Software defect prediction with Zero-inflated Poisson models

MADSESE 2019

Madrid 5 de Junio 2019

Daniel Rodríguez, Javier Dolado, Javier Tuya, Dietmar Pfahl UAH, UPV/EHU, UniOvi, U. Tartu

TIN2016-76956-C3-R, QARE, BadgePeople, TESTEAMOS

1

Software defect prediction with Zeroinflated Poisson models

- Motivation
- Equinox dataset
- Several approaches to fitting regression models. ZIP model.
- Conclusions

Motivation

- The number of *Software Defects* found in a software product can be assimilated to the *"count data"* concept that is used in many disciplines, because the outcome, number of defects of whatever software process, is a count.
- We take the data that is available in public repositories
- There are several ways of analyzing count data. The classical Poisson or negative binomial regression model can be augmented with zero-inflated Poisson and zero-inflated negative binomial models to cope with the excess of zeros in the count data.
- There are many packages and new proposals for analyzing Zero-inflated data. We wanted to compare them on a dataset.

Equinox dataset

• This dataset is part of the Bug prediction dataset and corresponds to a Java Framework included the Eclipse project. Many variables can be selected.

• Only a few are relevant

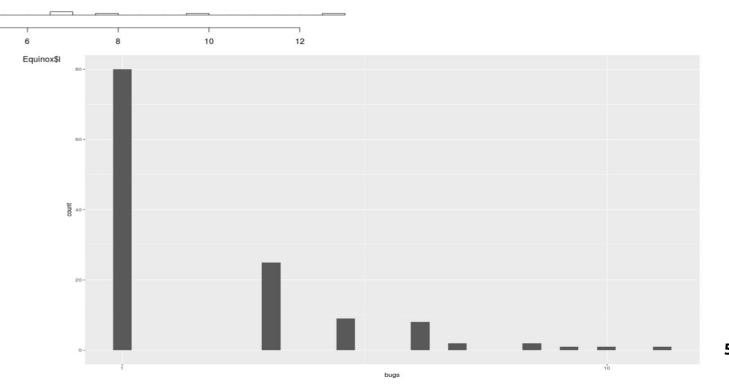
		<u> </u>	U	L	-	<u> </u>		1		1.00	_		
classname	cbo	dit	fanln	fanOut	Icom	noc	numbe	rOfAt	numb	perOfAtt	ut -		
ext::framework::a::importer::Ac*			. 0	6			0	0)		0		
org::eclipse::osgi::framework::ir		1	. 3	11	300	(0	25	5		0		
org∷osgi∷framework::ServiceE♥	4	1	4	0	3	(0	6	ò		0		
org::eclipse::osgi::framework::ir	1	2	1	0	0	(0	1	L		0		
substitutes::z::Fz	0	1	. 0	0	0	(0	0)		0		
circularity::test::Activator	2		0	2	1		0	0)		0		
org::eclipse::osgi::framework::ir			3	9	45	(0	6	6		0		
org::eclipse::osgi::internal::mod			. 2	1	. 1	(0	0)		2		
org::eclipse::osgi::internal::reso			. 1	1	10			- C			2		_
org::eclipse::osgi::internal::mod	10		. 8	numberO•	numperc	<u>THE</u> D	iumperOr		wmc 3	bugs	nonTrivialBugs 0	majorBugs	0
org::osgi::framework::ServicePe		1	. 1	7	, ,	0	2	14 172	115		0		ň
org::eclipse::osgi::framework::ir	22	1	. 18	0		0	3	3	3	1	0	(ő
nativetest::d::Activator	4	1	. 0	_		1	1	1	1	0	0	(ō
substitutes::y::Ay	0	1	. 0			0	0	0	0	0	0	(0
org::eclipse::osgi::framework::ir	0	2	0	0	Í	0	2	8	2	0	0	(0
substitutes::x::Kx	0	1	. 0	1		0	4	34	39	0	0	(0
org::eclipse::equinox::launcher:	40	1	. 3			0	0	3	3	0	0	(٥
nativetest::b2::Activator	4	1	. 0	0		0	5	9	4	1	0		0
org::eclipse::osgi::internal::base	12	2	. 1	0		0	5	12 29	22	0	0		0
	1		1	3 0		0	5	29 17	22	1	0		n n
					1	0	2	8	2	0	0		ő
					1	0	0	0	0	0	0	(ő
(bugs~ wmc+rfc+cbc	0+1c	om.		V	i	137	0	0	0	0	0	(0
						0	0	0	0	0	0	(0
data-equinox,						2	3	836	410	3	0	1	1
<pre>ziformula=~numberOfLinesOfCode,</pre>						0	2	8	2	0	0	(0
						0	17	54	38	0	0	(0
<pre>family=poisson)</pre>					<u> </u>	0	4	4	4	0	0		0
		_				0	0	10	0	1	0		1 4
				0		0	2	10	5	U	0		0

Equinox dataset

200

50

20


0

2

requency 100 Histogram of Equinox\$bugs

- The first histogram shows the high number of modules with no defects.
- The second histogram shows the distribution of the non-zero values.

Zero-inflated means that the response variable -software defects- contains more zeros than expected, based on the Poisson or negative binomial distribution. A simple histogram may show the trend.

Methods and R

- We analyzed the Equinox dataset using frequentist analysis and Bayesian analysis.
- We explored several models: Poisson, Negative Binomial, Zero Inflated Poisson, and Zero Inflated Negative Binomial
- There are many R packages that can be used to fit regression models:
 - MASS
 - pscl
 - R2Jags (Bayesian)
 - mgvc
 - glmmTMB (relatively new)

Results

Table 1. Summary of the results obtained with different R packages.

Method	AIC	BIC	R Package	$\# Bugs \ predicted$
Regression	904.8354	927.5198	MASS	97.76806
Poisson	632.1547	651.0584	pscl	188.7356
Poisson	632.2	651.1	$\operatorname{glmmTMB}$	n.a
Poisson	632.1547	-	mgvc	-
Neg. binom.	644.5	-	MASS	195.8165
Neg. binom.	628.6	651.2	$\operatorname{glmmTMB}$	n.a.
Neg. binom.	628.5507	_	mgvc	-
ZIP	606.9155	633.3807	pscl	195.7924
ZIP	606.9	633.4	$\operatorname{glmmTMB}$	n.a.
ZIP	602.9 wmc	629	$\operatorname{glmmTMB}$	n.a.
ZIP	-	DIC=622.5	Bayes RJAGS	-
ZIP	653.4149	-	mgvc	-
ZIP	647.9201 wmc	-	mgvc	-
ZINB	607.5639	637.8098	pscl	198.2048

Conclusions

- We have build several models to fit one small dataset.
- We have run several R packages with different approaches to Zero-inflated models.
- We can say that for small datasets the method used is not important respect to the cost in time.
 Bayesian simulation takes time but it does not prevent getting results.
- Precision is good for ZIP models.
- But the questions remain: how to build a good strategy for collecting relevant data and estimating defects in actual software settings.