
Epistemological and Ontological Representation
in Software Engineering

J. Cuadrado-Gallego1, D. Rodŕıguez1, M. Garre1, and R. Rejas2

1 Department of Computer Science
University of Alcalá, Madrid, Spain
2 Department of Computer Science

Francisco de Vitoria University, Madrid, Spain
{jjcg,daniel.rodriguezg,miguel.garre}@uah.es, r.rejas.prof@ufv.es

Abstract. This paper provides an overview of how empirical research
can be a valid approach to improve epistemological foundations and on-
tological representations in Software Engineering (SE). Despite of all the
research done in SE, most of the results have not been yet been stated
as laws, theories, hypothesis or conjectures, i.e., from an epistemological
point of view. This paper explores such facts and advocates that the use
of empirical methods can help to improve this situation. Furthermore, it
is also imperative for SE experiments to be planned and executed prop-
erly in order to be valid epistemologically. Finally, this paper presents
some epistemological and ontological results obtained from empirical re-
search in SE.

Keywords: epistemological foundation; ontological representation; SE.

1 Introduction

This paper presents the empirical software engineering (SE) research from a
epistemological and ontological point of view, where relevant concepts could be
defined as follows:

– Epistemology is the branch of philosophy that studies the origin, nature, and
limits of human knowledge [28]. From an epistemological point of view, the
problem is how knowledge is acquired in the SE domain. Holloway [15] has
described how knowledge can be acquired by the following epistemological
approaches:

• Authority-based epistemology states that truth is given to us by an au-
thority, in the case of SE, an human expert [15].

• Reason claims that what is true is that which can be proven using de-
ductive logic. Reason dictates conditional absolute truth; if the premises
on which a valid deductive argument are known to be true, then the
conclusion of the argument must also be true [15].

Y. Shi et al. (Eds.): ICCS 2007, Part II, LNCS 4488, pp. 1162–1169, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Epistemological and Ontological Representation in Software Engineering 1163

• Experience claims that what is true is that which can be encountered
through the senses. The two variations relevant to this discussion are: (i)
anecdotal experience yields possible truth; if something happened for one
person, it is possible it may happen to others also; (ii) empirical evidence
states that truth is that which can be verified. Empirical evidence pro-
vides probable truth; if controlled experiments are designed properly and
replicated, then it is highly probable that the results accurately describe
reality [15].

– Empirical Research is any activity that uses direct or indirect observation as
its test of reality. In theoretical research, it is a form of inductive reasoning.
It may also be conducted according to hypothetic-deductive procedures [28].

– SE is defined by the IEEE [16] as the application of a systematic, disci-
plined, quantifiable approach to development, operation, and maintenance
of software; that is, the application of engineering to software.

– Formal ontologies are engineered artifacts aimed at representing a shared,
consensual conceptualization of the knowledge of a given domain [14].

Therefore, epistemology in SE aims to establish the origins, nature and limits
of knowledge in SE. Such knowledge should also be represented in a consen-
sual, shared and optimal way, i.e., an ontology of the SE domain [14]. Tak-
ing into account the epistemological approach indicated above, i.e., authority-
based, reasoning and experience, when applied to SE techniques, it is possible to
claim that:

– SE has advanced for many years by mainly following authority-based episte-
mologies, i.e., imposed by expert opinions or organisations promoting a set
of technologies. For example, in [6] there are 25 hypotheses such as Object
model reduces communication problems between analysts and users. As Hol-
loway states [15], this is a weak epistemological foundation on which to base
an entire discipline.

– Deductive logic in SE could be the application of traditional engineering
techniques in SE.

– Experimental research has received in recent years many favorable announce-
ments as an important epistemological way for SE.

Another research work in the area includes the one by Aaby [1], which explores
the foundation of Software Engineering from the perspectives of ontologies, epis-
temology and axiology.

The organisation of the paper is as follows. Section 2 provides an overview of
empirical research in SE. Section 3 discusses epistemology in in the context of
empirical SE research. Section 4 presents the use of ontologies in SE. Finally,
Section 5 concludes the paper.

