
On the Statistical Distribution of Object-Oriented System Properties

Israel Herraiz

Technical University of Madrid

Madrid, Spain

israel.herraiz@upm.es

Daniel Rodriguez

University of Alcala

Alcala de Henares, Spain

daniel.rodriguez@uah.es

Rachel Harrison

Oxford Brookes University

Oxford, United Kingdom

rachel.harrison@brookes.ac.uk

Abstract—The statistical distributions of different software
properties have been thoroughly studied in the past, including
software size, complexity and the number of defects. In the case
of object-oriented systems, these distributions have been found
to obey a power law, a common statistical distribution also
found in many other fields. However, we have found that for
some statistical properties, the behavior does not entirely follow
a power law, but a mixture between a lognormal and a power
law distribution. Our study is based on the Qualitas Corpus,
a large compendium of diverse Java-based software projects.
We have measured the Chidamber and Kemerer metrics suite
for every file of every Java project in the corpus. Our results
show that the range of high values for the different metrics
follows a power law distribution, whereas the rest of the range
follows a lognormal distribution. This is a pattern typical of
so-called double Pareto distributions, also found in empirical
studies for other software properties.

Keywords-object-oriented properties; statistical distribution;
Chidamber & Kememer; double Pareto; lognormal; power law;
Qualitas Corpus

Replication package: http://mat.caminos.upm.es/∼iht/wetsom2012/

I. INTRODUCTION

Statistical distribution research has addressed many dif-

ferent artificial phenomena, and researchers have found that

power law distributions are a good description of empirical

data for many of these phenomena. Software is not an excep-

tion [1], and this includes object-oriented systems [2], [3],

[4]. However there is no consensus about whether software

and object-oriented systems can be best described using

power laws, or whether alternatives such as the lognormal

distribution are better. Also, the reason these distributions

appear in software is not yet clear. Some attribute this

behavior to the network-like structure of object-oriented

systems [4], but in fact power laws are found in many

different kind of software systems [1], not only in object-

oriented software.

The controversy about whether power laws describe the

structure of software better than lognormal or other distribu-

tions is not exclusive to software systems, but also applies to

other artificial systems where power laws seem to describe

the statistical properties of the systems well [5], [6]. An area

in which the issue has been deeply explored is file size.

In that area, Mitzenmacher [7] found that a double Pareto

distribution was a better fit than both the power law and

lognormal distributions, and proposed a generative model

that matches the software development process. In fact, the

same distribution was found for the size of source code files,

for many programming languages [8].

In the case of object oriented systems, although at a first

glance some object oriented properties seem to follow power

law distributions, the truth is that both lognormal and power

law distributions have been reported for different properties,

and the border between the two is narrow [2]. We believe this

situation is exactly the same as has been previously found in

other areas [5]; we try to offer new insights on the question

by reporting our findings on a set of object-oriented software

projects, after measuring the Chidamber and Kemerer (CK)

metrics suite [9] for all of them. Our set of case studies

was obtained from the Qualitas Corpus [10], and contains

69 open source projects written in Java. We have fitted

lognormal, power law and double Pareto distributions for

all the metrics, and have found that double Pareto is a better

fit for most of the cases, which could explain the interplay

between lognormal and power law distributions in object-

oriented systems [2].

The rest of the paper is organized as follows. Section II

describes the methodology (data used, metrics and statistical

distributions used in the rest of the paper). Next, Sec-

tion III enumerates the Java programs analyzed in this work.

Section IV analyses the different distributions per metric

followed by a summary (Section V and threats to validity

in Section VI. Finally, Section VII concludes the paper and

outlines future research work.

II. METHODOLOGY

A. Data Gathering

All the data used for this study was obtained from

the Qualitas Corpus [10], which is publicly available. The

Qualitas Corpus contains a set of 106 open source projects

written in Java. The data includes source code, JAR files

(compiled versions of the source code), documentation and

meta-data about the project, with some basic metrics and a

classification of the projects.

