
Bayesian Concepts in Software Testing:
An Initial Review

Daniel Rodriguez
Dept. of Comp. Science

University of Alcalá
Alcalá de Henares, 28871,

Madrid, Spain
daniel.rodriguezg@uah.es

Javier Dolado
Univ. Basque Country

UPV/EHU
Donostia-San Sebastián,

20080, Spain
javier.dolado@ehu.eus

Javier Tuya
Dept. of Comp. Science

University of Oviedo
Campus of Gijón, 33204,

Gijón, Spain
tuya@uniovi.es

ABSTRACT
This work summarizes the main topics that have been re-
searched in the area of software testing under the umbrella of
“Bayesian approaches” since 2010. There is a growing trend
on the use of the so-called Bayesian statistics and Bayesian
concepts in general and software testing in particular. Fol-
lowing a Systematic Literature Review protocol using the
main digital libraries and repositories, we selected around
40 references applying Bayesian approaches in the field of
software testing since 2010. Those references summarise the
current state of the art and foster better focused research.

So far, the main observed use of the Bayesian concepts
in the software testing field is through the application of
Bayesian networks for software reliability and defect pre-
diction (the latter is mainly based on static software metrics
and Bayesian classifiers). Other areas of application are soft-
ware estimation and test data generation. There are areas
not fully explored beyond the basic Bayesian approaches,
such as influence diagrams and dynamic networks.

Categories and Subject Descriptors
A.1 [Introductory and Survey]; D.2.5 [Software Engi-
neering]: Testing and Debugging

General Terms
Theory

Keywords
Bayesian statistics, probabilistic graphical models, Bayesian
networks, software testing

1. BAYESIAN CONCEPTS FOR SOFTWARE
TESTING: AN INITIAL REVIEW

There have been several articles in the past advocating
the use of Bayesian methods in software testing. The posi-

tion paper by Namin and Sridharan [27] stated that Bayesian
reasoning methods have the capability of improving the field
of software testing by providing solutions based on proba-
bilistic methods. However, Namin and Sridharan discuss
three obstacles faced when applying Bayesian networks: (i)
the generalization of the conclusions, (ii) the sensitivity to
the prior probabilities and (iii) the difficulties for software
engineers to grasp the statistical concepts underlying the
Bayesian approach. The first two obstacles will be further
discussed in Section 4 (Discussion) after reviewing the liter-
ature. With respect to the last obstacle, the hurdles of un-
derstanding the Bayesian concepts, the Bayesian approach
takes a different viewpoint in the concept of probability from
the frequentist approach [37], which could make it hard to
understand:

• Frequentists: the definition of probability is related to
the frequency of an event. The parameters of interest
are fixed but the data are a repeatable random sample,
hence there is a frequency. No prior information is
used. In a strict frequentist view, it does not make
sense to talk about the true value of the parameter θ
under study. The true value of θ is fixed, by definition.

• Bayesians: the definition of probability is related to
the level of knowledge about an event. The value of
knowledge about an event is based on prior informa-
tion and the available data. The parameters of interest
are unknown and the data are fixed. From a Bayesian
viewpoint we can talk about the probability that the
true value of the parameter θ lies in an interval.

The fact that Bayesians use prior information about θ
makes the statistical reasoning different. Given a set of data
observations represented by D, we can compute P (D|θ) (θ
is fixed) in the frequentist approach, but we can compute
P (θ|D) in the Bayesian approach. P (θ|D) is computed using
“Bayes’ theorem”:

Pr(θ|D) =
Pr(D|θ) Pr(θ)

Pr(D)
. (1)

Equation (1) contains the elements of the Bayesian infer-
ence process: Pr(θ|D) is the posterior probability, Pr(D|θ)
is the likelihood, Pr(θ) is the prior probability and Pr(D) =
Pr(D|θ) Pr(θ)+Pr(D|¬θ) Pr(¬θ) is a normalizer factor. Thus,
equation 1 allows us in this case to compute the probability
of θ given D.

