Tool Support for the Typed Generic Process Model

D. Rodriguez, R. Harrison, M. Satpathy
The University of Reading
Reading, RG6 64Y, UK
E-mails: {d.rodriguez-garcia, r.harrison, m.satpathy}@rdg.ac.uk

J. J. Dolado
The University of the Basque Country
20009, San Sebastian, Spain
E-mail: dolado(@si.ehu.es

Abstract

The Typed Generic Process Model (TGPM) [10] is a
generic template which can be instantiated to produce
the quality model for any software process.
Consequently, the idiosyncrasies of each of the sofiware
processes can be addressed, and further, such
instantiated quality models can form the basis of
assessment and improvement of the concerned processes.
The distinctive feature of the TGPM is that it makes the
relationship between the product quality and process
quality transparent; it provides a platform to integrate
and analyse product and process metrics in an explicit
manner. Since a process structure may be hierarchical,
tool support is necessary to manage the volume of
information associated with a process and the associated
products. In this paper, we present such a tool and show
how this tool can provide effective guidance to a broad
spectrum of sofiware personnel including developers,
managers and quality assurance engineers.

1. Introduction

A measurement programme is essential in order to
assess, predict and improve the quality of software
products and processes. In this paper, by a process we
will mean any software activity associated with the
development and maintenance of software: from
requirement analysis through to maintenance. Process
models like the Capability Maturity Model (CMM) [4],
ISO/IEC 12207 [7], ISO 9001/9000-3 [6] etc. are not specific
enough to cater to the needs of the whole spectrum of
software processes. The reasons are: (i) the nature of
processes vary widely, ranging from requirement analysis
to maintenance (ii) most of the models are more oriented
towards enhancing the maturity of an organization and
take a monolithic view of the overall development process,
and finally (iii) such process models, while emphasizing on

the process activities, often put too little importance on
the products which are the results of the process
activities.

Product quality aspects are usually addressed by
models such as ISO 9126 [5], FURPS+ model [3] etc.
However, how such product models are related to the
above process models, has not been properly addressed.
In order to alleviate these problems, Satpathy et al. [10]
have defined a Typed Generic Process Model (TGPM).
The generic model is a generic template which in tum
could be instantiated to generate the customized model of
any individual process. This instantiation mechanism
clearly spells out the idiosyncrasies of the individual
process that needs special attention and further, it makes
the relationship between process model and product
quality explicit through the dual interpretation of process
attributes. By dual interpretation, they mean that a process
attribute may have two aspects: a process aspect and a
product aspect.

The TGPM defines a process as a relationship between
a set of input products and a set of output products. As
we will discuss later, a process may consist of
subprocesses. Because of the hierarchical nature of
processes, and that each process or subprocess has input
products and output products, the volume of information
that we can associate with the whole hierarchy can be
very high. And depending on a requirement, we need to
extract the relevant information from the database
associated with the process hierarchy and perform
necessary computation on them to derive certain results.
Therefore, a tool support becomes imperative when we
deal with the processes under TGPM.

SEGESOFT is a project management tool [13], which
provides an environment for training project managers.
The goal of this tool is to have a uniform structure so that

analytical techniques can be incorporated into the
structure smoothly. The system collects and records both
actual and simulated project data and implements different
techniques such as machine learning, project tracking,
dynamic modelling, etc. The basic assumption of this work
is that management decisions should be supported by
integration of different sources of information. In this
paper, we have upgraded this tool to accommodate the
distinctive features of the TGPM for quality assessment
and improvement.

The organization of the paper is as follows. Section 2
describes the related work. Section 3 explains the TGPM;
in section 4, we explain the rationale for tool support. The
characteristics of the tool are explained in Section 5and a
case study is discussed in Section 6. Finally, in Section 7,
we present our conclusions and future work.