2 Empirical Research in Software Engineering

The use of empirical methods, closer to the scientific research method, consists
of observing the world, proposing a model or theory of behaviour, measuring and



1164 J. Cuadrado-Gallego et al.

analysing, validating hypotheses of the model or theory, and if possible, repeating
the experiment [13]. The scientific method of research resides in opposition to
the advocacy research where a researcher “conceive an idea, analyse the idea,
advocate the idea”. Furthermore, researchers highlight the positives aspects of
empirical research methods (Fenton et al. [9], etc.).

The use of empirical research methods in SE is small if compared with other
disciplines. For example, Zelkowitz and Wallace [29] analysed over 600 papers in
the computer science literature and over one hundred papers from other scien-
tific disciplines in order to (i) analyse if the computer science disciple validates
theories and (ii) to compare with other disciplines. They found that around 30%
of papers did not include experimentation although it was needed it and only the
10% of papers that included experimentation have controlled experimentation
methods. Tichy et al [27] also analysed over 400 paper in the computer science
literature concluding that 40% of papers did not include the required experimen-
tation and they required empirical validation (compared with only only 10% to
15% of papers in other engineering disciplines).

In the last decades, however, the importance of empirical research in SE has
grown considerably as noticed by Zelkowitz and Wallace [29]. As a consequence
there are also numerous books, journals and conferences dedicated totally or
partially to disseminate the results of empirical research in software engineering.

3 Epistemology in Empirical Software Engineering
Research

Important issues in epistemology include the nature of knowledge, its presuppo-
sitions and foundations, its extent and validity. This describes what things are
known and how that knowledge is acquired. Plato’s Theaetetus already defined
knowledge as justified true belief. The problem is how to define what we know
is true and to what extent that is true. Modern philosophers such as Gettier
[12] state that belief does not need to be fully justified to be true. Furthermore,
Popper states that a law is a hypothesis that has not yet been falsified. For him,
a scientific idea can never be proven true, because because no matter how many
observations seem to agree with it, it may still be wrong. On the other hand, a
single contrary experiment can prove a theory forever false. Theorists have had
consensus defining the meaning of laws, theories, hypotheses and conjectures:

– Laws are generalizations on how things happens. From observations we can
generalize about what it is expected to happen but do not need to have an
explanation of why things happen.

– Theories are explanations of laws, i.e., why things happen.
– Hypothesis is tentative explanation that accounts for a set of facts that needs

to be confirmed by observation.
– Conjectures are statements, opinions, or conclusion based on inconclusive or

incomplete evidence.



Epistemological and Ontological Representation in Software Engineering 1165

3.1 Epistemology in Software Engineering

Despite the amount of research performed in empirical software engineering,
most of the results have not been yet been stated as laws, theories, hypothesis
or conjectures, i.e., an epistemological point of view. An exception could be the
works of Lehman and Ramil [20]. They discuss why there is a need to develop
a theory of software evolution on a large scale instead of analysing microcosms
software evolution.

Following this approach, recently, Endres and Rombach [6] compiled a set of
laws, hypotheses and conjectures related to Engineering and Information Sys-
tems. Although many of these reported laws are validated by experience or
lessons learned, such formulation can help other researchers to design and cre-
ate experiments in such a way that proper research questions are formulated.
Experiments can then be designed properly to validate or refute hypotheses or
theories.

3.2 Problems with Empirical Software Engineering Research

Not all empirical research in SE is been carried out properly and as Lehman
states: “our laws are certainly weaker than those formulated in biological
sciences...”.

In order for Empirical research to improve the epistemological value of SE, hy-
potheses need to be stated properly. In an initial attempt, Kitchenham et al [18]
discuss a set of SE empirical guidelines highlighting the fact that SE empirical
research is still pretty poor. In relation to hypotheses, they comment that many
hypotheses are shallow hypotheses because they do not reflect an explanatory
theory, and as a result, those experiments do not increase SE knowledge, i.e,
those do not provide value from an epistemological point of view. Also, Fenton
et al [9] state 5 questions should be asked for empirical research studies:

– Is it based on empirical evaluation?
– Was the experiment designed correctly?
– Is it based on a toy or real situation?
– Were the measurements used appropriate to the goals of the experiment?
– Was the experiment run for a long enough time?

