
Preliminary Study on Applying Semi-Supervised Learning to
App Store Analysis

Roger Deocadez
School of Technology

Oxford Brookes University
Oxford OX33 1HX, UK

roger.deocadez@brookes.ac.uk

Rachel Harrison
School of Technology

Oxford Brookes University
Oxford OX33 1HX, UK

rachel.harrison@brookes.ac.uk

Daniel Rodriguez
Dept of Comp Science
University of Alcala

Alcalá de Henares 28871, Spain
daniel.rodriguezg@uah.es

ABSTRACT

Semi-Supervised Learning (SSL) is a data mining technique
which comes between supervised and unsupervised techniques,
and is useful when a small number of instances in a dataset
are labelled but a lot of unlabelled data is also available. This
is the case with user reviews in application stores such as
the Apple App Store or Google Play, where a vast amount
of reviews are available but classifying them into categories
such as bug related review or feature request is expensive or
at least labor intensive. SSL techniques are well-suited to
this problem as classifying reviews not only takes time and
effort, but may also be unnecessary. In this work, we analyse
SSL techniques to show their viability and their capabilities
in a dataset of reviews collected from the App Store for
both transductive (predicting existing instance labels during
training) and inductive (predicting labels on unseen future
data) performance.

CCS CONCEPTS

�Information systems → Data mining; Web mining;
�Human-centered computing → Mobile computing;
Smartphones; Mobile devices; �Computing methodolo-
gies → Supervised learning;

KEYWORDS

Semi-supervised Learning, Mobile apps, Apps reviews

ACM Reference format:

Roger Deocadez, Rachel Harrison, and Daniel Rodriguez. 2017.
Preliminary Study on Applying Semi-Supervised Learning to App
Store Analysis. In Proceedings of EASE’17, Karlskrona, Sweden,

June 15-16, 2017, 4 pages.
DOI: http://dx.doi.org/10.1145/3084226.3084285

1 INTRODUCTION

Over the past few years, there has been some interest in
focused theoretical and empirical studies of Semi-Supervised

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

EASE’17, Karlskrona, Sweden

© 2017 ACM. 978-1-4503-4804-1/17/06. . . $15.00
DOI: http://dx.doi.org/10.1145/3084226.3084285

Learning (SSL) algorithms to help address the scarcity of
labelled data [10, 16]. The limited amount of labelled data in
many situations has frequently been highlighted. The effort
needed to annotate data can be considerable, needing both
effort and time [5], and sometimes requiring an expert [15].
Fortunately a large quantity of unlabelled data may be avail-
able at a relatively small cost [18]. This is the case with
application stores where a large number of reviews is avail-
able but the classification into categories such as bug related
review needs to be carried out manually. Semi-supervised
learning includes Semi-Supervised Classification (SSC) and
semi-supervised clustering. In this paper, we focus on SSC
in the problem domain of mobile apps reviews classification.

Numerous studies have been conducted into identifying
bugs or issues, features or enhancement requests for mobile
app reviews using classical supervised techniques (e.g. [3, 11,
12]). Here we go further, with the aim of exploring semi-
supervised learning with the following research questions:

• Are semi-supervised learning techniques a suitable
approach for App Store analysis?

• How much data do we need?
• What are the problems faced when applying SSL?

To answer these research questions we conducted an exper-
iment to determine the suitability of SSC techniques as well
as the influence of the ratio of labelled data to unlabelled
using the KEEL tool following the work by Triguero et al [16].

The remainder of the paper is structured as follows: Sec-
tion 2 describes the experimental work carried out including
the dataset, preprocessing, algorithms and evaluation mea-
sures used. Section 3 discusses the results. Section 4 discusses
related work and Section 5 raises threats to validity. Finally,
Section 6 concludes the paper and discusses future work.

2 EXPERIMENTAL WORK

2.1 Dataset

The dataset used was collected from the App Store during
2015. Apps fall into 10 categories (books, education, games,
health, lifestyle, navigation, news, productivity, travel and
utilities). Only the top apps (both paid and free apps) were
included. Overall 40 apps were selected with a total of 932,388
reviews.

We randomly selected 2,757 reviews as our ground-truth
set and manually categorised these reviews into three classes
{bug, request, other} resulting in 543, 360 and 1,854 instances
respectively. Although we collected all metadata available

EASE’17, June 15-16, 2017, Karlskrona, Sweden Deocadez et al.

