
Detecting Fault Modules Applying Feature Selection to Classifiers

D. Rodrı́guez1, R. Ruiz2, J. Cuadrado-Gallego1, J. Aguilar-Ruiz2

1Dept of Computer Science 2Dept of Computer Science
The University of Alcalá University Pablo de Olavide
Ctra Barcelona Km 37,1 Ctra. Utrera km. 1

28805 Alcalá de Henares, Madrid, Spain 41013 Sevilla, Spain

{daniel.rodriguezg,jjcg}@uah.es, {robertoruiz,aguilar}@upo.es

Abstract

At present, automated data collection tools allow us to
collect large amounts of information, not without asso-
ciated problems. This paper, we apply feature selection
to several software engineering databases selecting at-
tributes with the final aim that project managers can have
a better global vision of the data they manage. In this pa-
per, we make use of attribute selection techniques in dif-
ferent datasets publicly available (PROMISE repository),
and different data mining algorithms for classification to
defect faulty modules. The results show that in general,
smaller datasets with less attributes maintain or improve
the prediction capability with less attributes than the orig-
inal datasets.

1 Introduction

Currently, organizations can collect large amounts of data
and attributes from version management systems, Inte-
grated Development Environments and other metrics tools
about modules and components. Some of these reposi-
tories have been made available through the PROMISE
repository1. However, a large number of attributes could
make more difficult the application of the collected data
with techniques such as regression or classification. In
this paper, we apply Feature Selection (FS) or Feature
Subset Selection for identifying the most relevant at-
tributes from several datasets from the PROMISE repos-

1http://promisedata.org/

itory. The need of applying FS includes the following
points:

• A reduced volume of data allows different data min-
ing or searching techniques to be applied.

• Irrelevant and redundant attributes can generate less
accurate and more complex models. Furthermore,
data mining algorithms can be executed faster.

• It is possible to avoid the collection of data for those
irrelevant and redundant attributes in the future.

Until present few authors have investigated the appli-
cation of FS to software engineering datasets areas such
as cost estimation or quality. Among these works, Chen
et al [2] have analyzed the application of feature selection
using wrappers to the problem of cost estimation. They
also concluded that the reduced dataset could improve the
estimation. Kirsopp and Shepperd [9] have also analyzed
the application of feature subset selection to cost estima-
tion reaching with similar conclusions.

The paper is organized as follows. Section 2 explains
the background behind Feature Selection, learning Clas-
sifiers using Feature Selection and common techniques
used in data mining for evaluation. Section 3 describes
the experimental results using several datasets from the
PROMISE repository. Finally, conclusions and future
work are commented.

6671-4244-1500-4/07/$25.00 ©2007 IEEE

2 Feature Selection (FS)

FS algorithms designed with different evaluation criteria
broadly fall into two categories [21, 14, 13, 3, 1, 12, 5]:

• The filter model relies on general characteristics of
the data to evaluate and select feature subsets without
involving any data mining algorithm.

• The wrapper model requires one predetermined min-
ing algorithm and uses its performance as the evalu-
ation criterion. It searches for features better suited
to the mining algorithm aiming to improve mining
performance, but it also tends to be more computa-
tionally expensive than filter model [11, 12].

Feature subset algorithms search through candidate
feature subsets guide by a certain evaluation measure [13]
which captures the goodness of each subset. An optimal
(or near optimal) subset is selected when the search stops.

Some existing evaluation measures that have been
shown effective in removing both irrelevant and redundant
features include the consistency measure [4], the correla-
tion measure [7] and the estimated accuracy of a learning
algorithm [11].

• Consistency measure attempts to find a minimum
number of features that separate classes as consis-
tently as the full set of features can. An inconsistency
is defined as to instances having the same feature val-
ues but different class labels.

• Correlation measure evaluates the goodness of fea-
ture subsets based on the hypothesis that good fea-
ture subsets contain features highly correlated to the
class, yet uncorrelated to each other.

• Wrapper-based attribute selection uses the target
learning algorithm to estimate the worth of attribute
subsets. The feature subset selection algorithm con-
ducts a search for a good subset using the induction
algorithm itself as part of the evaluation function.

Langley [12] notes that FS algorithms that search
through the space of feature subsets must address four
main issues: (i) the starting point of the search, (ii) the
organization of the search, (iii) the evaluation of features

subsets and (iv) the criterion used to terminate the search.
Different algorithms address theses issues differently.

It is impractical to look at all possible feature subsets,
even if the size is small.They can be classified into those
that add features to an initially empty set (forward se-
lection) and those that remove features from an initially
complete set (backward elimination). Hybrids both add
and remove features as the algorithm progresses. Forward
selection is much faster than backward elimination and
therefore scales better to large data sets. A wide range
of search strategies can be used: best–first, branch–and–
bound, simulated annealing, genetic algorithms (see Ko-
havi and John [11] for a review). In this paper we use
forward selection.

