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Abstract—In this short paper, we compare well-known
rule/tree classifiers in software defect prediction with the CTC
decision tree classifier designed to deal with class imbalance. It
is well-known that most software defect prediction datasets are
highly imbalance (non-defective instances outnumber defective
ones). In this work, we focused only on tree/rule classifiers as
these are capable of explaining the decision, i.e., describing
the metrics and thresholds that make a module error prone.
Furthermore, rules/decision trees provide the advantage that
they are easily understood and applied by project managers and
quality assurance personnel. The CTC algorithm was designed
to cope with class imbalance and noise datasets instead of
using preprocessing techniques (oversampling or undersampling),
ensembles or cost weights of misclassification. The experimental
work was carried out using the NASA datasets and results showed
that induced CTC decision trees performed better or similar to
the rest of the rule/tree classifiers.

I. INTRODUCTION

The imbalance problem is an important topic of research in
supervised classification where the number of instances of a
class outnumbers the others. When dealing with imbalanced
datasets, there are different approaches: (i) preprocessing tech-
niques to balance the number of instances across the labels,
(i) cost-sensitive approaches to penalise differently the types
of errors, (iii) ensembles of classifiers to make them robust
to the imbalance problem, (iv) hybrid techniques combining
previous approaches, or finally, making the algorithms more
robust to the imbalance problem. For recent recent surveys,
we refer to the the works by Branco et al. [1] and Haixiang
et al. [2]).

In this work, we address the problem of software defect
prediction (SDP) as an important area of research in Software
Engineering. In SDP most datasets are highly imbalanced
(the number of defective modules highly outnumbers the non-
defective ones) with an algorithm that it is robust to the
imbalance problem, the CTC algorithm developed by Pérez
et al. [3]. There are multiple papers on using a variety of
machine learning techniques in software defect prediction.
However, the use of tree or rule classifiers helps explaining

why modules can be defect prone. These classifiers select the
software metrics and assign thresholds to them in an intuitive
and easily applicable way. Therefore, we compare the most
popular tree or rule classification algorithms using well-known
NASA datasets (the version curated by Shepperd et al. [4] and
named D’) with the CTC algorithm.

The rest of the paper is organised as follows. Next, Sec-
tion II overviews previous work in this field. This is followed
by Section III, that describes briefly the experimental work
which is composed of a description of datasets used, evaluation
measures, and a brief statistical analysis of the results. Finally,
Section IV concludes the paper and outlines future work.

II. PREVIOUS WORK

Fernández et al. [5] proposed a taxonomy of genetics-
based machine algorithms for rule induction, classifying 16
algorithms into three categories based on the chromosome
codification. One of the categories was further divided into
three subcategories based on their approach for a total of five
subcategories. They performed a hierarchical analysis of the
performance of these algorithms over 96 datasets divided into
three contexts. Two of these contexts had a high degree of
imbalance, whereas the third context was a balanced version of
the second. First, an intra-subcategory analysis was performed.
Then, the winners of each subcategory were compared to six
non-evolutionary algorithms. In one of the classification con-
texts (two-class non-preprocessed imbalanced classification),
Ripper (a non-evolutionary rule-induction algorithm) placed
first. The only evolutionary algorithms without statistically
significant differences with RIPPER were Oblique-DT and
GAssist (placing 3rd and 5th, respectively).

A later work by Ibarguren et al. [6] extended these experi-
ments by adding CTC to the study. In this case CTC performed
best for two-class non-resampled dataset classification, per-
forming significantly better than GAssist (now placing 6th).
These results led us to believe that CTC could perform well
in the context of software defect prediction as these datasets



TABLE I
MDP NASA DATASETS DESCRIPTION

# Instances D’ %Imbalance Ratio # Attributes
CM1 344 12.21 41
JM1 9,593 18.34 22
KC1 2,095 15.51 22
KC3 200 18 41
MC1 8,737 0.78 40
MC2 127 34.65 41

MW1 264 10.23 41
PC1 759 8.04 41
PC2 1,493 1.07 41
PC3 1,125 12.44 41
PC4 1,399 12.72 41
PC5 16,962 2.96 40

are imbalanced and the comprehensibility of the classification
(provided by the single tree CTC creates) is important.

From the software defect prediction point of view, there is
a vast amount of work applying numerous machine learning
techniques and comprehensive surveys include the ones by
Hall et al. [7] and Catal [8]. Most works focused on comparing
and analysing machine learning algorithms (e.g. [9])and pre-
processing techniques such as feature selection. More recent
works focuses on problems such as noise and imbalance [10],
[12].