Problems with empirical research can include the experimental design itself,
samples and scope (toy vs. real, just as software-development-in-the-small differs
from software-development-in-the-large, research-in-the-small may differ form
research-in-the-large [9], the use of appropriate measures. An example of the
postulates of Kitchenham et al [17] is the necessity to apply the representational
theory of measurement to software measurements. Fenton and Pfleeger [10] pro-
vide guidelines to define and apply metrics to measure the process or product
characteristics. Also, the validity of the metrics from an empirical and theorical
point of view has been discussed in the literature. The representation condi-
tion [10] asserts that a measurement mapping M must map entities into numbers
and empirical relations into numerical relations in such a way that the empirical



1166 J. Cuadrado-Gallego et al.

relations preserve and are preserved by the numerical relations. For example, if
A is taller than B if and only if M (A) > M(B) [10]. It is a well-known fact that
there are many defined SE metrics that do not follow these principles. Examples
include the McCalls’ complexity metric, which has no unit.

A correct way to establish epistemological foundations of software measure-
ment is that a set of metrics must make clear what aspects of quality they are
trying to measure and who they are directed at because there are different points
of view about what quality means (developers, managers, users). In the SE do-
main, metrics should be based on a range of properly defined quality model from
fixed hierarchical models (Boehm, McCall’s FCM) to more flexible approaches
such as the Goal-Question-Metric (GQM) [4].

Finally, the empirical evaluation is needed to help evaluate, predict, under-
stand, control and improve the software development process or product [3].
Furthermore, Fenton and Pfleeger [10] argue that conducting empirical evalua-
tions is the only way to improve software processes and products.

3.3 Some Epistemological Results of the Empirical Research
Approach to SE

Epistemology can help us define assertions and how those assertions in SE can
be verified. Also the concepts of ontologies in Software Engineering are aimed at
defining factors and relationships that help to clarify what needs to be reported in
empirical studies.Epistemology and ontology foundations can help in conducting
research and advancing the SE domain without antinomies that we have at the
moment. For example, Lehman and Ramil [20] discuss why there is a need to
develop a theory of software evolution, its practical impact, underlying strategies
and outlines a strategy for the development of the theory. So far, Lehman is one
of the few authors that have defined their work as hypothesis and empirically
evaluate them to create laws.

There are also dichotomies in SE, e.g., in Formal Methods domain, Floyd [11]
suggests a discussion from a philosophical point of view that can be extrapolated
to other SE domains. Formal methods have focused quite a lot in the mathe-
matical aspect. Floyd argues that a change from a product oriented perspective
(which regards software as a product) to a process oriented perspective, (which
views software in connection with human learning) is needed. In SE, the same
dichotomy exits in the same context and others. For example, metrics and qual-
ity are usually related either to the products or processes but not much research
has be carried out linking both aspects. Other examples where a long term view
of empirical research has contradicted previous research include:

– Regarding to estimation Kitchenham states Function Points are not better
than Lines of Code (LOC). Also, Dolado [5] has shown that some modern
data mining estimation methods are not better than classical regression.

– Shneiderman et al experiment [24] on the same analysed whether an algo-
rithm is easier to comprehend if presented as a flow chart or as a pseudo
code. Authors concluded that there is no difference between both. Years



Epistemological and Ontological Representation in Software Engineering 1167

later, Scalan [23] highlights some experimental flaws of the original experi-
ment (not taking time into account, questions that could only be answered
from the pseudocode and too simple program). Scalan proved that flowcharts
outperform pseudocode with a proper experimental design.

– Etc.

Finally, perhaps the most interesting point for the future of SE from the
Popper theses regarding epistemology is that every solution of a problem raises
new unsolved problems. Current research in empirical SE is the adoption of
evidence-based approach following the success of the evidence-based paradigm
in medicine during late 80’s and early 90’s. By analogy with evidence-based
medicine, Kitchenham et al [19] define that the Evidence-based Software En-
gineering (EBSE) should be “to provide the means by which current best evi-
dence from research can be integrated with practical experiment and human val-
ues in the decision making process regarding the development and maintenance
of software”.