Table 1: WEKA StringToWordVector Filter parame-
ters

Parameters Values

Inverse Document Frequency
(IDF) Transform

True

Term Frequency (TF) Transform True
Lower case transformation True
Minimum term frequency 5
Stemmer Snowball stemmer
Number of words to keep 200

such version, number of stars and price, in this paper we
only use actual reviews as plain text together with the label
assigned.

2.2 Pre-proccessing

We used WEKA for the text mining pre-processing [19], i.e.,
to convert the strings with the reviews into vectors of words
that classifiers can learn from. Table 1 shows the most impor-
tant parameter specifications for the “StringToWordVector”
filter applied in the Weka tool. We trimmed the attributes
by removing numbers and other symbolic characters leaving
a total of 139 attributes (words representing features).

For the rest of the experimental work, we used the KEEL
framework [2]. The next step before applying the machine
learning algorithms was to create a Stratified k fold partition
for the training and evaluation steps. In particular, we used
the 10-Fold Distribution Optimally Balanced Stratified Cross
Validation option provided by the KEEL data management
tool.

2.3 Parameters and Classifiers

In this work we selected three well-known SSC algorithms: (i)
Self-training [8, 20], (ii) Rasco [17] and (iii) Rel-Rasco [21].

Each of these SSC algorithms was in turn run with well
known base algorithms, (i) kNN [1], (ii) C4.5 [14], (iii) naive
Bayes (NB) and (iv) Support Vector Machines (SVM) with
the Sequential Minimal Optimization (SMO) algorithm [13].

The default configuration parameters for all the methods
used in the KEEL toolkit and in this study are based on
recommended settings [16].

2.4 Evaluation Metrics

We evaluate the performance of our selected methods and
algorithms using accuracy. Accuracy is the number of correct
predictions divided by the total number of predictions. In
future work, we intend to report on other metrics. Although
we do not have extreme imbalance, we should also consider
those metrics that are more robust to such problems.

3 RESULTS AND DISCUSSION

Our experimental dataset consists of 2,757 expert labelled
mobile app reviews with 19.7% classified as bugs, 13.1%
classified as requests and 67.2% as others. We evaluate

Table 2: Transductive Accuracy Results with Differ-
ent Ratios of Labelled Data

Algorithm 10% 30% 50% 70%

Self-Training (kNN) 0.6584 0.7164 0.7332 0.7428
Self-Training (C4.5) 0.7391 0.7549 0.7764 0.7828
Self-Training (SMO) 0.7882 0.8332 0.8404 0.8473
Self-Training (NB) 0.7514 0.7788 0.7869 0.7813
Rasco (kNN) 0.5742 0.6689 0.6801 0.6871
Rasco (C4.5) 0.7198 0.7541 0.7669 0.7684
Rasco (SMO) 0.7788 0.8201 0.8386 0.8421
Rasco (NB) 0.7728 0.7924 0.7935 0.7846
Rel-Rasco (kNN) 0.5672 0.666 0.6976 0.6876
Rel-Rasco (C4.5) 0.7261 0.7572 0.771 0.7711
Rel-Rasco (SMO) 0.7596 0.8121 0.8419 0.8476
Rel-Rasco (NB) 0.7699 0.7855 0.7928 0.7861

Table 3: Inductive Accuracy results with Different
Ratios of Labelled Data

Algorithm 10% 30% 50% 70%

Self-Training (kNN) 0.668 0.7258 0.7468 0.749
Self-Training (C4.5) 0.7356 0.7512 0.7817 0.7824
Self-Training (SMO) 0.7867 0.8328 0.839 0.8441
Self-Training (NB) 0.7516 0.7813 0.7861 0.7745
Rasco (kNN) 0.5621 0.6873 0.7225 0.7272
Rasco (C4.5) 0.724 0.7537 0.7741 0.7791
Rasco (SMO) 0.7809 0.8157 0.8332 0.8426
Rasco (NB) 0.7671 0.7911 0.7879 0.7774
Rel-Rasco (kNN) 0.5748 0.6833 0.7258 0.732
Rel-Rasco (C4.5) 0.7277 0.7458 0.7722 0.7759
Rel-Rasco (SMO) 0.7556 0.8139 0.8332 0.8462
Rel-Rasco (NB) 0.7719 0.7875 0.7886 0.7763

the classification performances of three SSC methods (Self-
Training, Rasco and Rel-Rasco) with four base classifiers
(kNN, C4.5, SMO and NB) and four different training ratios
(10%, 30%, 50% and 70%).

The accuracy of the SSC methods with increased ratios of
labelled data is shown in Figures 1 and 2. It can be observed
there is some increase in performance with the selected al-
gorithms and base learners (kNN, C4.5 and SMO) as the
labelled ratio increases from 10% to 30% but in general per-
formance remains quite stable afterwards. Tables 2 and 3 also
show the values for the transductive and inductive accuracy
values respectively.

