Tool Support for the Typed Generic Process Model

D. Rodriguez, R. Harrison, M. Satpathy
The University of Reading
Reading, RG6 64Y, UK
E-mails: {d.rodriguez-garcia, r.harrison, m.satpathy}@rdg.ac.uk

J. J. Dolado
The University of the Basque Country
20009, San Sebastian, Spain
E-mail: dolado(@si.ehu.es

Abstract

The Typed Generic Process Model (TGPM) [10] is a
generic template which can be instantiated to produce
the quality model for any software process.
Consequently, the idiosyncrasies of each of the sofiware
processes can be addressed, and further, such
instantiated quality models can form the basis of
assessment and improvement of the concerned processes.
The distinctive feature of the TGPM is that it makes the
relationship between the product quality and process
quality transparent; it provides a platform to integrate
and analyse product and process metrics in an explicit
manner. Since a process structure may be hierarchical,
tool support is necessary to manage the volume of
information associated with a process and the associated
products. In this paper, we present such a tool and show
how this tool can provide effective guidance to a broad
spectrum of sofiware personnel including developers,
managers and quality assurance engineers.

1. Introduction

A measurement programme is essential in order to
assess, predict and improve the quality of software
products and processes. In this paper, by a process we
will mean any software activity associated with the
development and maintenance of software: from
requirement analysis through to maintenance. Process
models like the Capability Maturity Model (CMM) [4],
ISO/IEC 12207 [7], ISO 9001/9000-3 [6] etc. are not specific
enough to cater to the needs of the whole spectrum of
software processes. The reasons are: (i) the nature of
processes vary widely, ranging from requirement analysis
to maintenance (ii) most of the models are more oriented
towards enhancing the maturity of an organization and
take a monolithic view of the overall development process,
and finally (iii) such process models, while emphasizing on

the process activities, often put too little importance on
the products which are the results of the process
activities.

Product quality aspects are usually addressed by
models such as ISO 9126 [5], FURPS+ model [3] etc.
However, how such product models are related to the
above process models, has not been properly addressed.
In order to alleviate these problems, Satpathy et al. [10]
have defined a Typed Generic Process Model (TGPM).
The generic model is a generic template which in tum
could be instantiated to generate the customized model of
any individual process. This instantiation mechanism
clearly spells out the idiosyncrasies of the individual
process that needs special attention and further, it makes
the relationship between process model and product
quality explicit through the dual interpretation of process
attributes. By dual interpretation, they mean that a process
attribute may have two aspects: a process aspect and a
product aspect.

The TGPM defines a process as a relationship between
a set of input products and a set of output products. As
we will discuss later, a process may consist of
subprocesses. Because of the hierarchical nature of
processes, and that each process or subprocess has input
products and output products, the volume of information
that we can associate with the whole hierarchy can be
very high. And depending on a requirement, we need to
extract the relevant information from the database
associated with the process hierarchy and perform
necessary computation on them to derive certain results.
Therefore, a tool support becomes imperative when we
deal with the processes under TGPM.

SEGESOFT is a project management tool [13], which
provides an environment for training project managers.
The goal of this tool is to have a uniform structure so that

analytical techniques can be incorporated into the
structure smoothly. The system collects and records both
actual and simulated project data and implements different
techniques such as machine learning, project tracking,
dynamic modelling, etc. The basic assumption of this work
is that management decisions should be supported by
integration of different sources of information. In this
paper, we have upgraded this tool to accommodate the
distinctive features of the TGPM for quality assessment
and improvement.

The organization of the paper is as follows. Section 2
describes the related work. Section 3 explains the TGPM;
in section 4, we explain the rationale for tool support. The
characteristics of the tool are explained in Section 5and a
case study is discussed in Section 6. Finally, in Section 7,
we present our conclusions and future work.

2. Related Work

ISO/IEC 9126 [5] describes a generic model for
specifying and evaluating the quality of software
products. The model isolates six factors, called
Functionality, Usability, Reliability, Efficiency,
Maintainability and Portability; and the quality of a
product is defined in terms of the quality of the above
factors. Each factor may in turn be defined by a set of
subfactors. The FURPS+ model [3] used by HP is quite
similar to ISO/IEC 9126.

Focusing on product quality alone may not guarantee
that an organization will deliver products of good quality.
Products are created by processes. So, based on an
orthogonal view that improving the quality of a process
will deliver products of good quality, many models have
been developed. Prominent among them are the CMM [4]
and ISO 9001 [6]. Models like BOOTSTRAP [9] and
SPICE/ISO 15504 [8] are variants of the CMM. ISO/IEC
12207 [7] does a classification of all processes associated
with the software development and offers general
guidelines which can be used by software practitioners to
manage and engineer software. The scope of most of
these standards cover an entire organization.

The GOM method [1, 12] proposes a measurement plan
for assessing quality of entities like products, processes
or people. It starts with a set of business goals and the
goals are progressively refined through questions until we

obtain some metrics for measurement. The measured
values are then interpreted in order to answer the goals.
Existing approaches choose a quality model from those
that exist so as to generate the business (or the primary)
goals of the GQM formulation for any individual product
or process.