Recently, Yu and Liu [20] proposed a new framework
of FS, fast correlation–based filter algorithm (FCBF)
which uses correlation measure to obtain relevant genes
and to remove redundancy. There are other methods based
on relevance and redundancy concepts. It is based on
the concept of Markov blanket, where M is formed by
only one attribute, and gradually eliminates redundant at-
tributes with respect to M from the first to the final at-
tribute of an ordered list.

2.1 Learning Classifiers using FS

Many software engineering problems like defect detec-
tion, cost estimation can be viewed as classification prob-
lems. A classifier resembles a function in the sense that
it attaches a value (or a range or a description) to a set of
attribute values. A classification function will produce a
set of descriptions based on the characteristics of the in-
stances for each attribute. Such class descriptions are the
output of the classifier’s function.

In order to compare the effectiveness of FS, feature sets
chosen by each technique are tested with two different and
well-known types of classifiers: a probabilistic classifier
(naı̈ve Bayes) and a decision tree classifier (C4.5). These
algorithms have been selected because they represent dif-
ferent approaches to learning and for their long standing
tradition in classification studies.

• The naı̈ve Bayes [16] algorithm uses the Bayes the-
orem to predict the class for each case, assuming
that the predictive attributes are independent given
a category. A Bayesian classifier assigns a set of

668

attributes A1, A2, . . . , An to a class C such that
P (C|A1, A2, . . . , An) is maximum.

• C4.5 [17]. A decision tree is constructed in a top-
down approach. The leaves of the tree correspond to
classes, nodes correspond to features, and branches
to their associated values. C4.5 uses the gain ratio
criterion to select the attribute to be at every node of
the tree.

2.2 Evaluation

When evaluating the prediction accuracy of the classifi-
cation methods we described above, it is important not to
use the same instances for training and evaluation. Fea-
ture selection methods will perform well on examples
they have seen during training. To get a realistic estimate
of performance of the classifier, we must test it on exam-
ples that did not appear in the training set.

A common method to test accuracy in such situations
is cross-validation. To apply this method, we partition the
data into k sets of samples, C1, . . . , Ck (typically, these
will be of roughly the same size). Then, we construct a
data set Di = D − Ci, and test the accuracy of fDi

on
the samples in Ci. Having done this for all 1 ≤ i ≤ k
we estimate the accuracy of the method by averaging the
accuracy over the k cross-validation trials.

Cross-validation has several important properties.
First, the training set and the test set in each trial are
disjoint. Second, the classifier is tested on each sample
exactly once. Finally, the training set for each trial is
(k − 1)/k of the original data set. Thus, for large k, we
get a relatively unbiased estimate of the classifier behavior
given a training set of size m [10].

Another common way to measure the goodness of data
mining applications is through the f − measure [19].

3 Experimental Results

In this paper, we have applied feature selection to the
CM1, JM1, KC1, KC2, and PC1 datasets available in the
PROMISE repository [18], to generate models for defect
classification. These datasets were created from projects

carried out at NASA and collected under their metrics pro-
gram2.

All datasets contain 22 attributes composed of 5 differ-
ent lines of code measure, 3 McCabe metrics [15], 4 base
Halstead measures [8], 8 derived Halstead measures [8],
a branch-count, and the last attribute is ’problems’ with
2 classes (false or true, whether the module has reported
defects). For a comprehensive coverage and explanation
of the metrics, we refer to Fenton and Pfleeger [6]. The
number of instances, however, varies among the datasets:
CM1 contains 498 instances, JM1 (10885), KC1 (2109),
KC2 (522) and PC1 is composed of 1109 instances.

As stated previously, FS can be grouped into filter or
wrapper depending on whether the classifier is used to
find the feature subset. In this paper, for the filter model,
we have used consistency and correlation measures; for
the wrapper-method, two standard classifiers have been
applied: naı̈ve Bayes and C4.5 classifiers.

The experiments were conducted using algorithms im-
plemented in the WEKA environment [19], either using
the Explorer or the Experimenter tools provided. We must
take into account that the proper way to conduct a cross–
validation for feature selection is to avoid using a fixed set
of features selected with the whole training data set, be-
cause this induces a bias in the results. Instead, one should
withhold a subset of instances, select features, and assess
the performance of the classifier with the selected features
using the left out examples. The results reported in this
section were obtained with ten runs, each run is a ten-fold
cross-validation, i.e., in one run, a feature subset was se-
lected using the 90% of the instances, then, the accuracy
of this subset was estimated over the unseen 10% of the
data. This was performed 10 times, each time proposing a
possible different feature subset. In this way, estimated
accuracies, selected attribute numbers and time needed
were the result of a mean over ten ten–cross–validation
samples.

