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Abstract

Decision making has been traditionally based on man-
agers experience. At present, there is a number of soft-
ware engineering (SE) repositories, and furthermore, auto-
mated data collection tools allow managers to collect large
amounts of information, not without associated problems.
On the one hand, such a large amount of information can
overload project managers. On the other hand, problems
found in generic project databases, where the data is col-
lected from different organizations, is the large disparity of
its instances. In this paper, we characterize several software
engineering databases selecting attributes with the final aim
that project managers can have a better global vision of the
data they manage. In this paper, we make use of different
data mining algorithms to select attributes from the differ-
ent datasets publicly available (PROMISE repository), and
then, use different classifiers to defect faulty modules. The
results show that in general, the smaller datasets maintain
the prediction capability with a lower number of attributes
than the original datasets.

1 Introduction

Successful software engineering (SE) projects need dif-
ferent types of estimates using past project data. In the
last decade, several organizations have started to collect
project management data so that companies without histor-
ical datasets can use these generic databases for estimation.
For example, the ISBSG1 collects project management data
from multiple organizations; its latest release has data on
over 4,000 projects and the information for each project is

1http://www.isbsg.org/

composed of more than 60 attributes. covering all phases is
in the Software Development Life Cycle (SDLC). Further-
more, current Integrated Development Environments (IDE)
and other metrics tools allow developers to gather large
amounts of data from software modules and components.
Examples of different types of data collected has been made
available through the PROMISE repository2.

With such large data repositories, data mining techniques
and tools designed to support the extraction in an automatic
way the information useful for decision making or explo-
ration of the data source. Since data may not be organized
in a way that facilitates the extraction of useful information,
typical data mining processes are composed of the follow-
ing steps:

• Data preparation. The data is formatted in a way
that tools can manipulate it, merged from different
databases, etc.

• Data mining. It is in this step when the automated
extraction of knowledge from the data is carried out.
Data mining techniques include classification as ex-
plained later.

• Proper interpretation of the results, including the use
of visualization techniques.

Many software engineering problems like cost estima-
tion and forecasting can be viewed as classification prob-
lems. A classifier resembles a function in the sense that it
attaches a value (or a range or a description), named the
class, C, to a set of attribute values A1, A2,... An, i.e. a
classification function will assign a class to a set of descrip-
tions based on the characteristics of the instances for each

2http://promise.site.uottawa.ca/SERepository/
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A1:Size . . . An:Complexity Class:No. of errors
a11 . . . a11 c1

. . . . . . . . . . . .
a11 . . . anm cn

attribute, For example, as shown in Table 1, given the at-
tributes size, complexity, etc., a classifier can be used to
predict the number of errors of a module.

With such large datasets, part of the preprocessing con-
sists of reducing the redundant and irrelevant attributes.
This paper is focused on the application of different at-
tribute selection techniques, also known as feature selection
(FS), for identifying the most relevant attributes from dif-
ferent datasets. Then, the different learning algorithms can
be applied to obtain more accurate estimates. Attribute se-
lection is part of the data preparation phase to generate a
reduced dataset which can be useful in different aspects:

• A reduced volume of data facilitates the application of
different data mining or searching techniques to be ap-
plied.

• Irrelevant and redundant attributes can generate less
accurate and more complex models. Furthermore, data
mining algorithms can be executed faster.

• It is possible avoid data collection for those irrelevant
and redundant attributes in the future.

The paper is organized as follows. Section 1.1 explains
the background behind Feature Selection, learning Classi-
fiers using Feature Selection and common techniques used
in data mining for evaluation. Section 2 describes the exper-
imental results using several datasets from the PROMISE
repository. Finally, Section 3 concludes the papers and out-
lines future work.

1.1 Attribute Selection

The problem of feature selection received a thorough
treatment in pattern recognition and data mining. Most of
the feature selection algorithms tackle the task as a search
problem, where each state in the search specifies a distinct
subset of the possible attributes [2]. The search procedure
is combined with a criterion to evaluate the merit of each
candidate subset of attributes. There are a multiple possi-
ble combinations between each procedure search and each
attribute measure [12].