We used the Qualitas Corpus version 20101126, “r”

release. Out of the 106 projects we could only measure and



fit the distributions for 69 of the projects due to technical

reasons.

B. Metrics

We measured the set of CK metrics [9] for every class in

all the projects of the dataset.

To obtain these metrics we used the tool ckjm (Chi-

damber and Kemerer Java Metrics) by Spinellis1. This tool

is able to gather the metrics from (compiled) Java class files

and JAR compressed files. We applied the tool to each of

the JAR files available in each of the projects in the Qualitas

Corpus. Thus, we obtained the values of the metrics using

the compiled Java bytecode instead of source code.

In detail, the metrics we gathered are the following:

• Weighted methods per class (WMC)

• Depth of inheritance tree (DIT)

• Number of children (NOC)

• Coupling between object classes (CBO)

• Request for a class (RFC)

• Lack of cohesion in methods (LCOM)

For the case of WMC, we assigned a weight of 1 to all

the methods in a class, and so in this study WMC is also

equal to the number of methods in a class.

C. Statistical Analysis

The identification of a power law tail in empirical data is a

difficult task, because of the variability that is usually found

in the large values. We use the fitting procedure suggested by

Clauset et al. [11], which is based on maximum-likelihood

estimation, and goodness-of-fit tests using the Kolmogorov-

Smirnov distance. This process is fundamentally different to

the procedure reported previously on power laws in object

oriented systems [2]. This difference may be the cause of

the discrepancy between what we report here and the results

reported by Concas et al. [2].

The method we use is able to calculate not only the

parameters of the power law, but also to identify the values

that are not well described by the power law. The value,

xmin, is used to split the empirical data into two sets. In

the original method, the set of high values is fitted with a

power law distribution, and the set of low values is ignored.

However, we have modified the method to fit the set of low

values to a lognormal distribution. If xmin < 1, 000, the

power law was fitted using the procedure for discrete data

reported by Clauset. Otherwise, we assumed the variable

was continuous.

The double Pareto distribution is formed by two power

law tails and a lognormal body. The power law tails are

found in the very low and very high values, and the

lognormal body joins these two power law tails. In our

case, for very low values, given the kind of measurements

we are dealing with, it is difficult to obtain a power law

1Available at http://www.spinellis.gr/sw/ckjm/

for the low value end, as the data are discrete, and the

lognormal behavior starts with relatively low values. This

problem (identifying the low values power law tail in double

Pareto distributions) is similar to the case of file sizes, as

reported by Mitzenmacher [7]. Therefore, taking this into

account, and also considering that the generative model for

double Pareto fits the software development process well, we

estimate that all the distributions we studied with a power

law tail in the high value end, and a lognormal distribution

in the rest of values, are double Pareto distributions.

For the lognormal distribution part we fitted the distri-

bution using the Kolmogorov-Smirnov distance as a mea-

surement of the goodness of fit, because for the low value

side there are no problems with the variability of the data.

The fitting procedure is standard using maximum likelihood

estimation.

For the fitting procedure and to obtain the plots shown

in this paper we used the MATLAB programs provided by

Clauset et al.2. We measured and fitted each project in a

separate process in the CeSViMa’s Magerit supercomputer.

For the MATLAB fitting programs, we used GNU Octave

3.4.2 [12], and for the plot programs we used MATLAB

R2011b on a desktop computer, using the MAT files obtained

with GNU Octave. The fitting procedure recommended by

Clauset et al. and implemented in the MATLAB programs is

very expensive in terms of computing resources, and some

projects took more than 24 hours to be successfully fitted.

To obtain all the results reported in this paper, we consumed

more than 1000 computation hours in Magerit.

D. Replication of This Study

The results of this study can be replicated thanks to the

replication package3, which includes information about the

data and necessary scripts to run the experimental work

discussed.