Table 1 shows the average number of attributes selected
using correlation, consistency or the wrapper method.
From the result, we can conclude that the wrapper method
selects smaller sets of attributes on average but it is the
more expensive computationally.

Table 2 shows the average percentage of correctly clas-
sified instances using WEKA’s Experimenter tool. The

2http://mdp.ivv.nasa.gov/

669

Table 1: No. of attributes selected
Wrapper

CFS CNS FCBF C4.5 NB

CM1 5.24 1.30 1.09 1.02 1.09
JM1 8.01 19.99 1.00 3.29 1.84
KC1 7.77 17.61 1.00 2.97 1.92
KC2 5.52 13.27 1.12 1.78 2.26
PC1 4.63 10.67 1.32 1.67 1.14

statistical two tailed paired t-test [19] with α = 0.05 was
used to investigate whether the estimation with the sub-
set was statistically significant when compared with the
original set of attributes (orig). From the results, we can
conclude that in general the feature subset improves the
accuracy of the estimation, being the wrapper method su-
perior to the filter method. The C4.5 and naı̈ve Bayes
classifiers using the wrapper method obtained 3 statisti-
cally significant improved models.

The wrapper is a good option as either improves the ac-
curacy or when the accuracy is not improved is because
the models generated are very simple (the number of se-
lected attributes is very low).

In this case, with ten-cross validation, Table 3 shows
the number of times that an attribute has been selected out
of the 10 times that the algorithm was run using the CFS
(correlation) with sequential search. We have selected this
algorithm based on correlations because it obtained good
result with all classifiers. It possible to analyse this table
in 2 dimensions. First, analysing columns, i.e, attributes
selected for each dataset, and second, analyzing row, the
number of times that an attribute is selected across dif-
ferent datasets. For example, with JM1, 7 attributes were
always selected (loc, ev(g), iv(g), i, IOComment,
IOBlank and IOCodeAndComment), 4 times the al-
gorithm selected v(g) and 6 times branchCount. On
the row dimension, it can be concluded that the attribute
i is is relevant and provides important information for
classification, attribute i has been always selected in 4
datasets (CM1, JM1, KC1 and KC2) and 5 times in the
PC1 dataset. In the KC2 dataset, the attribute loc has been
selected 4 times, and the attribute v(g) was never selected.

4 Conclusions and Future Work

Feature Selection (FS) can be grouped into filter or wrap-
per depending on whether the data mining classifier al-
gorithm is used to select attributes. In this paper, FS has
been applied to 5 different datasets from the PROMISE
Repository to defect faulty modules. The results show
that in general, the smaller datasets maintain the predic-
tion capability with a lower number of attributes than the
original datsets. Also the wrapper mode is better than the
filter mode but it is more computationally expensive.

We will extend this work to further datasets and differ-
ent software engineering problems such as estimation. In
addition, a possible problem with the analyzed datasets is
that some of the datasets are unbalanced, i.e., many more
modules were classified as non-defective than defective.
Current research works on how to balance dataset can be
applied before the techniques described here.

Acknowledgements

We would like to thank the Spanish Ministry of Science
and Technology for supporting this research (Project CI-
CYT TIN2004-06689-C03).

References

[1] A. Blum and P. Langley. Selection of relevant features
and examples in machine learning. Artificial Intelligence,
97(1-2):245–271, 1997.

[2] Z. Chen, T. Menzies, D. Port, and B. Boehm. Finding
the right data for software cost modeling. IEEE Software,
22:38–46, 2005.

[3] M. Dash and H. Liu. Feature selection for classification.
Intelligent Data Analisys, 1(3):131–56, 1997.

[4] M. Dash, H. Liu, and H. Motoda. Consistency based fea-
ture selection. In Pacific-Asia Conf. on Knowledge Dis-
covery and Data Mining, pages 98–109, 2000.

[5] J. Doak. An evaluation of feature selection methods and
their application to computer security. Technical Report
CSE-92-18, University of California, Department of Com-
puter Science, Davis, CA, 1992.

[6] N. E. Fenton and S. L. Pfleeger. Software metrics: a
Rigorous & Practical Approach. International Thompson
Press, 1997.