2. Related Work

ISO/IEC 9126 [5] describes a generic model for
specifying and evaluating the quality of software
products. The model isolates six factors, called
Functionality, Usability, Reliability, Efficiency,
Maintainability and Portability; and the quality of a
product is defined in terms of the quality of the above
factors. Each factor may in turn be defined by a set of
subfactors. The FURPS+ model [3] used by HP is quite
similar to ISO/IEC 9126.

Focusing on product quality alone may not guarantee
that an organization will deliver products of good quality.
Products are created by processes. So, based on an
orthogonal view that improving the quality of a process
will deliver products of good quality, many models have
been developed. Prominent among them are the CMM [4]
and ISO 9001 [6]. Models like BOOTSTRAP [9] and
SPICE/ISO 15504 [8] are variants of the CMM. ISO/IEC
12207 [7] does a classification of all processes associated
with the software development and offers general
guidelines which can be used by software practitioners to
manage and engineer software. The scope of most of
these standards cover an entire organization.

The GOM method [1, 12] proposes a measurement plan
for assessing quality of entities like products, processes
or people. It starts with a set of business goals and the
goals are progressively refined through questions until we

obtain some metrics for measurement. The measured
values are then interpreted in order to answer the goals.
Existing approaches choose a quality model from those
that exist so as to generate the business (or the primary)
goals of the GQM formulation for any individual product
or process.

Focusing on either process quality or product quality
alone is not sufficient. In a European-wide awareness
survey 65% of the respondents agreed that certification
against ISO 9000 is not enough to guarantee the quality of
software products [2] 40% of the respondents agreed that
a combined certification of products and processes is
necessary, and almost all of the models fail to make the
relationship between process quality models and product
quality clear. TGPM makes such a relationship clear by
taking the dual nature of process attributes into account.
A brief description of TGPM will be presented in the next
section.

3. The Typed Generic Process Model (TGPM)

The TGPM gives types to products and processes. A
product is an entity, which a process (e.g. any software
activity) produces as output. Products may also be fed to
processes as inputs. Table 1 enumerates some of the
products and their types. Product rd belongs to the set of
requirement documents, spc belongs to the set of
specifications and so on. TGPM models the set of
requirements by the set PRE_ELICIT REQ. TGPM defines
a process as a relation froma set of products to another
set of products; the set of relations from m input products
to n output products is denoted by:

IP,x IP;x...xIP,, < OP,xOP,x...xOP,

where [P, and OP; are the types of the i-th input
product and the j-th output product respectively. Table 2
shows the types of a few processes. A process may have
many type definitions. For example, if an organization
develops formal specifications from requirements only,
then the type of the formal specification process (FS
process) is: RD <« FS. On the other hand, if an
organization (in relation to a project) also decides to
interview the users for developing a FS, then the type of
FS process would be: PRE-ELICIT-REQ X RD « FS.

impl: IMPL
des:: DESIGN
mod: MODULES

req: PRE-ELICIT-REQ // Set of pre elicitation requirements.

rd: RD /1 Set of requirement documents
spc: SPEC /1 Set of specifications

des: DESIGN // Set of designs

doc: DOC // Set of documentations

// Set of implementations

// Set of designs

// Set of set of program modules
testdata: TESTDATA // Set oftest data

Table 1 Types of some products

Requirement analysis: PRE-ELICIT-REQ < RD

Specification: RD < SPEC

Formal design: RD x £S < FD
Maintenance: RD XSPEC x DES x IMPL x DOC <

RD xSPEC xDES x IMPL x DOC

Table 2 Types of some processes

TGPM then formalizes the internal structure of a
process. A process may be composed of subprocesses.
A subprocess is also a process in the sense that it takes
a product set as input and gives out a product set as
output. Whether a process should be decomposed into
subprocesses or not is decided by the process designer.
When considered from a process point of view, the
inputs and outputs of subprocesses are called
intermediate products. A subprocess which is not
decomposed further is called an atomic process. An
atomic process is defined as a set of process steps, like
the steps of an algorithm. The steps usually do not have
rigorous definitions: a process executer usually has
degrees of flexibility while executing them. Figure 1
shows the internal details of the testing process. An
organization is expected to have its own definition of the
internal structure of a process. For a more detailed
discussion on the internal process model, refer to [10].

