Preliminary Study on Applying Semi-Supervised Learning in Mobile Application Stores

Roger Deocadez¹ Rachel Harrison¹ Daniel Rodriguez²

¹Oxford Brookes University, UK ²University of Alcala, Spain

EASE 2017, Karlskrona, Sweden

Outline

Semi-supervised Learning

- What is Semi-supervised Learning?
- SSL Classification

2 Experimental Work

- Problem
- Dataset
- Self-labeling Algorithms
- Results

伺き くほき くほう

What is Semi-supervised Learning? SSL Classification

Outline

- Semi-supervised Learning
- What is Semi-supervised Learning?
- SSL Classification

2 Experimental Work

- Problem
- Dataset
- Self-labeling Algorithms
- Results

3 Conclusions and Future Work

イロト イ理ト イヨト イヨト

What is Semi-supervised Learning? SSL Classification

Semi-Supervised Learning

Semi-Supervised Learning (SSL) lies between *supervised* and *unsupervised* techniques, where a small number of instances in a dataset are labeled but a lot of unlabeled data is also available.

- Supervised all data labelled
- Semi-supervised both labelled and unlabelled data
- *Unsupervised* no class attribute (all unlabelled)

This is the case in many situations:

- Natural language processing (Web mining, text mining), Part-of-Speech (POS), Labelling images
- Mobile Apps!

イロト イポト イヨト イヨト

What is Semi-supervised Learning? SSL Classification

Inductive vs. transductive

- Dataset, $\mathcal{D} = \mathcal{L} \bigcup \mathcal{U}$
- Learner $f : \mathcal{X} \mapsto \mathcal{Y}$
- Labeled data $\mathcal{L} = (X_i, Y_i) = \{(x_{1:l}, y_{1:l})\}$
- Unlabeled data U = X_u = {x_{l+1:n}} (avalilable during training, usually *l* << *n*)
- Test data $X_{test} = \{x_{n+1:...}\}$

イロト イ理ト イヨト イヨト

What is Semi-supervised Learning? SSL Classification

Inductive vs. transductive

In SSL, threre are two distinct goals:

 Inductive. Predict the labels on future test data, i.e., learning models are applied to future test data (not available during training).

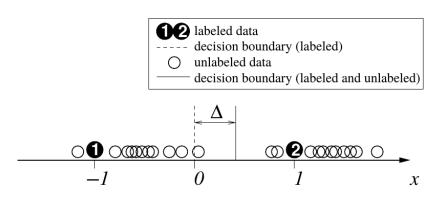
 $\{(x_{1:l}, y_{1:l}), x_{l+1:n}, x_{n+1:...}\}$

 Transductive. It is concerned with predicting the labels on the unlabeled instances provided with the training sample. {(x_{1:/}, y_{1:/}), x_{l+1:n}}

イロト イポト イヨト イヨト

What is Semi-supervised Learning? SSL Classification

SSL Assumptions


Does SSL always work?

- **Smoothness assumption** (continuity), if two points *x*₁ and *x*₂ in a high-density region are close, then so should be the corresponding outputs *y*₁ and *y*₂
- Cluster assumption: If points are in the same cluster, they are likely to be of the same class.
- Low density separation: the decision boundary should lie in a low density region

イロト イポト イヨト イヨト

What is Semi-supervised Learning? SSL Classification

SSL Assumptions

(Source: Zhu, ICML'07 tutorial)

イロト イヨト イヨト イヨト

What is Semi-supervised Learning? SSL Classification

Outline

Semi-supervised Learning What is Semi-supervised Learning?

SSL Classification

2 Experimental Work

- Problem
- Dataset
- Self-labeling Algorithms
- Results

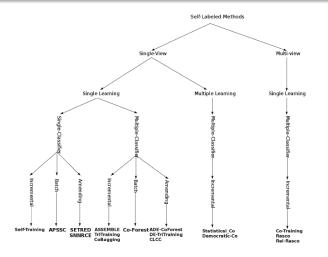
3 Conclusions and Future Work

イロト イ理ト イヨト イヨト

What is Semi-supervised Learning? SSL Classification

Semi-supervised Learning

Semi-supervised Learning taxonomy


- Semi-supervised classification
 - Self-learning methods/(Multi-view methods)
 - Generative models
 - S3VMs Semi-supervised SVM
 - Graph-based methods
- Semi-supervised clustering
- Semi-supervised regression

In this work, we have tested self-learning approaches in mobile apps.