There are various ways in which feature selection algo-
rithms can be grouped according to the attribute evaluation

measure: depending on the type (filter or wrapper tech-
niques) or on the way that features are evaluated (individ-
ual or subset evaluation). The filter model relies on general
characteristics of the data to evaluate and select gene sub-
sets without involving any mining algorithm. The wrapper
model requires one predetermined mining algorithm and
uses its performance as the evaluation criterion. It searches
for features better suited to the mining algorithm, aiming
to improve mining performance. It is, however, more com-
putationally expensive [11, 10] than filter models. Feature
ranking (FR), also called feature weighting [2], assesses
individual features and assigns them weights according to
their degrees of relevance, while the feature subset selection
(FSS) evaluates the goodness of each found feature subset.

1.2 Attribute Selection Process

Attribute selection algorithms designed with different
evaluation criteria broadly fall into two categories [11]: the
filter model and the wrapper model.

• The filter model relies on general characteristics of the
data to evaluate and select feature subsets without in-
volving any mining algorithm.

• The wrapper model requires one predetermined min-
ing algorithm and uses its performance as the evalua-
tion criterion. It searches for features better suited to
the mining algorithm aiming to improve mining per-
formance, but it also tends to be more computationally
expensive than filter model [10, 11].

Another possibility, it is to arrange attributes according
to a rank. In the feature ranking algorithms category, one
can expect a ranked list of features which are ordered ac-
cording to evaluation measures. A subset of features is of-
ten selected from the top of a ranking list. A feature is good
and thus will be selected if its weight of relevance is greater
than a user-specified threshold value, or we can simply se-
lect the first k features from the ranked list. This approach
is efficient for high-dimensional data due to its linear time
complexity in terms of dimensionality.

Some existing evaluation measures that have been shown
effective in removing both irrelevant and redundant features
include the consistency measure [4], the correlation mea-
sure [6] and the estimated accuracy of a learning algorithm
[10].

• Consistency measure attempts to find a minimum num-
ber of features that separate classes as consistently as
the full set of features can. An inconsistency is defined
as to instances having the same feature values but dif-
ferent class labels.
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• Correlation measure evaluates the goodness of feature
subsets based on the hypothesis that good feature sub-
sets contain features highly correlated to the class, yet
uncorrelated to each other.

• Wrapper-based attribute selection uses the target learn-
ing algorithm to estimate the worth of attribute sub-
sets. The feature subset selection algorithm conducts a
search for a good subset using the induction algorithm
itself as part of the evaluation function.

Langley [11] notes that feature selection algorithms that
search through the space of feature subsets must address
four main issues: the starting point of the search, the or-
ganization of the search, the evaluation of features subsets
and the criterion used to terminate the search. Different al-
gorithms address theses issues differently.

It is impractical to look at all possible feature subsets,
even if the size is small. Feature selection algorithms usu-
ally proceed greedily and be classified as follows:

• Forward selection techniques add features to an ini-
tially empty set.

• Backward elimination remove features from an ini-
tially complete set.

• Hybrid techniques both add and remove features as the
algorithm progresses.

Forward selection is much faster than backward elimina-
tion and therefore scales better to large data sets. A wide
range of search strategies can be used: best–first, branch–
and–bound, simulated annealing, genetic algorithms (see
Kohavi and John [10] for a review). In [4], different search
strategies, namely exhaustive, heuristic and random search,
are combined with consistency measure to form different
algorithms. The time complexity is exponential in terms of
data dimensionality for exhaustive search and quadratic for
heuristic search. The complexity can be linear to the num-
ber of iterations in a random search, but experiments show
that in order to find best feature subset, the number of iter-
ations required is mostly at least quadratic to the number of
features [4]. In [6], correlation measure is applied in an al-
gorithm called CFS that exploit heuristic search (best first)
to search for candidate feature subsets.