The classification performance of the methods Self-Training,
Rasco and Rel-Rasco with the selected classifiers (kNN, C4.5,
SMO and NB) in terms of labelled ratio factor have significant
differences between them (although we have not compared
them statistically here). However we can observe that we do
not need much data to achieve results that are very similar to
the ones obtained with classical supervised techniques. Our
findings show there is a very slight increase in performance

Preliminary Study on Applying Semi-Supervised Learning to App Store Analysis EASE’17, June 15-16, 2017, Karlskrona, Sweden

Figure 1: SSC Transductive Accuracy

Figure 2: SSC Inductive Accuracy

for the 30% ratio compared to 10% but afterwards the results
remain quite stable.

Although we need to do further experimental work, re-
garding our research questions we can observe that only a
little labelled data is needed to achieve good results for ac-
curacy. Furthermore, there are no large differences between
transductive and inductive performances and as a result we
can classify unseen new reviews with relatively high accuracy
using a small amount of data.

4 RELATED WORK

Harman et al [6] suggested that mining for technical, customer
and business aspects of the data held in app stores may help
a variety of stakeholders. However, the paper does not use or
suggest the use of machine learning techniques to automate
the analysis.

As mentioned earlier filtering and summarizing reviews is
an important part of app store analysis [9]. Maalej and Nabil
use supervised machine learning to perform the classification
automatically. In order to do this they created a truth set
by labelling 4,400 reviews manually using content analysis.
Clearly this is a large overhead which can largely be avoided
by using semi-supervised learning, as our approach in this
paper shows.

In earlier work we used linguistic rules to find feature re-
quests in app store reviews [7]. We used LDA to perform
topic modelling and categorise the requests, but the extrac-
tion of the feature requests was entirely manual and so would
be difficult to scale.

Topic modeling is also used by Carreño and Winbladh in
their work on finding requirements from users’ comments [3].
The authors use sentiment analysis to categorise the require-
ments but the work differs from ours in that machine learning
is not used to improve the efficiency of the requirements ex-
traction.

Topic modeling is also used by Chen et al [4] in their work
on finding the most useful reviews from a large and evolving
set of reviews. The AR-Miner tool extracts the reviews,
groups them, ranks them and then presents the results. The
AR-tool does not use machine learning.

Pagano and Maalej performed review analysis with over
a million reviews from the Apple App Store [11]. The tech-
niques employed included manual content analysis and sta-
tistical analysis but machine learning techniques were not
used. The paper acknowledges that reviews often contain
many different topics.

Panichella et al [12] propose the use of review analysis to
facilitate software evolution. Their techniques include using
NLP, textual analysis and sentiment analysis to automatically
classify app reviews. The authors use a number of different
machine learning algorithms to help perform the classification
of the reviews. The truth set was created manually following
some pre-processing. The reported results of using sentiment
and intention analysis (with the metrics precision, recall and
F-measure) are all very encouraging. The authors used 20%
of the truth set for training and the remaining 80% of the
truth set as the test set.

5 THREATS TO VALIDITY

Here we consider three types of threats to validity: internal,
external and construct.

When considering internal validity we must consider whether
the treatment caused the outcome or whether it happened
by chance or for some other reason. An obvious problem and
threat to internal validity occurs because of the act of manu-
ally categorizing the truth set. However, we used a simple

EASE’17, June 15-16, 2017, Karlskrona, Sweden Deocadez et al.

classification scheme (defect, feature or other) and one of the
authors checked the classifications that were performed by a
different author before we began our work.

When considering external validity we must consider whether
the results can be generalised outside the scope of the study.
We are relatively confident about the generalisability of our
results because of the large number of reviews (932,388) and
our relatively large truth set (2,757 reviews). We believe our
results are fairly applicable to the Apple App Store because
of this quite large random sample. However our results may
not generalise to other app stores, particularly those with dif-
ferent quality assurance standards. In addition, we have only
considered reviews that are written in English, and so our
results cannot be generalised beyond this to other languages.

Turning to construct validity we must consider whether the
variables used in the study accurately measure the concepts
they should. We have used well established toolkits (WEKA
and KEEL) and we are confident that the results they re-
turned are correct, because we performed manual checks on
a random sample of our results at the start of our work.