III. CASES UNDER STUDY

We initially selected all the 106 projects contained in the

Qualitas Corpus. We applied the ckjm tool to all the JAR

files found in each project. The tool provided no output for

37 of the projects and so these were discarded from our

study. As this is a preliminary report, we did not investigate

why the tool was not able to provide an output for those

projects but we will do so in future work.

Table I shows the finally selected projects, including name

and studied version, the domain of application, the size in

SLOC (that is, removing comments and blank lines) and the

number of classes (measured as the number of class files in

the deployed JAR files). These data were obtained directly

from the metadata included in the Qualitas Corpus.

2Available at http://tuvalu.santafe.edu/∼aaronc/powerlaws/
3http://mat.caminos.upm.es/∼iht/wetsom2012/



Table I
PROJECTS UNDER STUDY

System Domain SLOC #Classes System Domain SLOC #Classes

ant-1.8.1 build 107770 1268 ivatagroupware-0.11.3 middleware 23786 381
antlr-3.2 build 25243 531 jFin DateMath-R1.0.1 SDK 4807 62
aoi-2.8.1 graph 111725 863 jag-5.0.1 tool 14762 338
argouml-0.30.2 visualization 194859 2905 james-2.2.0 tool 27003 340
aspectj-1.6.9 progr. lang. 412394 2665 jasml-0.10 tool 5732 49
axion-1.0-M2 database 23744 261 jasperreports-3.7.3 visualization 170064 1844
azureus-4.5.0.4 database 453433 7249 javacc-3.2 build 13807 132
c jdbc-2.0.2 database 81306 586 jboss-5.1.0 J2EE server 281643 15247
castor-1.3.1 middleware 115543 1663 jchempaint-2.0.12 SDK 6321 703
cayenne-3.0.1 database 127529 2184 jedit-4.3.2 tool 107469 1128
checkstyle-5.1 IDE 23316 352 jena-2.5.5 middleware 89987 1564
cobertura-1.9.4.1 testing 51860 122 jext-5.0 visualization 26565 504
colt-1.2.0 SDK 38625 593 jfreechart-1.0.13 tool 98078 857
columba-1.0 tool 71680 1335 jgraph-5.9.2.1 tool 12341 90
displaytag-1.2 visualization 11832 131 jgraphpad-5.10.0.2 tool 23750 431
drawswf-1.2.9 graph 27008 319 jgrapht-0.8.1 tool 11931 255
drjava-stable-20100913-r5387 IDE 62380 3877 jgroups-2.6.2 tool 85243 1033
eclipse SDK-3.6 IDE 2282511 32126 jhotdraw-7.5.1 graph 75958 1070
emma-2.0.5312 testing 25806 330 jmeter-2.4 testing 81010 2077
findbugs-1.3.9 testing 109096 1744 jmoney-0.4.4 tool 8197 193
fitjava-1.1 testing 2240 61 joggplayer-1.1.4s graph 14936 194
fitlibraryforfitnesse-20100806 testing 27539 1290 jparse-0.96 build 12559 69
freecol-0.9.4 games 81671 1077 jpf-1.5.1 SDK 13246 189
freecs-1.3.20100406 tool 23012 147 jrat-0.6 testing 14146 250
galleon-2.3.0 graph 52653 809 jre-1.6.0 progr. lang. 914867 17348
ganttproject-2.0.9 tool 47051 1058 jrefactory-2.9.19 tool 113427 1553
gt2-2.7-M3 SDK 446863 5613 jruby-1.5.2 progr. lang. 160360 5068
heritrix-1.8.0 tool 47272 531 jsXe-04 beta tool 8829 107
hibernate-3.6.0-beta4 object mapper 163858 2674 jspwiki-2.8.4 middleware 43326 455
hsqldb-2.0.0 database 123268 535 jung-2.0.1 visualization 37989 858
htmlunit-2.8 testing 40004 932 junit-4.8.2 testing 6164 209
informa-0.7.0-alpha2 middleware 9722 170 log4j-1.2.16 testing 20637 308
ireport-3.7.5 visualization 221490 3394 marauroa-3.8.1 games 13823 227
itext-5.0.3 visualization 76369 544 picocontainer-2.10.2 middleware 9259 255