In Figure 1, testing process takes an implementation
(a set of program modules) and a set of test cases as
input and produces a tested implementation and Test
results as output. As shown in the figure, testing
process consists of two subprocesses: unit testing and
integration testing. Unit testing consists of two atomic

processes: black box testing and white box testing.
Integration testing is an atomic process. Black box
testing and white box testing can proceed in parallel,
both producing their respective test results. For
simplicity, we will consider the only scenario where the
implementation passes the test cases. After the unit
testing, the program modules are integrated by the
integration process. Since the process of integration is
not a part of the testing process, following the notations
of TGPM, it has been shown outside the scope of the
testing process. The integrated modules and the test
cases are then fed to the subprocess integration testing
which produces a tested implementation along with test
results.

Once the internal structure of a process (or a
subprocess) is in place, the TGPM is next defined in
terms of eight factors: Functionality, Usability, Efficiency
and Estimation, Visibility and Control, Reliability, Safety,
Scalability, and Maintainability; each subfactor is in turn
defined by a set of subfactors. The definitions of the
subfactors of TGPM can be found in [10].

k22 Process Editor 0.1
File Edit Align Attribites Debug Window

) WIWULUITIETILS drid SELUTLgSsS S0l U esurig o aWirigo.araw

Testing

r'UnitTesting =

Black-box Testing

il ite-box Test
E:ZWIE ox Testing .

r

Integration Testing

N H
T

(8

Rewiark & Integration dllnt

Selection Tool

Figure 1. Testing processes and products associated

The most important aspect of TGPM is that it defines
attributes from a dual perspective. Consider, for instance,
the understandability attribute. The two perspectives are
(i) the logical concepts of a process should itself be
understandable to the process executer and further (i) the
process should make its output product sets
understandable. When we consider the formal
specification process, the method of creating the formal
specification and the formal specification language itself
must be understandable to the specifier, and further the
specification process must make the formal specification
understandable to its users. In conclusion, any process
assessment must consider such a dual perspective. TGPM
could be seen as a template with three parameters:

TGPM (input-product-set-type,
output-product-set-type,
application-domain)

The input product and the output product sets have
been discussed earlier. By application domain we mean
whether it is a safety-critical application, a real-time
application, a business application etc.

The customisation of TGPM proceeds in two steps: (i)
the substitution step and (ii) the refinement step. In the
substitution step, we substitute the parameters with their
actual bindings. Let us take the example ofthe FS process

and let its type be: RD<—FS. The substitution is illustrated
by the expression:

TGPM [RD/ input-prod-set-type]
[ES / output-prod-set-type |

What the above expression signifies is that, all
occurrences of the input product set in the definitions of
the factors and the subfactors in the definition of TGPM
are substituted by RD (requirement document). Similarly,
all occurrences of output product set are substituted by
FS (formal specification). Thus, at the end of the
substitution step, we have a crude definition of each of
the subfactors ofthe process concerned.

For the application-domain parameter, suppose we
have a safety critical application. Now, with the knowledge
that we are dealing with a FS process in a safety critical
application, the refinement step refines the crude
definitions that we have obtained after the substitution
step. The result then will be the customized quality model
for the FS process. As an illustration, consider the first
part of the subfactor ‘completeness’. After the
substitution step, we obtain the following definition: the
degree to which the process transforms all of the
functionalities of the RD into the FS. In the refinement
step we know that it is the FS process and the application
domain is the ‘safety critical application’. Further FS

process achieves transformation through specification;
and at the RD level, a functionality is understood by a
‘feature’. So the refined definition is: the degree to which
the FS process specifies all of the features (including the
safety critical features) ofthe RD in the FS.

