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Typically, ML algorithms have been divided into: 

• Predictive (Classification, Regression, temporal series) 

• Descriptive (Clustering, Association, summarisation) 

Recently, supervised descriptive rule discovery is being introduced in the 
literature. 

• The aim is to understand the underlying phenomena, not to classify new instances, i.e., 
to find information about a specific value in the class attribute.  

• The information should be useful to the domain expert and easily interpretable.  

• Types of supervised descriptive techniques include: 

• Contrast Set Mining (CSM) 

• Emerging Pattern Mining (EPM)  

• Subgroup discovery (SD) 

 

 

 

Descriptive Models 



SD algorithms aims to find subgroups of data that are statistically different 
given a property of interest. [Klösgen, 96; Wrobel, 97] 

 

• SD lies between predictive (finding rules given historical data and a property of 
interest) and descriptive tasks (discovering interesting patterns in data). 

 

• SD algorithms generally extract rules subsets of the data of  previously specified the 
concept, for example defective modules from a software metrics repository. 

 

• Rules have also the "Condition → Class" where the condition is the conjunction of a 
set of selected variables (pairs attribute–value) among all variables. 

 

• Advantages of rules include that are well known representation easily 
understandable by the domain experts 

 

• So far, SD has majoritarily been applied to the medical domain. 

SD – Definition 



 

 

SD vs. Classification 

Classification Subgroup Discovery 

Induction Predictive Descriptive 

Output Set of classification 

rules 

(dependent  rules) 

Individual Rules to describe 

subgroups 
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To find interesting and 

interpretable patterns with 

respect to a specific attribute 
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Following [Herrera et al, 2011] 



SD algorithms could be classified as: 

• Exhaustive (e.g.: SD-map, Apriori-SD) 

• Heuristic (e.g.: SD, CN2-SD) 

• Fuzzy genetic algorithms (SDIGA, MESDIF, EDER-SD)  

Or from their origin,  evolved from different communities: 

• Extension of classification algorithms (SD, CN2-SD, etc.) 

• Extension of association algorithms (Apriori-SD, SD4TS, SD-Map, etc.) 

Comprehensive survey by [Herrera et al. 2011] 

 

 

SD Algorithms 



Measures of Complexity 

• Number of rules: It measures the number of induced rules. 

• Number of conditions: It measures the number of conditions in the antecedent of the 
rule. 

Measures of Generality 

• Coverage: 𝐶𝑜𝑣 𝑅 =
𝑛(𝐶𝑜𝑛𝑑)

𝑁
 

where N is the number of samples and n(Cond) is the no. of instances that 
satisfy the antecedent of the rule. 

• Support:   𝑆𝑢𝑝 𝑅 =
𝑛(𝐶𝑜𝑛𝑑·𝐶𝑙𝑎𝑠𝑠)

𝑁
 

where n(Cond · Class) is the  no. of instances that satisfy both the condition 
and the class 

Quality Measures in SD 



Measures of precision 

• Confidence: 𝐶𝑜𝑛𝑓 𝑅 =
𝑛(𝐶𝑜𝑛𝑑·𝐶𝑙𝑎𝑠𝑠)

𝑛(𝐶𝑜𝑛𝑑)
  

 

• Precision Qc :  𝑄𝑐 = 𝑛 𝐶𝑙𝑎𝑠𝑠 · 𝐶𝑜𝑛𝑑 − 𝑐 𝑛(¬𝐶𝑙𝑎𝑠𝑠 · 𝐶𝑜𝑛𝑑) 

 

• Precision Qg : 𝑄𝑔 = 
𝑛(𝐶𝑙𝑎𝑠𝑠·𝐶𝑜𝑛𝑑)

𝑛 ¬𝐶𝑙𝑎𝑠𝑠·𝐶𝑜𝑛𝑑 +𝑔
 

 

Measures of interest 

 

• Significance:  

Quality Measures in SD 

𝑆𝑖𝑔 𝑅 = 2  𝑛 𝑐𝑜𝑛𝑑 · 𝐶𝑙𝑎𝑠𝑠𝑘 · 𝑙𝑜𝑔
𝑛(𝐶𝑜𝑛𝑑 · 𝐶𝑙𝑎𝑠𝑠𝑘)

𝑛 𝐶𝑙𝑎𝑠𝑠𝑘 · 𝑝(𝐶𝑜𝑛𝑑)

𝑛

𝑘=1

 



Sensitivity:  

 

False alarm:  

 

Specificity:  

 

Unusualness:  

Other Measures 

𝑆𝑒𝑛𝑠 𝑅 = 𝑇𝑃𝑟 =  
𝑇𝑃

𝑃𝑜𝑠
= 
𝑛(𝐶𝑙𝑎𝑠𝑠·𝐶𝑜𝑛𝑑)

𝑛(𝐶𝑙𝑎𝑠𝑠)
   

𝐹𝐴 𝑅 = 𝐹𝑃𝑟 =
𝐹𝑃

𝑁𝑒𝑔
=
𝑛(¬𝐶𝑙𝑎𝑠𝑠𝐶𝑙𝑎𝑠𝑠 · 𝐶𝑜𝑛𝑑)

𝑛(¬𝐶𝑙𝑎𝑠𝑠)
 

𝑆𝑝𝑒𝑐 𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=
𝑇𝑁

𝑁𝑒𝑔
=
𝑛(¬𝐶𝑙𝑎𝑠𝑠 · ¬𝐶𝑜𝑛𝑑)

𝑛(¬𝐶𝑙𝑎𝑠𝑠)
 

𝑊𝑅𝐴𝑐𝑐 𝑅 =  
𝑛(𝐶𝑜𝑛𝑑)

𝑁
=
𝑛(𝐶𝑙𝑎𝑠𝑠·𝐶𝑜𝑛𝑑)

𝑛(𝐶𝑜𝑛𝑑)
−
𝑛(𝐶𝑙𝑎𝑠𝑠)

𝑁
  



NASA Datasets 

• Originally available from: 

• http://mdp.ivv.nasa.gov/ 

• From PROMISE, using the ARFF format (Weka – data mining toolkit): 

• http://promisedata.org/ 

• Boetticher, T. Menzies, T. Ostrand, Promise Repository of Empirical Software 
Engineering Data, 2007. 