sablecc-3.2 build 28394 286

IV. RESULTS

A. Weighted Methods per Class (WMC)

As an example, Figure 1 shows the complementary cu-

mulative distribution function (CCDF) for the WMC metric

of the ArgoUML project (Power law parameters xmin = 28,

α = 2.72, Lognormal parameters µ = 1.61, σ = 0.99). The

plots shows the empirical estimation using the data, and two

fits, the power law and lognormal models. The power law

fit has been calculated only for values higher than a given

threshold, which we call xmin. The lognormal model has

only been fitted for values lower than this threshold.

In a CCDF plot, the maximum vertical distance between

two functions is called the Kolmogorov-Smirnov distance,

D, and is used to evaluate the best fit between a set

of possible models. In the case of the WMC metric, the

lognormal model alone cannot explain the whole range of

values, because it deviates from the empirical data for very

large values, causing a larger value of D. Figure 2 shows

this fitting. Note the evident power law tail which causes

the large D value for the lognormal model alone. It is also

worth noting that the deviation starts at xmin, which marks

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

WMC

P
[X

>
x
]

ArgoUML − WMC

 

 

Empirical data

Power law

Lognormal

Figure 1. CCDF of the WMC metric for ArgoUML. The value of xmin

is marked with a vertical line. Both axes are on a logarithmic scale

the border between the lognormal and power law sides in

the double Pareto model.

On the other hand, the power law model cannot explain all

the values either, because it deviates from the empirical data

for small values, causing again a larger value D. However,

a hybrid model can explain the whole range of values with

minimal deviation from the empirical data, that is, with a

lower value of D.



10
0

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

WMC

P
[X

>
x
]

ArgoUML − WMC

 

 

Empirical data

Lognormal

D

Figure 2. CCDF of the WMC metric for ArgoUML, with only the
lognormal model fitted. Both axes are on a logarithmic scale

This is the typical behavior of a double Pareto distribution,

although with a small modification: we are missing the

power law tail for the very low values. The WMC metric

is of course a discrete variable. For very low values we

could not fit a power law neither a lognormal. We attribute

this difficulty to the influence of noise for very low values.

This influence is negligible for very large values though.

When we fit the lognormal body, we should discard very

low values, because they are probably not distributed log-

normally. However, the difference in the empirical data and

the lognormal model including those values is very small.

This is probably the cause of the small difference we see

around the value of xmin between the two fits.

We do not show the rest of plots due to the lack of space

in this paper, but the same behavior was verified with all the

projects using the WMC metric.

Concas et al. [2] have previously reported that the WMC

metric follows a lognormal distribution, although they admit

that a power law could also be fitted if they discard very low

values. As we do here, they chose to assign a weight of 1 to

all the methods. So our data are comparable with theirs. We

believe that the data reported by Concas et al. for the WMC

metric is a double Pareto model, which would explain the

good power law fit of the high values tail, and also the good

fit of the lognormal model. In our case, fitting a lognormal

model alone is not as accurate as the double Pareto model.

We note that our fit procedure is not fitting a combined

double Pareto model, but we fit the power law for the range

of high values, and the lognormal for the range of low

values. We then plot everything together. We calculate the

threshold value using the fitting procedure recommended by

Clauset et al. [11].

B. Depth of Inheritance Tree (DIT)

Figure 3 shows the CCDF estimation for the DIT metric

of the Azureus project. We have added a line to join the

dots for more clarity. As the plot shows, there are very few

possible values for the DIT metric, which makes it very hard

to fit a model to the empirical data. The plots are similar

for the rest of case studies in our sample.

1 2 3 4 5
10

−4

10
−3

10
−2

10
−1

10
0

DIT

P
[X

>
x
]

Azureus

 

 

Empirical data

Figure 3. CCDF of the DIT metric for Azureus. Both axes are on a
logarithmic scale

In fact, this metric is not reported in other similar studies

about the power law nature of object oriented properties [2],

[3], [4].