One of the most frequently used search techniques is hill-
climbing (greedy). It starts with an empty set and evaluates
each attribute individually to find the best single attribute.
It then tries each of the remaining attributes in conjunction
with the best to find the most suited pair of attributes. In the
next iteration, each of the remaining attributes are tried in
conjunction with the best pair to find the most suited group
of three attributes. This process continues until no single
attribute addition improves the evaluation of the subset; i.e.,

subset evaluator is run M times to choose the best single
attribute, M-1 times to find the best pair of attributes, M-
2 times the best group of three, and so on. For example,
if we have chosen five attributes through this method, the
subset evaluator has been run M+(M-1)+(M-2)+(M-3)+(M-
4) times.

1.3 Learning Classifiers using Attribute Selection

In order to compare the effectiveness of attribute se-
lection, feature sets chosen by each technique are tested
with two different and well-known types of classifiers: an
instance–base classifier (IB1) and a decision tree classifier
(C4.5). These three algorithms have been chosen because
they represent three quite different approaches to learn-
ing, and their long standing tradition in classification stud-
ies. Other techniques, such as neural nets, are not included
among our classification models due to their low human-
transparency.

• The IB1 [1] is a nearest-neighbor (k-NN) classifier.
To classify a new test sample, all training instances
are stored and the nearest training (usually Euclidean
distance metric) instance regarding the test instance is
found: its class is retrieved to predict this as the class
of the test instance.

• C4.5 [14]. The C4.5 algorithm summarize training
data in the form of a decision tree. Along with sys-
tems that induce logical rules, decision tree algorithms
have proved popular in practice. This is due in part to
their robustness and execution speed, and to the fact
that explicit concept descriptions are produced, which
users can interpret. Nodes in the tree correspond to
features, and branches to their associated values. The
leaves of the tree correspond to classes. To classify a
new instance, one simply examines the features tested
at the nodes of the tree and follows the branches cor-
responding to their observed values in the instance.
Upon reaching a leaf, the process terminates, and the
class at the leaf is assigned to the instance. C4.5 uses
the gain ratio criterion to select the attribute to be at
every node of the tree.

1.4 Evaluation

When evaluating the prediction accuracy of the classifi-
cation methods we described above, it is important not to
use the same instances for training and evaluation. Feature
selection methods will perform well on examples they have
seen during training. To get a realistic estimate of perfor-
mance of the classifier, we must test it on examples that did
not appear in the training set.
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A common method to test accuracy in such situations is
cross-validation. To apply this method, we partition the data
into k sets of samples, C1, . . . , Ck (typically, these will be
of roughly the same size). Then, we construct a data set
Di = D − Ci, and test the accuracy of fDi

on the samples
in Ci. Having done this for all 1 ≤ i ≤ k we estimate the
accuracy of the method by averaging the accuracy over the k
cross-validation trials. Cross-validation has several impor-
tant properties. First, the training set and the test set in each
trial are disjoint. Second, the classifier is tested on each
sample exactly once. Finally, the training set for each trial
is (k − 1)/k of the original data set. Thus, for large k, we
get a relatively unbiased estimate of the classifier behavior
given a training set of size m [9]. There are several possible
choices of k. A common approach is to set k = m. In this
case, every trial removes a single sample and trains on the
rest. This method is known as leave one out cross validation
(LOOCV). Other common choices are k = 5 or k = 10. In
this work we have used k = 10.

Another common way to measure the goodness of data
mining applications is through the f − measure, which is
defined by Eq. 1:

f − measure =
2 · Precision · Recall

Precision + Recall
(1)

where precision is defined as the proportion of the instances
which truly have class x (true positives) among all those
which were classified as class x(true and false positives; and
Recall (also known as sensitivity or positive accuracy) is the
proportion of the examples which truly have class x (true
positives), i.e., true positives divided by the elements that
belong to the class (true positives and false negatives).