4 Ontologies in Software Engineering

In SE, the use of ontologies has been used as a resource to integrate the infor-
mation, to communicate what people have achieved, to adapt the goals of the
organization and to support the efficiency of the processes. Ontologies can also
be used by applications require a higher level of formality of definition. For exam-
ple, the cataloguing of learning resources or the mapping of vocabularies from
different information sources require precise definitions, or at least significant
characterizations that help in deciding which terms to use in practical situa-
tions. Althoff et al [2] describe an architecture oriented to reuse the experience
in SE that use ontologies as the underlying formalism.

From an ontological point of view, empirical research has different consid-
erations. On the one hand, the use empirical research with the objective of
improving the epistemological foundations in SE could help in defining more
precise definitions, which in turn will provide more precise and useful ontologies.
The “IEEE Standard Glossary of Software Engineering Terminology” [16] is a
well-known attempt to provide precise characterizations of the main terms in
the field. It uses natural language prose which is useful for an efficient commu-
nication, but it does not provide a clear demarcation for each of the concepts.

On the other hand, current works creating ontologies based on standards will
help in defining entities, parameters and the relationships between them. This is
turn will help to define the experiments stating which variables could be consid-
ered as dependant or independent variables in the design of an experiment and
how those are related. An ISO standard, the Guide to the Software Engineering
Body of Knowledge (SWEBOK) provides an agreement on the content of what
compose the SE discipline. The SWEBOK project opened new possibilities to
ontology engineering in the field of SE, since it represents a shared consensus on
the contents of the discipline and provide pointers to relevant literature on each
of its concepts, both are important elements in ontology engineering [14,25].



1168 J. Cuadrado-Gallego et al.

5 Conclusions

This paper provided an overview of empirical research from an epistemological
and ontological point of view, linking such concepts in the context of SE. This
paper also highlighted the fact that there are few laws, theories, hypothesis or
conjectures in SE. This fact is not only related to the lack research in this area
which has grown considerably in the last decade, but it may be also related
to epistemological approximations. The use of empirical methods following the
scientific method of research can help to improve this situation.

Empirical research must be properly defined to be valid from the epistemo-
logical point of view. There are many antinomies still operating that need to be
solved taking into account the established empirical and research methods and
the initial guidelines [18] that are appearing in the SE domain. Some epistemo-
logical and ontological results were presented highlighting these facts.

Acknowledgement

This work has been supported by the project MCYT TIN 2004-06689-C03.

References

1. Aaby, A.A.: The Philosophical Foundations of Software Engineering, Draft avail-
able at: http://cs.wwc.edu/∼aabyan/Articles/SE/.

2. Althoff, K.-D., Birk, A., Hartkopf, S., Muller, W., Nick, M., Surmann, D. and
Tautz, C.: Systematic Population, Utilization, and Maintenance of a Repository
for Comprehensive Reuse. In Learning Software Organizations - Methodology and
Applications, Springer Verlag, LNCS 1756, (2000) 25–50

3. Basili, V., Selby, R.W. and Hutchens, D.H., Experimentation in Software Engi-
neering, IEEE Trans. on Soft Eng 12 7 (1986) 733–743

4. Basili, V. R., Caldiera, G. and Rombach, H. D.: ’The Goal Question Metric Par-
adigm’, in Encyclopedia of Software Engineering, John Wiley & Sons, Inc., (1994)
528–532

5. Dolado, J.J. and Fernandez, L.: Genetic Programming, Neural Networks and Linear
Regression in Software Project Estimation, in International Conference on Soft-
ware Process Improvement, Research, Education and Training (INSPIRE98) (1998)
157–171

6. Endres, A., Rombach, H.D.: A Handbook of Software and Systems Engineering:
Empirical Observations, Laws and Theories. Pearson Addison Wesley, (2003)

7. Briand, L., Bunse, C., Daly, J., Differding, C.: An Experimental Comparison of the
Maintainability of Object-Oriented and Structured Design Documents, Empirical
Software Engineering 2(3), (1997) 291-312