6 CONCLUSION AND FUTURE WORK

In this paper, we applied Semi-Supervised Classification
(SSC) techniques to study their suitability with reviews from
the App Store and our finding shows that SSC technique is
benefiting the App Store analysis. Our results showed that
although there are differences between the SSC techniques
only a small amount of data is needed to achieve similar
results to classical supervised techniques and the models
learned can properly assign labels to the collected data and
can also classify unseen future reviews.

Future work will pursue several paths. From the data
mining point of view, we will further analyse other SSL
algorithms and semi-supervised clustering techniques, analyse
if the label ratio is dependant of the SSL technique, etc. From
the mobile application domain point of view, we will make
use of metadata not used in this study to better classify
reviews to provide useful information to the developers.

ACKNOWLEDGEMENTS

The authors thank Oxford Brookes Universityand the Uni-
versity of Alcala, as well as projects amuSE (TIN2013-46928-
C3-2-R) and BadgePeople (TIN2016-76956-C3-3-R).

REFERENCES
[1] David W. Aha, Dennis Kibler, and Marc K. Albert. 1991. Instance-

based learning algorithms. Machine Learning 6, 1 (1991), 37–66.
DOI:http://dx.doi.org/10.1007/BF00153759

[2] J. Alcalá-Fdez, L. Sánchez, S. Garćıa, M.J. del Jesus, S. Ventura,
J.M. Garrell, J. Otero, C. Romero, J. Bacardit, V.M. Rivas, J. C.
Fernández, and F. Herrera. 2009. KEEL: a software tool to
assess evolutionary algorithms for data mining problems. Soft
Computing 13, 3 (2009), 307–318. DOI:http://dx.doi.org/10.1007/
s00500-008-0323-y

[3] L.V.G. Carreño and K. Winbladh. 2013. Analysis of user com-
ments: An approach for software requirements evolution. In 35th
International Conference on Software Engineering (ICSE). 582–
591. DOI:http://dx.doi.org/10.1109/ICSE.2013.6606604

[4] Ning Chen, Jialiu Lin, Steven C. H. Hoi, Xiaokui Xiao, and
Boshen Zhang. 2014. AR-miner: Mining Informative Reviews

for Developers from Mobile App Marketplace. In Proceedings
of the 36th International Conference on Software Engineering
(ICSE 2014). ACM, New York, NY, USA, 767–778. DOI:http:
//dx.doi.org/10.1145/2568225.2568263

[5] Nadia Felix F. da Silva, Luiz F. S. Coletta, and Eduardo R.
Hruschka. 2016. A Survey and Comparative Study of Tweet
Sentiment Analysis via Semi-Supervised Learning. Comput.
Surveys 49, 1, Article 15 (June 2016), 26 pages. DOI:http:
//dx.doi.org/10.1145/2932708

[6] Mark Harman, Yue Jia, and Yuanyuan Zhang. 2012. App Store
Mining and Analysis: MSR for App Stores. In Proceedings of the
9th IEEE Working Conference on Mining Software Repositories.
108–111.

[7] C. Iacob and R. Harrison. 2013. Retrieving and analyzing mobile
apps feature requests from online reviews. In 10th Working Con-
ference on Mining Software Repositories (MSR). 41–44. DOI:
http://dx.doi.org/10.1109/MSR.2013.6624001

[8] Ming Li and Zhi-Hua Zhou. 2005. SETRED: Self-training with
Editing. Springer Berlin Heidelberg, Berlin, Heidelberg, 611–621.
DOI:http://dx.doi.org/10.1007/11430919 71

[9] W. Maalej and H. Nabil. 2015. Bug report, feature request, or
simply praise? On automatically classifying app reviews. In IEEE
23rd International Requirements Engineering Conference (RE).
116–125. DOI:http://dx.doi.org/10.1109/RE.2015.7320414

[10] J. Ortigosa-Hernández, I. Inza, and J. A. Lozano. 2016. Semisuper-
vised Multiclass Classification Problems With Scarcity of Labeled
Data: A Theoretical Study. IEEE Transactions on Neural Net-
works and Learning Systems 27, 12 (Dec 2016), 2602–2614. DOI:
http://dx.doi.org/10.1109/TNNLS.2015.2498525

[11] D. Pagano and W. Maalej. 2013. User feedback in the appstore:
An empirical study. In 21st IEEE International Requirements
Engineering Conference (RE). 125–134. DOI:http://dx.doi.org/
10.1109/RE.2013.6636712

[12] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Can-
fora, and H. C. Gall. 2015. How can I improve my app? Classifying
user reviews for software maintenance and evolution. In IEEE
International Conference on Software Maintenance and Evo-
lution (ICSME). 281–290. DOI:http://dx.doi.org/10.1109/ICSM.
2015.7332474