The distinctive feature of TGPM is the dual perspective
of a process attribute. In plain terms, it says how good a
process attribute is in relation to the process itself and
then how it is related to the output product(s) of the
process and also to the end-product. This duality point of
view identifies certain process features such as (a)
process faults, (b) process understandability, (c) process
scalability, (d) process reliability, (e) process stability etc.
These features were not properly addressed by any of'the
previous process models.

4. Rationale for Tool Support

Following the conventions of TGPM, we may need to
keep the following categories of information in relation to
a process.

1. A process is either an atomic process or it is
defined in terms of subprocesses. So,
documentation is necessary to specify the
process structure.

2. A process is defined as a relation between a set
of input products and a set of output products.
Some documentation is necessary to say what
such products are.

3. A process can have a hierarchical structure (see
Figure 1). Each process or subprocess takes a set
of input products and a set of output products. If
we follow the ISO 9126 product quality model,
then each such product can have quality factors,
subfactors. Further each subfactor may be
associated with metrics. So we need to store all
such information which may be associated with
the products. Since a process can be hierarchical,

the number of such products and hence the
volume of information associated with them
could be significant.

4. Any process can have an instantiated model
(instantiated TGPM). Then, in relation to the
instantiated model, each process will have quality
factors and subfactors. Further corresponding to
each subfactor there may be metrics. So, each
process should store all such information.

Since there can be a number of processes, each process
can be hierarchical and each subprocess will have the
above 4 types of information associated with them, it is
clear that the volume of information can be very high, and
therefore tool support is essential.

5. Tool Support for TGPM

SEGESOFT is a project management tool [13] which
integrates simulation and dynamic modelling, knowledge
discovery, quality models etc so that a manager can obtain
a broad spectrum of information which can make project
management easier. We have upgraded this tool so that it
can incorporate TGPM features, and we will refer this
upgraded tool as Upgraded SEGESOFT (or USEGESOFT).
We will now describe the distinctive features of this
USEGESOFT in relation to the TGPM.

USEGESOFT provides a database where all information
associated with processes, products and their
relationships can be stored. It also provides a graphical
editor using which one can draw diagrams. The tool also
helps in building and maintaining the internal structure of
a process. The diagram in Figure 1 that represents testing
process has been drawn using this editor. Since the
internal structure of a process could be hierarchical, the
tool also supports nested hierarchical diagrams. Figure 3
represents a snapshot of the graphical editor which
supports ‘drag and drop’ mechanism.

E;E Segesoft - PMT
File Hode OQuality Process

=15

Subnodes of Testing

Subnodes name »

and Soton
2ot Teletext Subnodes |
ersiont
1 BE :
f# CIReS | Integration Testing
[mannu #||[Unit Testing
[3 colin k=3 Process Editor 0.1
e Cwes =
® [Testing File Edit Align Attributes Debug WWindow

% [Unit Testing | %IA'W m

D Black-box Testing g
[wihite-box Testing

CIDocuments and Settings'sird9driTestingdrawing0.draw

D Integration Testing

D Intedration Testing

Linit Testing

Black-hox Testing

hite-box Testing

Integration Testing

T

Selection Tool

Lo
L] L]

| Add...

| Delete...

Add node H Read data

Save data H Remowve node

Figure 2. Drag and drop mechanism of the Process Editor

As mentioned in the last section, we need to store four
types of information in relation to a process. USEGESOFT
tool provides an adequate documentation mechanism to
specify, store and display all the four types of information
which can be associated with a process or subprocess.
This information can remain hidden, or it can be displayed
through a pop up menu. For example, when a process
component is selected in the Process Editor, a context
menu associated with it allows us to store or visualize all

information associated with that component. The
snapshot of Figure 3 shows the high-level information of
the testing process through a pop-up menu. It is also
possible to follow from the pop-up menu in a nested
fashion to extract further information, if any. Alternatively,
information can also be obtained by following the trail of
entities from the main window. Figure 4 demonstrates this.