Bayes’ theorem enables the computation of the posterior
probabilities for a variable. A Bayesian Network (BN) is
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a probabilistic graphical model with variables linked by di-
rected arcs. A BN provides a way of modelling a domain
problem using graph and probability theory, where the net-
work representation of the problem can be used to generate
information about some variable, provided that the infor-
mation of its parents is available. The joint probability dis-
tribution for variables X1, X2, . . . , Xn can be calculated as
follows:

P (X1, X2, . . . , xn) =
∏

i=1..n

P (Xi|Parents(Xi)) (2)

where Parents(Xi) denote the specific values of the nodes
in the graph that are linked towards the node Xi in the
BN. BNs are the main use of the Bayes approach. BNs are
also known as Bayesian Belief Networks or Belief Networks,
which are Probabilistic Graphical Models. There are other
formalisms related to the basic Bayesian approach such as
Dynamic Belief Networks, Influence Diagrams and Hidden
Markov Models.

2. SYSTEMATIC LITERATURE REVIEW OF
BAYESIAN NETWORKS IN SOFTWARE
TESTING SINCE 2010

Next, we review relevant literature related to software
testing (including quality) and Bayesian concepts accord-
ing to the Systematic Literature Review (SLR) protocol and
guidelines suggested by Kitchenham et al. [19] and the EBSE
website1 [12].

2.1 Background and Research Aim
Recent works reviewing Bayesian networks (BN) include

a position paper by Namin [27] and a review by Misirli and
Basar [26] which covers several issues of decision making
including defect prediction. Misirli and Basar list seven
articles in “software testing” using the Bayesian approach
and further 54 works under the topic of “software quality”.
The authors included under “software quality” the concepts
of fault, failures, defect prediction and software reliability.
However, there is an increasing number of papers applying
Bayesian concepts in general and in testing in particular.
Therefore, in this initial review our research aim is to iden-
tify, classify and analyse the available literature since 2010
related to different aspects of software testing and quality
that apply Bayesian concepts.

2.2 Data Sources
We have used the following digital libraries and reposito-

ries as data sources:

1. ISI Web of Science
(http://apps.webofknowledge.com/)

2. Scopus (http://www.scopus.com/)

3. Elsevier Science Direct
(http://www.sciencedirect.com/)

4. IEEE Xplore (http://ieeexplore.ieee.org/)

5. SpringerLink (http://www.springerlink.com/)

1Evidence-Based Software Engineering
http://www.dur.ac.uk/ebse/

6. ACM Digital Library (http://www.acm.org/)

7. Wiley Interscience
(http://onlinelibrary.wiley.com/)

8. Google Scholar (http://scholar.google.com/)

9. The Collection of Computer Science Bibliographies
(http://liinwww.ira.uka.de/bibliography/)
Later discarted due to a large and irrelevant number
of papers returned.

These generic digital libraries and repositories, together,
reference all relevant publications in the software engineer-
ing field. Some of them are digital libraries, but some others
are meta-repositories, including most relevant journals, con-
ference and workshop proceedings.

2.3 Search Strategy
The search strategy was conducted with the following key-

words in the query: “Bayesian” & “networks” & “software
testing”. We considered that those keywords were enough
to cover all articles of interest. We tested other combina-
tions of potential keywords but the results did not conform
to the research aim. For example, we did not find relevant
literature using the terms probabilistic graphical models but
not containing Bayes or networks at the same time. Simi-
larly, all papers about testing are almost certain to contain
the substring “software testing”. Finally, we followed some
references from selected papers confirming that all relevant
literature was found.

Table 1 shows the digital libraries used, the search domain
within the repository (when possible) and the number of
papers found. We merged all the references found and decide
whether the paper was eligible for this survey mainly based
on the title and abstract with the exception of Google scholar
due to the large number of references found. Google Scholar
was mainly used for checking that no important and relevant
paper was missing. If a paper had an apparently relevant
title or abstract, its full content was also checked to decided
whether the study was to be included in the final selection.

2.4 Selection Criteria
The selection criteria consists of inclusion and exclusion

criteria for the papers found. We include papers published
since 2010, related to software testing, written in English
and accessible on the Web. We decided to cover in this re-
view the literature after the position paper of Namin and
Sridharan [27]. There is a growing number of articles in-
cluding the topics of software testing and Bayesian meth-
ods. Also, this criterion limits the number of papers to the
most recent research and limits the length of this conference
paper. A more comprehensive SLR is part of our current
work.