2 Experimental Results

In this paper, we have applied feature selection to the
CM1, JM1, KC1, KC2, and PC1 datasets available in the
PROMISE repository [15], to generate models for defect
classification. These datasets were created from projects
carried out at NASA and collected under their metrics 3.

All datasets contain 22 attributes composed of 5 differ-
ent lines of code measure, 3 McCabe metrics [13], 4 base
Halstead measures [7], 8 derived Halstead measures [7],
a branch-count, and the last attribute is ’problems’ with 2
classes (false or true, wether the module has reported de-
fects). For a comprehensive coverage and explanation of the
metrics, we refer to Fenton and Pfleeger [5]. The number
of instances, however, varies among the datasets. Table 2
shows the number of attributes for each of the datasets.

As stated previously, feature selection can be grouped
into filter or wrapper depending on whether the classifier is

3http://mdp.ivv.nasa.gov/

Dataset No. of attributes
CM1 498
JM1 10885
KC1 2109
KC2 522
PC1 1109

Wrapper
CFS CNS C4.5 IB1

CM1 5.24 1.30 1.02 1.83
JM1 8.01 19.99 3.29 2.91
KC1 7.77 17.61 2.97 1.94
KC2 5.52 13.27 1.78 2.16
PC1 4.63 10.67 1.67 1.58

used to find the subset. In this paper, for the filter model,
we have used consistency and correlation measures; for
the wrapper-method, two standard classifiers have been ap-
plied, the IB1 and C4.5 classifiers.

The experiments were conducted using algorithms im-
plemented in the WEKA [16] toolkit, either using the Ex-
plorer or the Experimenter tools.

The results reported in this section were obtained with
10 runs, each run is a 10-fold cross-validation, i.e., in one
run, an attribute subset was selected using the 90% of the in-
stances, then, the accuracy of this subset was estimated over
the unseen 10% of the data. This was performed 10 times,
each time proposing a possible different feature subset. In
this way, estimated accuracies, selected attribute numbers
and time needed were the result of a mean over 10 times
10-cross-validation samples.

Table 3 shows the average number of attributes selected
using correlation, consistency or the wrapper method. From
the result, we can conclude that the wrapper method selects
smaller sets of attributes on average but it is the more ex-
pensive computationally.

Table 4 shows the average percentage of correctly classi-
fied instances. The statistical t-test provided by the WEKA
Experimenter tool [16] was used to investigate whether the
estimation with the subset was statistically significant when
compared with the original set of attributes (orig).

From the results, we can conclude that in general at-
tribute selection improves the accuracy of the estimation,
being the wrapper method superior to the filter method. The
C4.5 classifier using the wrapper method obtained 3 statis-
tically significant improved models.

The wrapper is a good option as either improves the ac-
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curacy or when the accuracy is not improved is because the
models generated are very simple (the number of selected
attributes is very low). For example, for the JM1 dataset,
the accuracy using IB1 wrapper is below the original ac-
curacy (72.01% compared with the 79.73% when using all
attributes); however, it just needs less than 3 attributes to
obtain an acceptable accuracy.

In this case, with ten-cross validation, Table 4 shows
the number of times that an attribute has been selected out
of the 10 times that the algorithm was run using the CFS
(correlation) with sequential search. We selected this al-
gorithm based on correlations because it obtained good re-
sult with all classifiers. It possible to analyse this table in
2 dimensions. First, analysing columns, i.e, attributes se-
lected for each dataset, and second, analyzing rows, the
number of times that an attribute is selected across differ-
ent datasets. For example, with JM1, 7 attributes were
always selected (loc, ev(g), iv(g), i, IOComment,
IOBlank and IOCodeAndComment), 4 times the algo-
rithm selected v(g) and 6 times branchCount. On the
row dimension, it can be concluded that the attribute i is
is relevant and provides important information for classifi-
cation, attribute i has been always selected in 4 datasets
(CM1, JM1, KC1 and KC2) and 5 times in the PC1 dataset.
In the KC2 dataset, the attribute loc has been selected 4
times, and the attribute v(g) was never selected.