[13] John C. Platt. 1999. Advances in Kernel Methods. MIT Press,
Cambridge, MA, USA, Chapter Fast Training of Support Vector
Machines Using Sequential Minimal Optimization, 185–208. http:
//dl.acm.org/citation.cfm?id=299094.299105

[14] J. Ross Quinlan. 1993. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[15] M. Sigdel, İ. Dinç, S. Dinç, M.S. Sigdel, M. L. Pusey, and R.S.
Aygün. 2014. Evaluation of Semi-supervised Learning for Clas-
sification of Protein Crystallization Imagery. In Proceedings of
IEEE Southeastcon. DOI:http://dx.doi.org/10.1109/SECON.2014.
6950649

[16] Isaac Triguero, Salvador Garćıa, and Francisco Herrera. 2015.
Self-labeled techniques for semi-supervised learning: taxonomy,
software and empirical study. Knowledge and Information
Systems 42, 2 (2015), 245–284. DOI:http://dx.doi.org/10.1007/
s10115-013-0706-y

[17] Jiao Wang, Si wei Luo, and Xian hua Zeng. 2008. A random
subspace method for co-training. In 2008 IEEE International
Joint Conference on Neural Networks (IEEE World Congress
on Computational Intelligence). 195–200. DOI:http://dx.doi.org/
10.1109/IJCNN.2008.4633789

[18] Tiejian Wang, Zhiwu Zhang, Xiaoyuan Jing, and Yanli Liu. 2016.
Non-negative sparse-based SemiBoost for software defect predic-
tion. Software Testing, Verification and Reliability 26, 7 (2016),
498–515. DOI:http://dx.doi.org/10.1002/stvr.1610 stvr.1610.

[19] Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J.
Pal. 2016. Data Mining, Practical Machine Learning Tools and
Techniques (4th Edition). Morgan Kaufmann.

[20] David Yarowsky. 1995. Unsupervised Word Sense Disambiguation
Rivaling Supervised Methods. In Proceedings of the 33rd Annual
Meeting on Association for Computational Linguistics (ACL
’95). Association for Computational Linguistics, Stroudsburg, PA,
USA, 189–196. DOI:http://dx.doi.org/10.3115/981658.981684

[21] Yusuf Yaslan and Zehra Cataltepe. 2010. Co-training with relevant
random subspaces. Neurocomputing 73, 10-12 (2010), 1652–1661.
DOI:http://dx.doi.org/10.1016/j.neucom.2010.01.018 Subspace
Learning / Selected papers from the European Symposium on
Time Series Prediction.

http://dx.doi.org/10.1007/BF00153759
http://dx.doi.org/10.1007/s00500-008-0323-y
http://dx.doi.org/10.1007/s00500-008-0323-y
http://dx.doi.org/10.1109/ICSE.2013.6606604
http://dx.doi.org/10.1145/2568225.2568263
http://dx.doi.org/10.1145/2568225.2568263
http://dx.doi.org/10.1145/2932708
http://dx.doi.org/10.1145/2932708
http://dx.doi.org/10.1109/MSR.2013.6624001
http://dx.doi.org/10.1007/11430919_71
http://dx.doi.org/10.1109/RE.2015.7320414
http://dx.doi.org/10.1109/TNNLS.2015.2498525
http://dx.doi.org/10.1109/RE.2013.6636712
http://dx.doi.org/10.1109/RE.2013.6636712
http://dx.doi.org/10.1109/ICSM.2015.7332474
http://dx.doi.org/10.1109/ICSM.2015.7332474
http://dl.acm.org/citation.cfm?id=299094.299105
http://dl.acm.org/citation.cfm?id=299094.299105
http://dx.doi.org/10.1109/SECON.2014.6950649
http://dx.doi.org/10.1109/SECON.2014.6950649
http://dx.doi.org/10.1007/s10115-013-0706-y
http://dx.doi.org/10.1007/s10115-013-0706-y
http://dx.doi.org/10.1109/IJCNN.2008.4633789
http://dx.doi.org/10.1109/IJCNN.2008.4633789
http://dx.doi.org/10.1002/stvr.1610
http://dx.doi.org/10.3115/981658.981684
http://dx.doi.org/10.1016/j.neucom.2010.01.018

	Abstract
	1 Introduction
	2 Experimental work
	2.1 Dataset
	2.2 Pre-proccessing
	2.3 Parameters and Classifiers
	2.4 Evaluation Metrics

	3 Results and Discussion
	4 Related Work
	5 Threats to Validity
	6 Conclusion and Future Work
	References