The exclusion criteria include papers published before 2010.
We also exclude papers related to the application of Bayesian
concepts as part of some kind of optimisation in relation to
other methods (e.g. forming part of neural networks). Also,
some documents and articles that we have excluded, men-
tioned BNs without dealing with the technique. There were
some articles that developed different tests based on BNs,
but not strictly related to software testing, e.g., they devel-
oped “software safety tests”. We leave out of review the use
of neural networks that use some kind of Bayesian optimisa-
tion and other articles that are not fully focused on Bayesian
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Table 1: Repositories and papers found and selected
Digital Library Domain Returned Relevant

ISI Web of Science Computer Science, Engineering 10 6
Scopus Computer Science 45 16
Elsevier ScienceDirect Computer Science 40 6
SpringerLink - 133 10
IEEExplore - 24 3
ACM DL - 12 -
Wiley Interscience - 62 -
Google Scholar - 2,390 -
Total 41

procedures. For example, and interesting work by Wiper et
al. [40] use Bayesian concepts for providing the prior distri-
bution probabilities to an artificial neural network. Strictly
speaking, this work uses Bayesian concepts but does not use
Bayesian networks.

In the next Section we analyse the selected literature group-
ing the different subareas and discussing possible research
paths.

3. RESEARCH TOPICS ADDRESSED
We have organised the research topics into categories clas-

sified by common subdisciplines in software testing: effort
testing prediction, software reliability and fault prediction,
quality models, test data generation, GUI testing and a less
known but interesting subarea named philosophy of technol-
ogy.

3.1 Software Testing Effort Prediction and Pro-
ductivity Estimates

This topic is concerned with the estimation of the test
costs in terms of person-hours or person-days. Few works
have recently applied Bayesian models for testing effort es-
timation, exceptions include the works by Torkar et al. [36],
Schulz et al. [33] and Dalmazo et al. [8] which describe a de-
fect correction effort model. A generic survey about BNs in
effort estimation, including the test phase, was carried out
by Radlinski [30].

3.2 Fault and Defect Prediction. Software Re-
liability

The topic of reliability is another area where Bayesian
approaches have been explored by multiple researchers, spe-
cially for real-time systems. “Software Reliability” is the
probability that software will work without failing in a spec-
ified environment for a given amount of time. Software re-
liability testing tries to discover as many defects as possible
as early as possible.

Defect prediction from static measures from private or
open repositories such as Tera-Promise2 (formerly known
as the Promise repository) have been reported on multiple
studies. Bayesian classifiers have been widely used. Recent
examples include the work by Dejaeger et al. [9] who com-
pared 15 BN classifiers for the task of identifying software
faulty modules. Weyuker et al. [39] also performed a com-
parison of tools for fault prediction that included Bayesian
additive regression trees. Another comparison of classifiers
including BNs and Näıve Bayes is described in Dhankhar et

2http://openscience.us/repo/

al. [10]. The Näıve Bayes classifier, the simplest Bayesian
approach, is extensively used before and after 2010. For
example, we can cite the papers by Catal et al. [5], Ma et
al. [25] and by Hewett [15] for comparing the approaches to
software defect prediction.

Okutan and Yildiz [28] used Bayesian networks to explore
the relationship between sets of metrics and defect proneness
using datasets from the Promise repository. Other works
that build Bayesian networks with predictive reliability are
those of Cheng-Gang et al. [6], Kumar and Yadab [20],
Abreu et al. [1], Jongsawat and Premchaiswadi [16], Li and
Wang [22], Rekab et al. [31], Lv et al. [24], Blackburn and
Huddell [4], Qiuying et al. [29], Jun-min et al. [17], Khan et
al. [18], Li and Leung [21], Cotroneo et al. [7], Ba and Wu [3]
and Zheng et al. [43]. An application of software reliability
with BNs in the domain of fire control radar can be found
in the work by Li et al. [23].

3.3 Quality Models
A quality model describes in a structured way the con-

cept of quality in a software system. In this category, we
found the work by Wagner [38] who considers software qual-
ity based on constructing a BN from an activity-based qual-
ity model. Schumann et al. [34] also describe a Bayesian
Software Health Management system in which the reliability
of a system, including software and hardware, is monitored
with BNs.