- 4 回 ト 4 三 ト 4 三 ト

SSL Classification

Self-labeling classification

(Source: Trigero et al. (2014))

Deocadez, Harrison & Rodriguez

Image: A matched block of the second seco Applying Semi-Supervised Learning in Mobile Apps

▶ < ≣ ▶

Problem Dataset Self-labeling Algorithms Results

Outline

- Semi-supervised Learning
 - What is Semi-supervised Learning?
 - SSL Classification

2 Experimental Work

- Problem
- Dataset
- Self-labeling Algorithms
- Results

Conclusions and Future Work

イロト イ理ト イヨト イヨト

Problem Dataset Self-labeling Algorithms Results

Problem: To classify AppStore reviews with SSL

Aim: To analyse SSL techniques to show their viability and their *transductive* (predicting labels during training) and *inductive* (predicting labels on unseen future data) capabilities in a dataset of reviews collected from the AppStore.

イロト 不得 とくほ とくほ とう

Problem Dataset Self-labeling Algorithms Results

Outline

Semi-supervised Learning

- What is Semi-supervised Learning?
- SSL Classification

2 Experimental Work

Problem

Dataset

- Self-labeling Algorithms
- Results

3 Conclusions and Future Work

イロト イ理ト イヨト イヨト

Problem Dataset Self-labeling Algorithms Results

Dataset

- Almost a million reviews downloaded from the Apple's AppStore.
- Out of the million reviews from 40 apps, we randomly selected around 3,000 that were manually categorized these into 3 classes *{bug, request, other}* as our ground-truth examples.
- In this work, only those 3,000 review were used and other parameters such as number of starts, category, etc. are available but we have only used the textual description in this work.

イロト 不得 とくほ とくほ とう

Э

Problem Dataset Self-labeling Algorithms Results

Dataset

Class	String
bug bug	'Waste of time. Loses all your entries.' 'Never works.'
 request request	'Needs more email capabilities to make it as good as browser''It's a good game but needs improvements on resources'
other other	 'Excellent app Very easy to use' 'Love the reminders. :)'

A total of 2,757 reviews were classified into 3 classes *{bug, request, other}* for our ground-truth set resulting in 543, 360 and 1,854 respectively.

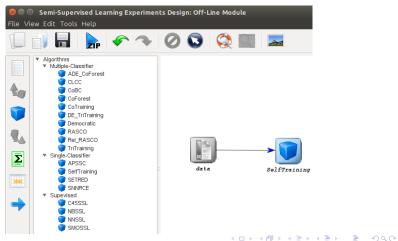
イロト 不得 とくほ とくほ とう

Э

Problem Dataset Self-labeling Algorithms Results

Preprocessing

The textual description was tranformed into a vector of words using WEKA's <code>StringToWordVector Filter</code>


Parameters	Values
IDF Transform	True
TFT Transform	True
lowerCaseTokens	True
minTermFreq	5
stemmer	SnowballStemmer
stopwordsHandler	MultiStopwords
wordsToKeep	200
stemmer stopwordsHandler	SnowballStemmer MultiStopwords

イロト 不得 トイヨト イヨト ニヨー

Problem Dataset Self-labeling Algorithms Results

Used KEEL's SSL module

Deocadez, Harrison & Rodriguez

Applying Semi-Supervised Learning in Mobile Apps

Problem Dataset Self-labeling Algorithms Results

Outline

Semi-supervised Learning

- What is Semi-supervised Learning?
- SSL Classification

2 Experimental Work

- Problem
- Dataset

Self-labeling Algorithms

Results

3 Conclusions and Future Work

イロト イ理ト イヨト イヨト

Problem Dataset Self-labeling Algorithms Results

Self-labeling Algorithms

- **Self-training** follows a wrapper approach, using a base classifier, unlabeled data are labeled and added to the training set in an iterative way.
- **Co-training**, multi-view approach, each instance is represented by two sets of features (views), $\mathbf{x} = [\mathbf{x}^{(1)}; \mathbf{x}^{(2)}]$, than are trained independently and help each other.
- **RASCO** (RAndom Subspace Method for Co-training) is similar to co-training but with multiple classifiers trained on different attribute splits randomly generated.
- Rel-Rasco generates subspaces using the mutual information ranking metric between the features and class.