The different approaches to deal with imbalanced can be
classified into data as sampling, cost-sensitive, ensemble ap-
proaches or hybrid approaches [11]. In this work, we compare
only rule or tree classifiers taking into account the imbalance
nature of software defect datasets. In addition, rule or tree
classifiers can explain why a software module is error prone
providing the metrics and thresholds for those metrics. Rules
are also easily understood and applied by project managers and
quality assurance personnel in contrast to black box algorithms
such as neural networks or ensembles.

III. EXPERIMENTAL WORK

A. Datasets

We have carried out the experimental work using available
software defect prediction datasets generated from NASA
projects. In particular, we have used curated datasets by
Shepperd et al. [4] who analysed different problems with these
datasets and available in the Promise Repository1. Although
some quality issues have been reported by Shepperd et al. [4],
and by Bowes et al. [13], [14] these datasets are the most
popular ones in defect prediction and it allows us to compare
our results with the literature.

Table I shows the number of instances for each dataset, their
imbalance ratio (IR) and number of attributes. All datasets
contain attributes mainly composed of different McCabe [15],
Halstead [16] and count metrics. The last boolean attribute
represents whether the class is (defective).

These sets of metrics (both McCabe and Halstead) have
been used for QA during development, testing and mainte-
nance. Generally, the developers or maintainers use threshold

1http://openscience.us/repo/

TABLE II
CONFUSION MATRIX FOR TWO CLASSES

Act
Pos Neg

Pred

Pos True Pos
(TP )

False Pos
(FP )
(False alarm)

PPV =
Conf =
Prec =

TP
TP+FP

Neg False Neg
(FN )

True Neg
(TN )

NPV =
TN

FN+TN

Recall =
Sens =
TPr =

TP
TP+FN

Spec =
TNr =

TN
FP+TN

values. For example, if the cyclomatic complexity (v(g)) of a
module is between 1 and 10, it is considered to have a very
low risk of being defective; however, any value greater than 50
is considered to have an unmanageable complexity and risk.
Although these metrics have been used for long time, there
are no generally agreed thresholds.

It can be observed that most datasets are highly imbalanced,
varying their IR from less than 1% to 30% and there are
large numbers of duplicates and inconsistencies in some of
the datasets. We used the cleaned version with dupicates
(D’) as there is no reason to remove them if they are the
real distribution. This however can lead to optimistic results
since the same instances can be in both training and testing
datasets. However, there are many other factors affecting the
performance of the classifiers, for example, the degree of
data overlapping among the classes is another factor that lead
to the decrease in performance of learning algorithms. As
stated by López et al. [17] there are other problems: dataset
shift (training and test data follow different distributions),
distribution of the cross validation data, small disjuncts, the
lack of density or small sample size, the class overlapping,
the correct management of borderline examples or noisy data.

B. Evaluation Measures

In the case of binary classifiers, many of the performance
measures can be obtained from the confusion matrix (Table II).

There is a trade-off between the true positive rate and true
negative rate as the objective is to maximise both metrics. A
classical evaluation technique to consider this trade-off when
data is imbalanced is the Receiver Operating Characteristic
(ROC) [18] curve which provides a graphical visualisation of
the results. This graphical representation can be summarised
as the Area Under the ROC Curve (AUC) providing a quality
measure between positive and negative rates with a single
value. Its range goes from 0 to 1 (the closer to one the better
and 0.5 is equivalent to a random classification).

Another suitable and interesting performance metric for
binary classification when data are imbalanced is Matthew’s
Correlation Coefficient (MCC) [19]. Its range goes from -
1 to +1; the closer to one the better as it indicates perfect
prediction whereas a value of 0 means that classification is
not better than random prediction and negative values mean
that predictions are worse than random.



MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(1)

C. Rule Classifiers

In this work, we compare CTC [3], against other classi-
fiers. The CTC (Consolidated Tree Construction) algorithm
was created for an insurance fraud detection problem where
class imbalance was present. CTC creates a set of balanced
subsamples from a training sample, and, in contrast to other
multiple classifier systems, it builds a single decision tree
understandable by humans. The method is based on the well-
known C4.5 algorithm. The CTC algorithm uses a voting pro-
cess to decide the variable that will split the node at each step
of the tree’s building process based on the decisions proposed
by C4.5 algorithm in each subsample. An implementation of
the CTC algorithm for Weka, called J48Consolidated, can be
found in the Web2.

