instances but also the attributes (in this work, the attributes were
selected manually using expert knowledge). More needs to be done also un-
derstanding and comparing different clustering techniques to create segmented
models and its usefulness for project managers.
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