Focusing on either process quality or product quality
alone is not sufficient. In a European-wide awareness
survey 65% of the respondents agreed that certification
against ISO 9000 is not enough to guarantee the quality of
software products [2] 40% of the respondents agreed that
a combined certification of products and processes is
necessary, and almost all of the models fail to make the
relationship between process quality models and product
quality clear. TGPM makes such a relationship clear by
taking the dual nature of process attributes into account.
A brief description of TGPM will be presented in the next
section.

3. The Typed Generic Process Model (TGPM)

The TGPM gives types to products and processes. A
product is an entity, which a process (e.g. any software
activity) produces as output. Products may also be fed to
processes as inputs. Table 1 enumerates some of the
products and their types. Product rd belongs to the set of
requirement documents, spc belongs to the set of
specifications and so on. TGPM models the set of
requirements by the set PRE_ELICIT REQ. TGPM defines
a process as a relation froma set of products to another
set of products; the set of relations from m input products
to n output products is denoted by:

IP,x IP;x...xIP,, < OP,xOP,x...xOP,

where [P, and OP; are the types of the i-th input
product and the j-th output product respectively. Table 2
shows the types of a few processes. A process may have
many type definitions. For example, if an organization
develops formal specifications from requirements only,
then the type of the formal specification process (FS
process) is: RD <« FS. On the other hand, if an
organization (in relation to a project) also decides to
interview the users for developing a FS, then the type of
FS process would be: PRE-ELICIT-REQ X RD « FS.

impl: IMPL
des:: DESIGN
mod: MODULES

req: PRE-ELICIT-REQ // Set of pre elicitation requirements.

rd: RD /1 Set of requirement documents
spc: SPEC /1 Set of specifications

des: DESIGN // Set of designs

doc: DOC // Set of documentations

// Set of implementations

// Set of designs

// Set of set of program modules
testdata: TESTDATA // Set oftest data

Table 1 Types of some products

Requirement analysis: PRE-ELICIT-REQ < RD

Specification: RD < SPEC

Formal design: RD x £S < FD
Maintenance: RD XSPEC x DES x IMPL x DOC <

RD xSPEC xDES x IMPL x DOC

Table 2 Types of some processes

TGPM then formalizes the internal structure of a
process. A process may be composed of subprocesses.
A subprocess is also a process in the sense that it takes
a product set as input and gives out a product set as
output. Whether a process should be decomposed into
subprocesses or not is decided by the process designer.
When considered from a process point of view, the
inputs and outputs of subprocesses are called
intermediate products. A subprocess which is not
decomposed further is called an atomic process. An
atomic process is defined as a set of process steps, like
the steps of an algorithm. The steps usually do not have
rigorous definitions: a process executer usually has
degrees of flexibility while executing them. Figure 1
shows the internal details of the testing process. An
organization is expected to have its own definition of the
internal structure of a process. For a more detailed
discussion on the internal process model, refer to [10].

In Figure 1, testing process takes an implementation
(a set of program modules) and a set of test cases as
input and produces a tested implementation and Test
results as output. As shown in the figure, testing
process consists of two subprocesses: unit testing and
integration testing. Unit testing consists of two atomic

processes: black box testing and white box testing.
Integration testing is an atomic process. Black box
testing and white box testing can proceed in parallel,
both producing their respective test results. For
simplicity, we will consider the only scenario where the
implementation passes the test cases. After the unit
testing, the program modules are integrated by the
integration process. Since the process of integration is
not a part of the testing process, following the notations
of TGPM, it has been shown outside the scope of the
testing process. The integrated modules and the test
cases are then fed to the subprocess integration testing
which produces a tested implementation along with test
results.

Once the internal structure of a process (or a
subprocess) is in place, the TGPM is next defined in
terms of eight factors: Functionality, Usability, Efficiency
and Estimation, Visibility and Control, Reliability, Safety,
Scalability, and Maintainability; each subfactor is in turn
defined by a set of subfactors. The definitions of the
subfactors of TGPM can be found in [10].

k22 Process Editor 0.1

File Edit Align Attribites Debug Window
|_| Lo IDULCUITIETIVS AT SELLTIYS S ESUNG W aWirigo.a aw

Testing
OF— - {1
Unit Testing

Black-box Testing @'

Integration Testing

il ite-box Test
E:ZWIE ox Testing .

L ¥ /

o RN -
'

Rewnrk&lntegratinn__.@

(8

Selection Tool

Figure 1. Testing processes and products associated

The most important aspect of TGPM is that it defines —FS
attributes from a dual perspective. Consider, for instance,
the understandability attribute. The two perspectives are
(i) the logical concepts of a process should itself be
understandable to the process executer and further (i) the
process should make its output product sets
understandable. When we consider the formal
specification process, the method of creating the formal
specification and the formal specification language itself
must be understandable to the specifier, and further the
specification process must make the formal specification
understandable to its users. In conclusion, any process
assessment must consider such a dual perspective. TGPM
could be seen as a template with three parameters:

o=

TGPM (input-product-set-type,
output-product-set-type,
application-domain)