C. Number of Children (NOC)

Figure 4 shows the plots of the CCDF of the NOC metric

for the projects Eclipse SDK (xmin = 3, α = 2.25),

Findbugs (xmin = 8, α = 2.49), Freecol (xmin = 28,

α = 3.07) and ArgoUML (xmin = 2, α = 2.16). The plots

show the empirical data and the power law fitted from the

xmin threshold onward.

It seems clear that the behavior of NOC is different to

WMC. The case of Eclipse SDK shows that the NOC metrics

seem to follow a power law, without any kind of lognormal

part. The case of Findbugs is similar, although in this case

our fitting procedure could not fit the low values side, that

is, the xmin value in the case of Eclipse SDK is very low,

indicating a pure power law, but it is not as low in the

case of Findbugs. We could not fit a lognormal model or

a power law for the low values part in the case of Findbugs.

In the case of the power law, repeating the fitting using the

same procedure but with all the values lower than xmin, our

procedure obtained a new threshold value for the low values

which was very close to the xmin, meaning that the power

law was very “short”, and in essence could not be fitted to

the data.

We found another interesting pattern in the case of

Freecol. The behavior is similar to Findbugs, but the dif-

ference between the low values and the high values is even

clearer. This time, at a first glance the CCDF seems to be

divided in two straight lines, which are therefore power laws.

We could fit a power law for high values, but when we

tried to fit a power law to the low values the value of xmin

was very close to the threshold of the high values, meaning

that the power law could not be successfully fitted. We also

attempted to fit a lognormal model, again without success.

We attribute the difficulties to fitting a power law in the

case of Freecol and Findbugs to our fitting procedure, which

is suitable in the case of high variability of large values, but



10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

NOC

P
[X

>
x
]

Eclipse SDK

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

NOC

P
[X

>
x
]

Findbugs

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

NOC

P
[X

>
x
]

Freecol

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

NOC

P
[X

>
x
]

ArgoUML

 

 

Empirical data

Power law

Figure 4. CCDF plots for the NOC metric of Eclipse SDK, Findbugs, Freecol and ArgoUML

not for the case of very low values, that don’t have a high

variability.

The three projects, Eclipse SDK, Freecol and Findbugs,

presented the same profile in the case of the WMC metric,

that is, a double Pareto, with a power law tail for the large

values and lognormal for the low values. To complete the

picture, Figure 4 also shows the CCDF plot for the NOC

metric of ArgoUML, which we also found for WMC. In

this case, the NOC for ArgoUML seems to follow a pure

power law, as in the case of Eclipse SDK.

D. Coupling Between Classes (CBO)

Figure 5 (next page) shows the CCDF plots for the CBO

metric of Hibernate (xmin = 18, α = 3.5, µ = 1.30, σ =

0.98) and HSQLdb (xmin = 23, α = 3.5, µ = 1.67, σ =

1.11). Again, as in the case of WMC, we find that the CCDF

can be divided into two parts, one that is better described

by a lognormal distribution (low values) and a power law

tail (high values). In the case of HSQLdb, the shape is not

as clear as for Hibernate, because the power law tail has a

sudden cutoff for very large values.

We also attempted to fit only a lognormal distribution for

the whole range of values, again with higher Kolmogorov-

Smirnov distances than in the case of the double Pareto

distribution, so it is a worse fit than the case of the double

Pareto distribution.

E. Request for a Class (RFC)

Figure 6 shows the CCDF plot of the RFC metric for the

JEdit system (xmin = 73, α = 3.04, µ = 2.54, σ = 1.10).

The behavior is similar to that of WMC and CBO.