670

Table 2: Percentage of correctly classified
C4.5 NB

Dataset Orig. CFS CNS WRP FCBF Orig. CFS CNS WRP FCBF

CM1 88.05 89.30 89.82 90.16◦ 89.84 84.84 87.15◦ 89.70◦ 90.02◦ 89.34◦
JM1 79.73 80.83◦ 79.72 80.78◦ 80.89◦ 80.42 80.37 80.34 80.67 80.87◦
KC1 84.04 84.54 84.22 84.80 84.83 82.46 82.73 82.30 85.38◦ 85.04◦
KC2 81.19 83.64 82.18 84.44◦ 83.58 83.62 83.60 83.97 83.24 83.93
PC1 93.63 93.17 93.10 92.87 92.91 89.00 90.05 88.74 92.89◦ 91.96◦

◦, statistically significant improvement

Table 3: F-measure

C4.5 NB
Dataset Orig. CFS CNS WRP FCBF Orig. CFS CNS WRP FCBF

CM1 0.94 0.94 0.95 0.95◦ 0.95 0.91 0.93◦ 0.95◦ 0.95◦ 0.94◦
JM1 0.88 0.89◦ 0.88 0.89◦ 0.89◦ 0.89 0.89 0.89 0.89◦ 0.89◦
KC1 0.91 0.91 0.91 0.92 0.92 0.90 0.90 0.90 0.92◦ 0.92◦
KC2 0.88 0.90 0.89 0.91◦ 0.90◦ 0.90 0.90 0.90 0.90 0.91
PC1 0.97 0.96 0.96 0.96 0.96 0.94 0.95 0.94 0.96◦ 0.96◦

◦, statistically significant improvement

[7] M. Hall. Correlation-based Feature Selection for Machine
Learning. PhD thesis, University of Waikato, Department
of Computer Science, Hamilton, New Zealand, 1999.

[8] M. H. Halstead. Elements of software science. Elsevier
Computer Science Library. Operating And Programming
Systems Series; 2. Elsevier, New York ; Oxford, 1977.

[9] C. Kirsopp and M. Shepperd. Case and feature subset se-
lection in case-based software project effort prediction.

[10] R. Kohavi and G. John. Automatic parameter selection by
minimizing estimated error. In 12th Int. Conf. on Machine
Learning, pages 304–312, San Francisco, 1995.

[11] R. Kohavi and G. John. Wrappers for feature subset selec-
tion. Artificial Intelligence, 1-2:273–324, 1997.

[12] P. Langley. Selection of relevant features in machine learn-
ing. In Procs. Of the AAAI Fall Symposium on Relevance,
pages 140–144, 1994.

[13] H. Liu and H. Motoda. Feature Selection for Knowlegde
Discovery and Data Mining. Kluwer Academic Publish-
ers, London, UK, 1998.

[14] H. Liu and L. Yu. Toward integrating feature selection
algorithms for classification and clustering. IEEE Trans.
on Knowledge and Data Eng., 17(3):1–12, 2005.

[15] T. J. McCabe. A complexity measure. IEEE Transactions
on Software Engineering, 2(4):308–320, December 1976.

[16] T. Mitchell. Machine Learning. McGraw Hill, 1997.
[17] J. R. Quinlan. C4.5: Programs for machine learning.

Morgan Kaufmann, San Mateo, California, 1993.
[18] J. S. Shirabad and T. J. Menzies. The PROMISE repos-

itory of software engineering databases. School of In-
formation Technology and Engineering, University of Ot-
tawa, Canada, 2005.

[19] I. Witten and E. Frank. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, San
Francisco, 2 edition, 2005.

[20] L. Yu and H. Liu. Efficient feature selection via analysis of
relevance and redundancy. Journal of Machine Learning
Research, 5:1205–24, 2004.

[21] L. Yu and H. Liu. Redundancy based feature selection
for microarry data. In 10th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, 2004.

671

Table 4: No. of Times an Attribute is Selected
CFS-sf

CM1 JM1 KC1 KC2 PC1

loc: McCabe’s line count of code 6 10 1 4 1
v(g): McCabe ”cyclomatic complexity” 0 4 4 0 2

ev(g): McCabe ”essential complexity” 0 10 2 10 0
iv(g): McCabe ”design complexity” 7 10 1 0 0

n: Halstead total operators + operands 0 0 1 2 0
v: Halstead ”volume” 0 0 0 0 0

l: Halstead ”program length” 0 0 0 0 0
d: Halstead ”difficulty” 1 0 8 2 0

i: Halstead ”intelligence” 10 10 10 10 5
e: Halstead ”effort” 0 0 4 0 0

b: Halstead 1 0 0 0 0
t: Halstead’s time estimator 0 0 2 0 0

IOCode: Halstead’s line count 1 0 6 1 1
IOComment: Halstead’s lines of comments 10 10 9 2 9

IOBlank: Halstead’s blank lines 4 10 10 2 10
IOCodeAndComment 0 10 0 4 10

uniq-Op: unique operators 6 0 1 8 0
uniq-Opnd: unique operands 4 0 7 10 4

total-Op: total operators 0 0 0 0 1
total-Opnd: total operands 0 0 4 0 0

branchCount: of the flow graph 0 6 8 0 0

672