8. Chidamber, S.R. and Kemerer, C.F.: A metric suite for object oriented design,
IEEE Trans. on Soft Eng, 20(6) (1994) 476-493

9. Fenton, N.E., Pfleeger, S.L. and Glass, R.L.: Science and Substance: A challenge
to Software Engineers. IEEE Software 11(4)(1994) 86–95

10. Fenton, N.E. and Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Ap-
proach, 2nd Edition, PWS (1997)



Epistemological and Ontological Representation in Software Engineering 1169

11. Floyd, C.: Theory and Practice of Software Development, Stages in a Dialoge.
LNCS Vol. 915, 6th International Joint Conference CAAP/FASE on Theory and
Practice of Software Development, (1995) 25–41

12. Gettier, E.: Is Justified True Belief Knowledge?, Analysis 23. Available at:
http://www.ditext.com/gettier/gettier.html

13. Glass, R.L.: The Software-Research Crisis. IEEE Software 11(6) (1994) 42–47
14. Gruber, T.: Towards principles for the design of ontologies used for knowledge

sharing. Intl Journal of Human-Computer Studies 43(5/6) (1995) 907–928
15. Holloway, C.M., Epistemology, Software Engineering, and Formal Methods Ab-

stract of Presentation The Role of Computers in LaRC R&D, June 15-16 (1994).
Available at: http://shemesh.larc.nasa.gov/people/cmh/epsefm-tcabst.html

16. IEEE, IEEE Standard Glossary of Software Engineering Terminology, IEEE Std
610.12-1990, (1990)

17. Kitchenham, B., Pfleeger L., Fenton, N.: Towards a Framework for Software Mea-
surement Validation. IEEE Trans on Soft Eng 21 (12) (1995) 929–944

18. Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El
Emam, K., Rosenberg, J.: Preliminary Guidelines for Empirical Research in Soft-
ware Engineering. IEEE Trans. on Soft Eng 28(8) (2002) 721-734,

19. Kitchenham, B.A., Dyba, T., Jorgensen, M.: Evidence-Based Software Engineering.
26th IEEE International Conference on Software Engineering (ICSE’04) (2004)
273–281

20. Lehman, M., Ramil, J.F.: Towards a Theory of Software Evolution and its Practical
Impact, Proceedings Intl. Symposium on Principles of Software Evolution, ISPSE
2000, 1-2 Nov, Kanazawa, Japan (2000) 2–11

21. Lenat, D.B.: Cyc: A Large-Scale Investment in Knowledge Infrastructure. Com-
munications of the ACM 38(11) (1995) 33–38

22. Popper, K.R.: Conjectures and Refutations, Routledge and Kegan Paul, (1963)
23. Scanlan, D.A.: Structured Flowcharts Outperform Pseudocode: An Experimental

Comparison. IEEE Software 6(5) (1989) 28–36
24. Shneiderman, B.B., Mayer, R., McKay, D., Heller, P.: Experimental Investigations

of the Utility of Derailed Flow charts in Programming. Communications of the
ACM 20(6) (1977) 373–38

25. Sicilia, M.A., Garcia, E., Aedo, I., Diaz, P.: A literature-based approach to anno-
tation and browsing of Web resources. Information Research 8(2), (2003) 1–10

26. Tautz, C. and von Wangenheim, C.G.: REFSENO: A Representation Formalism
for Software Engineering Ontologies, Fraunhofer IESE IESE-015.98 (1998)

27. Tichy, W.F., Lucowiicz, L.,Prechelt, L., Heinz, E.A.: Experimental evaluation in
computer science: a quantitative study, Journal of Systems and Software 28(1)
(1995) 9–18

28. Wikipedia: The Free Encyclopaedia. Available: http://en.wikipedia.org/wiki/
Epistemology

29. Zelkowitz M.V., Wallace D.: Experimental Validation in Software Engineering.
Information and Software Technology 39(11) (1997) 735–743


	Introduction
	Empirical Research in Software Engineering
	Epistemology in Empirical Software Engineering Research
	Epistemology in Software Engineering
	Problems with Empirical Software Engineering Research
	Some Epistemological Results of the Empirical Research Approach to SE

	Ontologies in Software Engineering
	Conclusions