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

RFC

P
[X

>
x
]

JEdit

 

 

Empirical data

Power law

Lognormal

Figure 6. CCDF plots for the RFC metric for JEdit

F. Lack of Cohesion in Methods (LCOM)

Figure 7 shows the CCDF plot of the LCOM metric for

the JUnit system (xmin = 6, α = 1.62). On this occasion,

the behavior is similar to the NOC metric. The value of

the xmin threshold is very low, so almost the whole range

of values is covered by a power law. We attempted to fit



10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

CBO

P
[X

>
x
]

Hibernate

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

CBO

P
[X

>
x
]

HSQLdb

 

 

Empirical data

Power law

Lognormal

Figure 5. CCDF plots for the CBO metric of Hibernate and HSQLdb

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

LCOM

P
[X

>
x
]

JUnit

 

 

Empirical data

Power law

Lognormal

Figure 7. CCDF plots for the LCOM metric for JUnit

a lognormal distribution to the whole range as well, and

the result is shown also in Figure 7. Please note that this

lognormal fit is not similar to the previous cases. That

is, we are not combining a lognormal and a power law

in this case. We attempted to fit the lognormal because

there is an observable deviation from the power law fit for

very large values, to find out whether the lognormal model

could explain the data better. But although the tail for large

values seems to be well described by the lognormal fit,

the Kolmogorov-Smirnov distance is higher in the case of

the lognormal fit than in the power law, and therefore the

power law is the most likely model. We repeated the same

procedure for the other systems, and the power law fitting

was even clearer in most cases.

V. SUMMARY OF RESULTS

We can classify the suite of CK metrics into three cate-

gories, according to their statistical properties:

• Metrics better described by a double Pareto (lognormal

plus power law) distribution

• Metrics better described by a sole power law distribu-

tion

• Metrics that cannot be fitted to either a lognormal or a

power law

For the first case, double Pareto metrics, we have found

that weighted methods per class (WMC, with weights

equal to 1), coupling between object classes, and requests

for a class (RFC) are all better described using a

double Pareto, with a power law tail for large values and

a lognormal distribution for values lower than a threshold

xmin.

For the second case, power law metrics, we have found

that number of children (NOC) and lack of cohesion in

methods (LCOM) are better described using a power

law for the whole range of values.

For the third case, the depth of inheritance tree (DIT)

distribution could not be described using either a log-

normal or a power law.

VI. THREATS TO VALIDITY

External validity. Our study is based only on projects

extracted from the Qualitas Corpus. Moreover, for technical

reasons, we could not measure some of the systems. We

believe that there is no reason to think that using the Qualitas

Corpus inserts a bias in the results, and neither does the fact

that we are only considering Java projects.

Internal validity. For the statistical analysis, we have to

make sure that the distributions we found are statistically

significant, that is, we can statistically reject the null hy-

pothesis that the data are random. This is a preliminary

report and we have not been able to calculate p values for

the estimated parameters, due to the excessive computation

time needed. However, our procedure can obtain such values,

and we are now in the process of calculating and including

them in a next version of this report (some of them are

available in the replication package). In any case, we have

used the Kolmogorov Smirnov distance as a measurement

of goodness of fit, and in all the cases the values are small

and the empirical and estimated CCDF are very similar.

However, we need to extend the study and test the hypothesis

that the data is not random.



Construct validity. We are only studying one release for

each of the systems. The shape of the distribution could

change over time with different releases, due for instance to

different programming and maintenance practices between

different releases. If that were the case, the shapes found

in this paper could not be attributed to the object oriented

metrics, but to other factors. We need to explore more

releases of the same systems to discard other cofactors.

We are also trusting the tool used to measure the CK

metrics suite, and we have not manually validated the results.

although the ckjm tool has been also used in other work

(e.g. [13]) and is trusted, differences in the measurement

values have been reported [14]. We plan to investigate the

results with other tools, specially if there are differences

between tools using the source or compiled code as is the

case of ckjm.

VII. CONCLUSIONS

Power laws have been termed the signature of human

activity, as they have been found in many different areas

and in many processes of human origin. However, whether

many of these properties are a power law or a lognormal

distribution remains an open question.