F23 Segesoft - PMT - = x|

File HNode OQuality Process
| Reading and Soton

® 3 Praject Teletext Subnodes [
@ [Jversiont Subnodes of Unit Testing
@ Egggg . Subnodes name »
lack-box Testing
@ CIwes |[wihite-box Testing

E:g Process Editor 0.1 E;a Process Information . il

File Edit Align Attributes Debug Window

[R]AIA

— B B) B} Prepare a comprehensive test plan specifications and test cases for eaq
EAEE S A S R P D P [N Y h level oftesting. Supplement these with the test data and testlogs. Tes
plans far systern testing may invalve aperators and test plans because

Process Info
hile testing a systern, follow these guidelines:

Dl'esting = acceptance testing involves customers.
Lnit Testing
Ciesign the test cases to test system restrictions, such as file and datab
Black-box Testing @ ase size (stress testin
H b g)-
E;,.—// Develop the data to test specific cases. Copies of live files must not be

ite-biox Testin zed except for Acceptance testing,
Ch @

Do not use confidential data far testing without written authorization, esp
v ecially inthe case of Acceptance testing.

View Input Artefacts Integration ‘ OK! H Cancel
View Output Artefacts

Go to Quality Model

Delete...

Remove node

Pmlmndicn Tenl

Figure 3 Accessing the process information from the popup menu in the Process Editor

[E segesoft - PMT o] x|
File HNode Quality Process
[T
[y colin
9 C]wes
@ [Testing

@ I Uit Te sting Information about White-box Testing

D Black-box Testing
O
D Integration Testing
D Rework & Integration
© [ArtefactsBS
[y BB rsit
[y wi rsit

[Ty i
[y maiz

Add node || R;aad data ” Save data || Remove node

1. Complete Path Testing
2 Branch or decision

3. Condition testing

4. Dataflow testing

4 Loop testing

Figure 4. Atomic Information from USEGESOFT Main Window

k=3 Quality Manager 0.1
Menu HNode

=10 x|

[»

@ [gmTesting
© [Analysability
[y Readability
[Understandability
[y Modifiability
@ T gmMdit
§ [Testability
@ O] Coverage
|j| Mo ofTest Cases
rj Test Effectiveness ratio
@ [Complexity

rﬁeneral rQMetri[: rQFactur rQSUHFamur |

Description:

Name: |Understandabi|it:.f

The degree to which the testing process are |
nderstandable to the tester I maintainer.

The degree towhich the testing cases and
results are understandable to the tester.|

|j| Cyclomatic numbhber = 1 |:_

—

Add

Delete

Figure 5. Process quality attributes according to TGPM

Figure 5 shows how definitions of various process
quality attributes according to the TGPM, along with their
dual definitions, can be obtained.

5.1. Information Retrieval and inference mechanism

USEGESOFT stores a lot of information in relation to a
process and the associated products. Depending on a
requirement, we need to obtain relevant information from
the database, which stores all the documentation. And
further, we need to use this information to do some
graphical display or make inferences by using some
statistical modelling approach. Currently, as quality
information is stored using the open standard XML
(Extensible Markup Language) [14] we are able to extract
this information manually or transform it using XSL
(Extensible Stylesheet Language) [15]. In this way it is
possible to manipulate or display the data using a
spreadsheet or other data processing applications. More
automated extraction of this information using a script
language and their visualization is a part of our ongoing
work.

6. Case Study

Satpathy et al. [11] has discussed a case study in which
they took the teletext module of a new generation TV from
Philips Electronics and specified it formally using B and

informally using UML. Then they have done a
comparative study of both the specifications. They have
performed their specification in the TGPM framework and
they also have collected various metrics for future
analysis. We have used our USEGESOFT tool in creating
all diagrams, and storing all relevant information
associated with those diagrams. For this case study.