イロト 不得 とくほ とくほ とう

Problem Dataset Self-labeling Algorithms Results

Self-training

Input: Labeled data \mathcal{L} , unlabeled data \mathcal{U} , and a supervised learning algorithm \mathcal{A} .

- 1 Learn a classifier f using labeled data \mathcal{L} with f.
- 2 Label unlabeled data \mathcal{U} with f.
- 3 Add new labeled data to ${\mathcal L}$ and removed them from ${\mathcal U}$

Repeat 1–3 until it converges or no more unlabeled example left.

イロト 不得 とくほと 不足とう

Э

Problem Dataset Self-labeling Algorithms Results

Parameters of the SSL Algorithms

Table: Parameters of the Algorithms

Methods	Parameters
Self-Training	MAX_ITER = 40
Rasco	MAX_ITER = 40, number of views/classifiers = 30
Rel-Rasco	MAX_ITER = 40, number of views/classifiers = 30

イロト イポト イヨト イヨト

3

Problem Dataset Self-labeling Algorithms Results

Base Algorithms & Parameters

-

Algorithm	Parameters
<i>k</i> NN	No. of neighbors = 3, Euclidean distance
C4.5	Confidence level $c = 0.25$,
	Minimum no. of items per leaf $i = 2$,
	Prune after the tree building
NB	No parameters specified
SMO	C = 1.0,
	Tolerance parameter = 0.001,
	$\epsilon = 1.0 imes 10^{-12}$,
	Kernel type = polynomial,
	Polynomial degree = 1,
	Fit logistic models = true

(ロ) (同) (目) (日) (日) (日) (の)

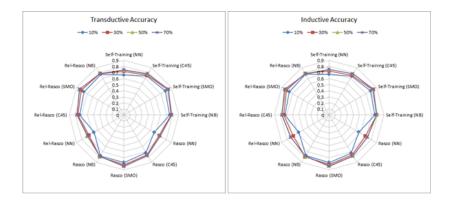
Problem Dataset Self-labeling Algorithms Results

Outline

Semi-supervised Learning

- What is Semi-supervised Learning?
- SSL Classification

2 Experimental Work

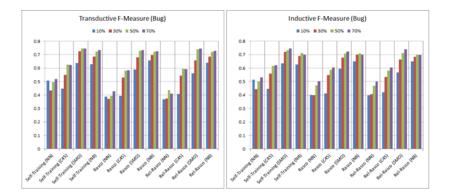

- Problem
- Dataset
- Self-labeling Algorithms
- Results

Conclusions and Future Work

イロト イ理ト イヨト イヨト

Problem Dataset Self-labeling Algorithms Results

Results

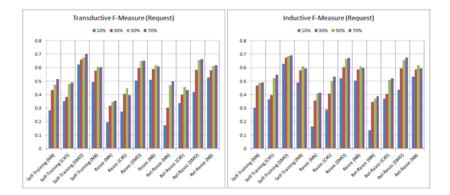


Deocadez, Harrison & Rodriguez Applying Semi-Supervised Learning in Mobile Apps

<ロ> (四) (四) (三) (三) (三)

Problem Dataset Self-labeling Algorithms Results

Results


Deocadez, Harrison & Rodriguez Applying Semi-Supervised Learning in Mobile Apps

э

イロト イ理ト イヨト イヨト

Problem Dataset Self-labeling Algorithms Results

Results

Deocadez, Harrison & Rodriguez Applying Semi-Supervised Learning in Mobile Apps

イロト イポト イヨト イヨト

Conclusions and Future Work

Conclusions

- Not much data needed to achieve good results (similar to supervised classification)
- Large differences depending on the base classifier
- Apply further algorithms

Future Work

- Imbalance filters + other metrics
- Use the whole information
- Meta-learning checking the characteristics of the data

Thank you for your attention!

イロト イポト イヨト イヨト