Using Simulation and the NSGA-II Evolutionary Multi-Objective Algorithm in the Design of a Compact Dual-band Equatorial Helix Antenna

Javier Moreno Ivan Gonzalez Daniel Rodriguez

University of Alcala, Madrid, Spain

SMC-IT 2017, Alcala de Henares, Madrid, Spain

Moreno, Gonzalez & Rodriguez Simulation-optimisation in Antenna Design

イロト イボト イヨト

Outline

- Antenna Requirements
 - Aim
 - Requirements
- 2 Experimental Work
 - Simulator
 - Meta-heuristics & NSGA-II
 - Results

Conclusions and Future Work

<ロト < 四ト < 巨ト < 巨ト -

3

DQC

Aim Requirements

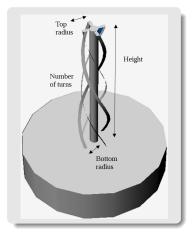
Outline

Antenna Requirements Aim

- Requirements
- 2 Experimental Work
 - Simulator
 - Meta-heuristics & NSGA-II
 - Results

イロト イボト イヨト イヨト 二日

Aim Requirements


Antenna Design: Aim and Objectives

Antenna Design

To explore the application of

- simulation
- a multi-objective algorithm

to optimize the design parameters of an antenna with very stringent constrains.

イロト イポト イヨト イヨト

Aim Requirements

Outline

Antenna Requirements Aim

Requirements

2 Experimental Work

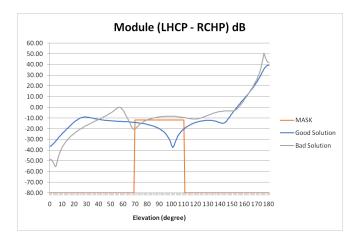
- Simulator
- Meta-heuristics & NSGA-II
- Results

イロト イボト イヨト イヨト 二日

Aim Requirements

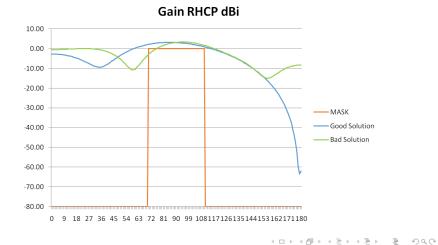
Requirements

- Dual Band operation: 1.81GHz and 2.55GHz in the S Band
- Right hand circular polarization (RHCP), the main electrical field that radiates the antenna.
- Peak max gain greater than 2 dBi for RCHP polarization.
- Min gain of 0dBi in the range coverage for RHCP polarization.
- Cross-polar polarization level smaller than -12dB
- The above specifications in an equatorial radiation pattern had to be satisfied in the elevation angle with a range between 70 and 110 degrees.
- The weight of the prototype had to be as small as possible, therefore it was important to have small dimensions.


イロト イ理ト イヨト イヨト

Э

DQC


Aim Requirements

Requirements Cross-polar Objective

Aim Requirements

Requirements Gain Objective

Moreno, Gonzalez & Rodriguez Simulation-optimisation in Antenna Design

Simulator Meta-heuristics & NSGA-II Results

Outline

Requirements

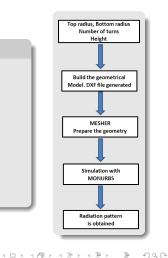
2 Experimental Work

Simulator

- Meta-heuristics & NSGA-II
- Results

イロト イボト イヨト イヨト 二日

Simulator


Simulator Meta-heuristics & NSGA-II Results

Simulator

Explores the application of

- builds the geometrical model
- prepares the model to be simulated
- simulates the antenna to obtain the radiation patterns

to be processed by the multi-objective algorithm.

Simulator Meta-heuristics & NSGA-II Results

Outline

- Aim
- Requirements

2 Experimental Work

- Simulator
- Meta-heuristics & NSGA-II
- Results

イロト イボト イヨト イヨト 二日

Simulator Meta-heuristics & NSGA-II Results

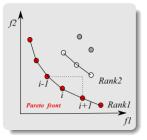
Meta-heuristics

- **Meta-heuristics** are a family of approximate optimization techniques for solving the computational problem.
- Evolutionary algorithms (EAs) are particularly desirable to solve Multi-Objective Optimization problems (MOOPs)
 - Those that involve multiple and conflicting objective functions.
 - There are multiple valid solutions that are defined using the *Pareto front*.

The set of non-dominated solutions, also known as *Pareto-optimal*, constitute the *Pareto front*, i.e., a set of solutions for which no objective can be improved without worsening at least one of the other objectives.

イロト イボト イヨト イヨト

Sar


Simulator Meta-heuristics & NSGA-II Results

NSGA-II Non-dominated Sorting Genetic Algorithm-II

NSGA-II (Non-dominated Sorting Genetic Algorithm-II) is the most popular and still state of the art multi-objective algorithm developed by Deb et al.

The population individuals are evaluated (i.e. assigned fitness values) in relation to:

- How close they are to the Pareto front
- A crowding measure. NSGA-II also considers the sparsity (density) of the individuals belonging to the same rank using a crowding measure (the Manhattan distance among individuals).