In the case of object oriented systems, for the CK metrics

suite, previous research found that some of the metrics were

power law distributed, and some other where lognormally

distributed.

However, we have found that for most of the CK metrics,

there is a model that can describe the data better: a double

Pareto distribution. The same distributions have been found

in file-systems and source code file sizes..

We have extended the double Pareto finding to the case of

object oriented properties, an area where the debate between

the power law and lognormal distributions remains open.

Our study is based on publicly available data and is easily

repeatable and verifiable thanks to the provided replication

package. Our results show that some of the CK metrics

are better described using a double Pareto distribution,

although some of the metrics are better described by a power

law distribution. We have not yet explored the reasons for

this difference. We plan to explore the influence of other

cofactors (such as software size and complexity, domain

of application, and information about the development and

maintenance process), using data available in the Qualitas

Corpus, to try to explain this difference and to find out if

the double Pareto parameters are related to other system

properties.

ACKNOWLEDGMENTS

The authors thankfully acknowledge the computer re-

sources, technical expertise and assistance provided by the

Centro de Supercomputación y Visualización de Madrid

(CeSViMa), of the Universidad Politécnica de Madrid.

REFERENCES

[1] P. Louridas, D. Spinellis, and V. Vlachos, “Power laws in
software,” ACM Transactions on Software Engineering and
Methodology, vol. 18, pp. 2:1–2:26, October 2008. [Online].
Available: http://doi.acm.org/10.1145/1391984.1391986

[2] G. Concas, M. Marchesi, S. Pinna, and N. Serra, “Power-laws
in a large object-oriented software system,” IEEE Transac-
tions on Software Engineering, vol. 33, no. 10, pp. 687–708,
2007.

[3] Y. Yi, H. Song, R. Zheng-ping, and L. Xiao-ming, “Scale-
free property in large scale object-oriented software and its
significance on software engineering,” in Information and
Computing Science, 2009. ICIC ’09. Second International
Conference on, vol. 3, may 2009, pp. 401 –404.

[4] R. Wheeldon and S. Counsell, “Power law distributions in
class relationships,” in Source Code Analysis and Manipula-
tion, 2003. Proceedings. Third IEEE International Workshop
on, sept. 2003, pp. 45 – 54.

[5] M. Mitzenmacher, “A brief history of generative models for
power law and lognormal distributions,” Internet Mathemat-
ics, vol. 1, no. 2, pp. 226–251, 2004.

[6] ——, “Editorial: The future of power law research,” Internet
Mathematics, vol. 2, no. 4, pp. 525–534, 2005.

[7] ——, “Dynamic models for file sizes and double Pareto
distributions,” Internet Mathematics, vol. 1, no. 3, pp. 305–
333, 2004.

[8] I. Herraiz, D. German, and A. E. Hassan, “On the distribution
of source code file sizes,” in International Conference on
Software and Data Technologies, Seville, Spain, 2011.

[9] S. R. Chidamber and C. F. Kemerer, “A metrics suite for
object oriented design,” IEEE Transactions on Software En-
gineering, vol. 20, no. 6, pp. 474–493, June 1994.

[10] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble, “Qualitas corpus: A curated collec-
tion of java code for empirical studies,” in 2010 Asia Pacific
Software Engineering Conference (APSEC2010), Dec. 2010.

[11] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law
distributions in empirical data,” 2007. [Online]. Available:
http://www.citebase.org/abstract?id=oai:arXiv.org:0706.1062

[12] J. W. Eaton, GNU Octave Manual. Network Theory Limited,
2002.

[13] J. Singer, G. Brown, M. Luján, and I. Watson, “Towards
intelligent analysis techniques for object pretenuring,” in
Proceedings of the 5th international symposium on Principles
and practice of programming in Java. ACM, 2007, pp. 203–
208.

[14] R. Lincke, J. Lundberg, and W. Löwe, “Comparing software
metrics tools,” in Proceedings of the 2008 international
symposium on Software testing and analysis. ACM, 2008,
pp. 131–142.