7. Conclusions and Future Work

The TGPM is a generic process model, which is
instantiated to obtain process models for individual
processes. The amount of information that needs to be
stored with processes could be very high. USEGESOFT is
a tool that provides a framework for storing various
artefacts associated with the instantiated process models.
We have discussed how information can be stored and
how, in response to a specific requirement, relevant
information can be retrieved to make inferences. We have
also used the USAGESOFT tool for a case study to show
the effectiveness of our tool.

At this stage, the information retrieval and its display
are more or less manual. We intend to use a query
language and retrieve the necessary information

automatically by using a script language. This is a part of
our ongoing work.

Acknowledgements

This work has been supported by The University of
Reading and the EPRSC — EMPAF ER/L87347. Also this
work is based on a project management tool developed by
the SEGESOFT Group, supported by CICYT TIC99-0351
(Spain). Thanks to Wolfram Kaiser for answering
questions about the JHotDraw package.

8. References

[1] V. R. Basili, G. Caldiera, and H. D. Rombach, "The
Goal Question Metric Paradigm," in Encyclopedia of
Sofiware Engineering: John Wiley & Sons, Inc., 1994, pp.
528-532.

2] G. Bazzana and M. Pioti, "Process and Product
Measurement,” in Better Sofiware Practice for Business
Benefict, R. Messnarz and C. Tully, Eds. Los Alamitos:
IEEE Comp. Society, 1999, pp. 151-176.

[3] R. B. Grady and D. L. Caswell, Sofiware Metrics:
Establishing a Company-wide Program. Englewood
Cliffs, N.J.: Prentice-Hall, 1987.

[4] W. S. Humphrey, "Introduction to Software
Process Improvement," Software Engineering Institute
CMU/ SEI- 92- TR- 7, June 1992 (Revised June 1993).

[5] ISO, "Information technology -- Software product
evaluation,” ISO (International Organization for
Standardization) ISO/IEC 9126, 1991.

[6] ISO, "Quality management and quality assurance
standards,” ISO (International Organization for
Standardization) ISO 9000-1:1994.

[7] ISO, "Information technology -- Software life
cycle processes,” ISO (International Organization for
Standardization) ISO/IEC 12207, 1995.

[8] ISO, "Information technology -- Software process
assessment,” ISO (International Organization for
Standardization) ISO/IEC TR 15504, 1998.

[9] P. Kuvaja, Software process assessment and
improvement the BOOTSTRAP approach. Oxford:
Blackwell Business, 1994.

[10] M. Satpathy, R. Harrison, C. Snook, and M.
Butler, "A Generic Model for Assessing Process Quality,"
presented at 10th International Workshop on Software
Measurement (IW SM'00), Berlin, Germany, 2000.

[11] M. Satpathy, C. Snook, R. Harrison, and M.
Butler, "A Comparative Study of Formal and Informal
Specifications through an Industrial Case Study,"
presented at IEEE/TFIP Workshop on formal Specifications
of Computer Based Systems (ECBS), Washintong, D.C.,
2001.

[12] R. v. Solingen and E. Berghout, The
goal/question/metric method: a practical guide for

quality improvement of software development.
Maidenhead: McGraw-Hill, 1999.

[13] J. Tuya, P. Fernandez, M. A. Prieto, J. Aguilar, I.
Ramos, J. Riquelme, F. Ferrer, M. Toro, M. Ruiz-Carreira, D.
Rodriguez, M. Satpathy, R. Harrison, A. Ruizde Infante, J.
J. Dolado, R. Matilla, and M. A. Alvarez, "Integration of
Information in a Training Environment for Software Project
Management,” presented at Software Quality
Management 2001 SQM'01, Loughborough, UK, 2001.

[14] W3C, "Extensible Markup Language (XML) 1.0.
W3C Recommendation", World Wide Web Consortium
1998.

[15] W3C, "XSL Trans formations (XSLT). Version 1.0
W3C Recommendation”", World Wide Web Consortium,
1999.