The comparison is performed against popular tree/rule
classifiers all implemented in Weka, and using their default
parameters:

• C4.5 [20] (J48 in Weka) is a decision tree. Decision trees
are constructed in a top-down approach. The leaves of the
tree correspond to classes, nodes correspond to features,
and branches to their associated values. To classify a new
instance, one simply examines the features tested at the
nodes of the tree and follows the branches corresponding
to their observed values in the instance.

• RIPPER (Repeated Incremental Pruning to Produce Error
Reduction) is a rule based classifier [21], [22]. The
algorithm is composed of three stages in which set of
rules are induced using the information gain ratio as a
measure, pruned used information gain and optimised
respectively.

• CART (Classification and Regression Trees) [23] algo-
rithm induces multiple decision trees. Each node of the
decision trees starting from the root is a two branch
bifurcation of the most discriminating attribute based on
the Gini index. Induced trees are later pruned instead
of employing a stopping criterion. The CART algorithm
is more complex and time consuming than C4.5’s since
multiple trees need to be built and pruned, but trees are
generally simpler [24].

• PART [25] is an algorithm, which was designed by the
authors of the Weka platform, that builds a rule set. The
aim was to achieve the combination of the capacities of
two algorithms: C4.5 and RIPPER. C4.5 is used to build
a partial decision tree that will be used to extract one
rule. The examples not covered by this rule are used to
generate a new sample in order to build the next partial
tree. The process is repeated until the remaining sample
is assigned to the root node.

2http://www.aldapa.eus/res/weka-ctc/

TABLE III
D’ RESULTS USING AUC
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CM1 .67 .56 .59 .64 .52 • .63 .50 •
JM1 .67 .67 .66 .66 .56 • .70 ◦ .62
KC1 .74 .67 .69 • .66 • .59 • .75 .68
KC3 .66 .59 .65 .67 .61 .62 .54
MC1 .89 .77 • .81 .81 .65 • .79 .79 •
MC2 .63 .62 .61 .58 .59 .62 .59
MW1 .61 .58 .59 .63 .58 .62 .51
PC1 .76 .70 .68 .68 .57 • .73 .53 •
PC2 .86 .52 • .56 • .56 • .50 • .65 .50 •
PC3 .73 .65 • .64 .68 .53 • .71 .50 •
PC4 .84 .77 .75 • .81 .71 • .82 .86
PC5 .94 .77 • .79 • .67 • .75 • .91 .85 •
Avg .75 .65 .67 .67 .60 .71 .62

◦, • statistically significant improvement or degradation

In addition we have also used J48 with filters to deal with
imbalance. In particular, we have used (i) SMOTE (Synthetic
Minority Over-sampling Technique) [26] a popular sampling
technique which increases the number of the minority in-
stances based on their neighbours, and (ii) cost sensitive
classification in which a matrix cost penalises classification
errors.

D. Empirical Results

We have generated multiple results for all the techniques
and metrics previously mentioned using Weka’s Experimenter
using 5 times 5 Cross Validation (5x5CV) over all algorithms
and datasets. We next present the most relevant results together
with a discussion leaving other material on the companion Web
site.

Tables III and IV show the results of using as base learner
the C4.5 algorithm (called J48 in Weka) with the default
parameters (using pruning, with the minimum number of
instances per leaf as two and no Laplace smoothing). The
first numerical column shows the results for the base classifier
and the rest of the columns show the results of the different
algorithms and whether they are statistically significant using
the t-test at 0.05 significance level. These results were obtained
with Weka’s experimenter tool.

We have used the t-test to statistically compare the per-
formance of the different classifiers with the CTC classifier
using MCC and AUC. The t-test is provided by Weka’s Ex-
perimenter. We have also compared the classifiers using non-
parametric tests as recommended in recent literature (e.g. [27],
[28], [29]) using the KEEL tool [30]3. In fact, we use the
Friedman Aligned Ranks test to discover whether or not there
are significant differences between the algorithms. This test