3.4 Test Data Generation, Test Case Selection
and Test Plan Generation

Test data generation and test case priorization are im-
portant areas within software testing. A recent work by
Sagarna et al. [32] explore this path as part of search based
software test data generation. The improvement of random
testing has been tackled by Zhou et al. [44, 45]. Sridharan
and Namin reported [35] on the priorization of mutation
operators. Several experiments were carried out by Do et
al. [11] concerning the priorization of test cases. The au-
thors used BNs as one of the methods for ordering the test
suites. Fang and Sun [13] proposed a strategy to optimize
the re-execution of test cases (regression testing) based on
BNs. Finally, Han [14] built a BN by converting a Fault
Tree structure of events in order to perform forward and
backward reasoning.

3.5 Graphical User Interface (GUI) Testing
Another area of recent application of BNs is GUI testing.

Yang et al. [41, 42] built a BN that uses the prior knowledge
of testers and the BN updates the values depending on the
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results of the test cases.

3.6 Philosophy of Technology
As an outlier paper, we were positively surprised by the

recent work by Angius [2] where the Bayes concepts and
the software testing field have been used as the substrate
for defining the software engineering area as a “scientifically
attested technology”. This paves the way for more studies
relating the disciplines of software testing and the philosophy
of technologies.

4. DISCUSSION
The main use of the Bayesian concepts in software testing

lie on the “software reliability” area, with 60% of the publi-
cations falling in this category. Other topics of applications
are “test data generation” and “test effort estimation”, with
11% and 10% of the references, respectively. Topics where
BNs are not so extensively used were “quality models”, “GUI
testing” and “philosophy of technology”.

Although there is an increasing number of works applying
BN approaches, there are issues that hinder their applica-
tion as previously mentioned such as their steep learning
curve and problems related to the statistical analyses. With
respect to these two problems (also previously mentioned
in the introduction) and discussed by Namin and Sridha-
ran [27], we may highlight the following issues, after review-
ing the literature:

• Generalization of the conclusions: every work builds
its BN starting from scratch and the BN is adapted to
its specific problem. A “meta study” or meta-analysis
of the results obtained by different researchers would
uncover potential similarities in the results and in the
graphical structure of the BN.

• Sensitivity to priors: an essential characteristic of BNs
is the need to provide prior probabilities to variables.
One way to avoid discrepancies is to set standard pri-
ors in the field, which could be agreed upon in case
of parameters such as productivity, etc. However, it
is not always possible to agree on priors nor the non-
informative priors are adequate to the BN model. Other
alternatives could include the use of hyperprior distri-
butions. The fact that BNs allow us to update the vari-
able probabilities can moderate the results obtained
with different priors, provided a robust BN.

Probabilistic graphical models can help in testing activi-
ties (and decision making in general) as supervised (predic-
tion) and unsupervised (clustering) techniques from the data
mining point of view as well as optimisation approaches. In
prediction, we can consider classifiers such as Näıve Bayes
and more complex structures such as TAN (Tree Augmented
Näıve Bayes) to generic networks such as Bayesian Networks
or Markov Models and their extensions (e.g. Dynamic BNs,
Influence Diagrams). These latter Bayesian approches have
not yet been fully exploited (in comparison with the former
simpler Bayesian classifiers).

In the case of graphical models for optimisation, Evolu-
tionary Distribution Algorithms have been applied success-
fully in software testing (although mainly prior to 2010).
These approaches have also been applied to data generation
which is considered to be a preprocessing step in data mining
and, in our opinion, they can be further explored.

5. CONCLUSIONS
In this work, we reviewed the recent literature on prob-

abilistic graphical models in software testing. We found
around 40 references dealing with the topics of interest since
2010. The spread of topics found within the software testing
area applying BNs is fairly limited. We classified the refer-
ences into six categories. The fact that the main category
is related to “software reliability” may distort the potential
applications of BNs to other areas in software testing. Inter-
estingly, there was a reference that positioned the concept
of “software testing” in the center of study of software engi-
neering as a science.

As our current work, we are extending this systematic
literature survey.
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