3 Conclusions and Future Work

In general, the application of data mining techniques to
software engineering (SE) is in its inception, and in particu-
lar, attribute selection has not yet been covered in in the SE
domain by many researchers. Among these works, Chen et
al [3] have analyzed the application of feature selection us-
ing wrappers to the problem of cost estimation. They also
concluded that the reduced dataset could improve the esti-
mation. Kirsopp and Shepperd [8] have also analyzed the
application of attribute selection to cost estimation reaching
similar conclusions.

In this paper, attribute selection techniques was applied
to different datasets from the PROMISE repository before
to improve the accuracy of different types of data mining
classifiers to defect faulty modules. The results show that
smaller datasets maintain the prediction capability and has
a lower number of attributes than the original, yet it allow
us to produce better or equal estimates. This is beneficial
for project managers or quality engineers as a way of char-
acterizing the dataset and better understanding of the data
at hand.

We will extend this work with other data mining tech-
niques and further SE datasets with their particular prob-
lems. For example, in this work, many datasets are un-
balanced, i.e., many more modules were classified as non-

defective than defective. Current research works on how to
balance datasets can be applied before the techniques de-
scribed in this paper.
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C4.5 IB1
Dataset Orig. CFS CNS WRP Orig. CFS CNS WRP

CM1 88.05 89.30 89.82 90.16◦ 84.98 83.59 83.86 86.44
JM1 79.73 80.83◦ 79.72 80.78◦ 75.91 75.54 75.91 72.01
KC1 84.04 84.54 84.22 84.80 83.35 82.77 83.59 73.80
KC2 81.19 83.64 82.18 84.44◦ 78.62 77.64 78.10 76.45
PC1 93.63 93.17 93.10 92.87 91.87 91.42 91.18 85.96

◦, statistically significant improvement

C4.5 IB1
Dataset Orig. CFS CNS WRP Orig. CFS CNS WRP

CM1 0.94 0.94 0.95 0.95◦ 0.92 0.91 0.88 0.92
JM1 0.88 0.89◦ 0.88 0.89◦ 0.85 0.85 0.85 0.79
KC1 0.91 0.91 0.91 0.92 0.90 0.90 0.90 0.78
KC2 0.88 0.90 0.89 0.91◦ 0.86 0.86 0.86 0.84
PC1 0.97 0.96 0.96 0.96 0.96 0.95 0.95 0.89

◦, statistically significant improvement

CFS-sf
CM1 JM1 KC1 KC2 PC1

loc: McCabe’s line count of code 6 10 1 4 1
v(g): McCabe ”cyclomatic complexity” 0 4 4 0 2

ev(g): McCabe ”essential complexity” 0 10 2 10 0
iv(g): McCabe ”design complexity” 7 10 1 0 0

n: Halstead total operators + operands 0 0 1 2 0
v: Halstead ”volume” 0 0 0 0 0

l: Halstead ”program length” 0 0 0 0 0
d: Halstead ”difficulty” 1 0 8 2 0

i: Halstead ”intelligence” 10 10 10 10 5
e: Halstead ”effort” 0 0 4 0 0

b: Halstead 1 0 0 0 0
t: Halstead’s time estimator 0 0 2 0 0

IOCode: Halstead’s line count 1 0 6 1 1
IOComment: Halstead’s lines of comments 10 10 9 2 9

IOBlank: Halstead’s blank lines 4 10 10 2 10
IOCodeAndComment 0 10 0 4 10

uniq-Op: unique operators 6 0 1 8 0
uniq-Opnd: unique operands 4 0 7 10 4

total-Op: total operators 0 0 0 0 1
total-Opnd: total operands 0 0 4 0 0

branchCount: of the flow graph 0 6 8 0 0
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