3http://www.keel.es/



TABLE IV
D’ RESULTS USING MCC
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CM1 .24 .10 .17 .23 .05 .09 .00 •
JM1 .27 .23 • .24 .24 .20 • .17 • .17 •
KC1 .34 .28 .31 .32 .26 .24 • .21 •
KC3 .25 .22 .29 .24 .26 .23 .11
MC1 .19 .44 ◦ .43 ◦ .44 ◦ .42 ◦ .44 ◦ .44 ◦
MC2 .25 .21 .20 .16 .23 .26 .22
MW1 .14 .32 .15 .20 .19 .28 .00
PC1 .28 .24 .26 .30 .25 .23 .08 •
PC2 .18 .00 • .09 .09 .01 • .07 .00 •
PC3 .33 .24 .22 .29 .10 • .14 • .00 •
PC4 .51 .51 .52 .51 .44 .46 .40 •
PC5 .49 .50 .54 ◦ .52 .51 .42 .44
Avg .29 .27 .29 .29 .24 .25 .17

◦, • statistically significant improvement or degradation

ranks the algorithms taking into account a weighted system,
in which the harder to classify the data set is, the larger is the
weight. On the other hand, when significant differences were
found, the post-hoc 1xN Holm procedure was used in order to
analyze which pairs of algorithms had statistical differences
using the CTC as the control algorithm.

The average ranks obtained by each algorithm in the Fried-
man Aligned test, as well as, the adjusted p-values computed
using Holm post-hoc test are shown in Tables V and VI
using MCC and AUC performance measures respectively. As
it can be observed, CTC (J48Consolidated) ranks first for both
performance measures, obtaining statistically significant differ-
ences in both cases based on Friedman Aligned Ranks test (at
0.05 significance level). In the first positions of the rankings,
for the both measures, we can found the used variants of
C4.5 (J48), with the exception of the PART algorithm which
achieves the second rank using the AUC measure (the PART
algorithm is a combination of C4.5 and Ripper).

Regarding the results of the Holm test, the results are
qualitatively different for MCC and AUC. In the case of MCC
values, CTC only achieves statistically significant differences
when comparing with CART. However, in the case of AUC,
significant differences were found with all algorithms except
with PART. It is worth noting that the ROC curve represents
multiple pairs of TP rate and FP rates while changing the
decision threshold of an example to belong to a class. Thus,
the Area Under ROC curve (AUC) evaluates the classifier in
multiple contexts of the classification space and because of
this is considered a robust performance metric and is widely
used in the community.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we compared different tree/rule classifiers and
evaluation metrics in the domain of software defect prediction

TABLE V
MCC AVERAGE RANKINGS OF THE ALGORITHMS (ALIGNED FRIEDMAN)

AND AJUSTED P-VALUE (HOLM TEST)

Algorithm Ranking pHolm

J48Consolidated 27.25 —
J48Cost 27.7083 1

J48Smote 30.25 1
J48 40.5 0.5881

PART 48.8333 0.1327
JRIP 53.0833 0.05286

CART 69.5 0.0001

TABLE VI
AUC AVERAGE RANKINGS OF THE ALGORITHMS (ALIGNED FRIEDMAN)

AND AJUSTED P-VALUE (HOLM TEST)

Algorithm Ranking pHolm

J48Consolidated 13.7083 —
PART 21.625 0.4266

J48Cost 39.2083 0.0208
J48Smote 44.4167 0.0061

J48 50.3333 0.0009
CART 58.4167 0
JRIP 69.7917 0

using datasets originated by NASA projects which have been
cleaned and preprocessed by Shepperd et al. In particular,
we compared the CTC (Consolidated Tree Construction algo-
rithm) with other well-known algorithms using both the AUC
and MCC measures. The CTC algorithm dealt well with these
datasets which have a high level of imbalance and problematic
instances (noise) based on the results of parametric and non-
parametric statistical tests.

Future work could, on the one hand, include other consol-
idated algorithms into this study. Until recently research on
consolidation has focused on decision trees. However, rule-
induction algorithms such as PART and RIPPER are expected
to be consolidated in the near future. More class imbalance-
oriented resampling techniques such as SMOTE+ENN or
EUSCHC [31] could be added to the study and applied to the
rest of algorithms other than J48. It could also be interesting
to compare these algorithms with available WEKA imple-
mentations of evolutionary algorithms, if any, and ensemble
algorithms specifically tailored to tackle class imbalance [32].
However, it should be noted that these ensemble algorithms
lack the ability to produce comprehensible classifiers.

On the other hand, a further study could look into the effect
of different dataset characteristics such as size, imbalance ratio
and attribute number on the performance, complexity and
scalability of the classifiers used in this study. The datasets
could be analysed using the measures proposed by Orriols-
Puig [33] and the performance of the classifiers evaluated
accordingly.

Finally, this study could be extended by adding more
datasets and analysing the simplicity and applicability of the
rules induced by the algorithms.
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