San

Simulator Meta-heuristics & NSGA-II Results

NSGA-II

1: $P \leftarrow makelnitalRandomPopulation()$ ▷ Initial Population of size N 2: antennaSimulation(P) Call the simulator 3: $t \leftarrow 0$ 4: while *t* < max generations do 5: $Q \leftarrow \mathsf{makeNewPopulation}(P)$ 6: antennaSimulation(Q) 7: $R \leftarrow P \cup Q$ Combine parent and offspring populations 8: $\mathcal{F} \leftarrow \mathsf{fastNonDominatedSort}(R)$ \triangleright Compute Pareto Ranks, $\mathcal{F}_1, \ldots, \mathcal{F}_l$ 9: $P \leftarrow \emptyset \land i \leftarrow 1$ 10: while $|P| + |\mathcal{F}_i| < N$ do While population size is not full 11: $P \leftarrow P \cup F_i; i \leftarrow i+1$ ▷ Include the ith rank into the population 12: end while 13: if $|P| \neq N$ then 14: **crowdingDistance**(\mathcal{F}_i) \triangleright Calculate crowding measure in \mathcal{F}_i 15: $P \leftarrow P \cup$ bestCrowdingSols($\mathcal{F}_i, |P| - N$) \triangleright Add |P| - N best solutions 16[.] end if 17: $t \leftarrow t+1$ 18: end while 19: $\mathcal{F} \leftarrow \mathsf{fastNonDominatedSort}(R)$ \triangleright Compute *Pareto Ranks*, $\mathcal{F}_1, \ldots, \mathcal{F}_l$ Beturn the best Pareto rank 20: return \mathcal{F}_1

Simulator Meta-heuristics & NSGA-II Results

Execution parameters

Antenna Ranges

- No. of turns:
 [0.2, 3]
- Bottom radius:
 [0.01, 0.067]
- Top radius: [0.01, 0.067]
- Height:
 [0.01, 0.5]

NSGA-II Parameters

- Population size: 50
- Max no. of iterations: 100
- Simulated binary crossover
 - Crossover probability: 90%
 - Crossover distribution index: 20
- Polynomial mutation
 - Mutation distribution index: 20

イロト イボト イヨト イヨト

E

Sar

• Mutation probability: 25%

Simulator Meta-heuristics & NSGA-II Results

Outline

- Aim
- Requirements

2 Experimental Work

- Simulator
- Meta-heuristics & NSGA-II
- Results

Conclusions and Future Work

イロト イボト イヨト イヨト 二日

Simulator Meta-heuristics & NSGA-II Results

Results Solutions found by using jMetal and MONURBS

Algorithm	Turns	Bottom	Тор	Height
GD	0.831	1.945	1.022	13.8
NSGA-II 1:	0.786665455	2.45821492	1.373155458	10.007858
NSGA-II 2:	0.786665455	2.33895369	1.373155458	10.1971342
NSGA-II 3:	0.786665455	2.45821492	1.373155366	10.007675
NSGA-II 4:	0.7907970555	2.45791823	1.450520708	10.007858
NSGA-II 5:	0.7765074908	1.92872455	1.407211304	11.449133
NSGA-II 6:	0.786665455	2.33895355	1.373155366	10.1971342
NSGA-II 7:	0.7765074910	1.92872635	1.407211304	11.449401

Moreno, Gonzalez & Rodriguez Simulation-optimisation in Antenna Design

<ロト < 同ト < 三ト < 三ト = 三 の < ○</p>

Simulator Meta-heuristics & NSGA-II Results

Results Results for cross-polar objectives for frequency 1.81 Ghz

80 60 40 MASK 20 -sol1 _____sol2 0 -sol3 -sol4 -20 -sol6 ______sol7 .40 -60 -80 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120126132138144150156162168174180 Elevation (degree)

Frequency 1.81 GHz, Cross-Polar (dB)

Moreno, Gonzalez & Rodriguez Simulation-optimisation in Antenna Design

(ロト (個) (注) (注) (注) (三)

Simulator Meta-heuristics & NSGA-II Results

Results Results the gain objective for frequency 1.81 Ghz

10 0 -10 -20 -MASK _____sol1 -30 ______sol2 -sol3 -40 ____sol4 -sol5 -50 -sol6 -60 -70 -80 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120126132138144150156162168174180 Elevation (degree)

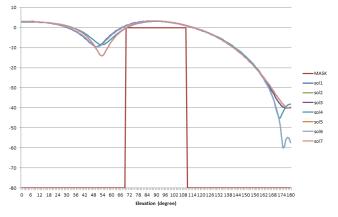
Frequency 1.81 GHz, Gain (dBi)

<ロト < 同ト < 三ト < 三ト 三三 のへで

Simulator Meta-heuristics & NSGA-II Results

Results Results for cross-polar objectives for frequency 2.55 Ghz

60 40 20 -MASK _____sol1 0 -sol2 -20 -sol4 - sol9 -sole -60 -80 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102108114120126132138144150156162168174180 Elevation (degree)


Frequency 2.55 GHz, Cross-polar (dB)

イロト イロト イヨト イヨト 三日

Simulator Meta-heuristics & NSGA-II Results

Results Results for the gain objective for frequency 2.55 Ghz

Frequency 2.55 GHz, Gain (dBi)

<ロト < 同ト < 三ト < 三ト 三三 のへで

Conclusions and Future Work

Conclusions

- We presented an antenna design process
- Effective way to find parameters
- Multiple solutions that allow telco engineers some design flexibility

Future Work

- Explore other multi- and many-objective algorithms
- Optimize execution times
 - Algorithms and communication
 - Clusters and multiprocessors

イロト イボト イモト イモト

San

Thank you for your attention!

イロト イボト イヨト イヨト 二日