Bug prediction dataset 

• http://bug.inf.usi.ch/ 

• D'Ambros, M., Lanza, M., Robbes, Romain, Empirical Software Engineering 
(EMSE), In press, 2011 

Experimental Work – Datasets 



Some of these datasets are highly unbalanced, with duplicates and 
contradictory instances, and irrelevant attributes for defect prediction.  

 

Datasets Characteristics 

 # inst  Non-def Def % Def Lang 

           CM1  498 449 49   9.83   C  

           KC1  2,109 1,783 326  15.45   C++  

           KC2  522 415 107  20.49   C++  

           KC3  458 415 43   9.39   Java  

           MC2  161 109 52  32.29   C++   

           MW1  434 403 31   7.14   C++   

           PC1  1,109 1,032 77   6.94   C  

Eclipse JDT Core  997 791 206  20.66   Java  

Eclipse PDE-UI  1,497 1,288 209  13.96   Java  

       Equinox  324 195 129  39.81   Java  

       Lucene   691 627 64   9.26   Java  

        Mylyn   1,862 1,617 245  13.15   Java  



For the NASA datasets: 

 

 

 

 

 

 

For the OO datasets: 

 

 

 

Metrics Used from the Datasets 
        Metric Definition 

McCabe  

 loc     McCabe's  Lines of code 

 v(g)     Cyclomatic complexity 

 ev(g)     Essential complexity 

 iv(g)     Design complexity 

Halstead  

 uniqOp     Unique operators, n1 

 uniqOpnd     Unique operands, n2 

 totalOp     Total operators, N1 

 totalOpnd     Total operands N2 

Branch      branchCount     No. branches of the flow graph 

Class   defective?   Reported defects? (true/false) 

         Metric  Definition 

C&K   wmc     Weighted Method Count  

 dit     Depth of Inheritance Tree  

 cbo     Coupling Between Objects  

 noc   No. of Children  

 lcom    Lack of Cohesion in Methods  

 rfc     Response For Class  

Class   defective?   Reported defects? 



The algorithms used: 
• The Subgroup Discovery algorithm (SD) [Gamberger, 02] is a covering rule induction 

algorithm that using beam search aims to find rules that maximise:  

 

 𝑞𝑔 =
𝑇𝑃

𝐹𝑃+𝑔
 

 

where TP and FP are the number of true and false positives respectively and g is a 
generalisation parameter that allow us to control the specificity of a rule, i.e., balance 
between the complexity of a rule and its accuracy. 

 

• The CN2-SD [Lavrac, 04] algorithm is an adaptation of the CN2 classification rule algorithm 
[Clark, 89]. It induces subgroups in the form of rules using as a quality measure the relation 
between true positives and false positives. The original algorithm consists of a search 
procedure using beam search within a control procedure and the control procedure that 
iteratively performs the search.  

• The CN2-SD algorithm uses Weighted Relative Accuracy (explained next) as a covering 
measure of the quality of the induced rules.  

Tool: 
• Orange: http://orange.biolab.si/ 

Algorithms 



#  pd   pf   TP   FP  Rules 

SD 0   .24  0 26 0    ev(g) > 4 ˄ totalOpnd > 117   

1   .28    .01  30 5    iv(G) > 8 ˄  uniqOpnd > 34 ˄  ev(g) > 4   

2   .27    .01  29 5    loc > 100 ˄  uniqOpnd > 34 ˄  ev(g) > 4   

3   .27    .01  29 5    loc > 100 ˄  iv(G) > 8  ˄ ev(g) > 4   

4   .27    .01  29 5    loc > 100 ˄  iv(G) > 8  ˄ totalOpnd > 117   

5   .24    .01  26 5    iv(G) > 8 ˄  uniqOp > 11 ˄  totalOp > 80   

6   .24    .01  26 5    iv(G) > 8 ˄  uniqOpnd > 34   

7   .23    .01  25 5    totalOpnd > 117   

8   .31    .01  34 5    loc > 100 ˄  iv(G) > 8   

9   .29    .01  32 5    ev(g) > 4 ˄  iv(G) > 8   

10   .29    .01  32 5    ev(g) > 4 ˄  uniqOpnd > 34   

11   .28    .01  30 5    loc > 100 ˄  ev(g) > 4   

12   .28    .01  30 5    iv(G) > 8 ˄  uniqOp > 11   

13   .35    .01  38 5    ev(g) > 4 ˄  totalOp > 80 ˄   v(g) > 6 ˄ uniqOp > 11   

14   .27    .01  29 5    iv(G) > 8 ˄  totalOp > 80   

15   .27    .01  29 5    ev(g) > 4 ˄  totalOp > 80 ˄   uniqOp > 11   

16   .26    .01  28 5    ev(g) > 4 ˄  totalOp > 80 ˄   v(g) > 6   

17   .26    .01  28 5    loc > 100 ˄  uniqOpnd > 34   

18   .31    .01  34 5    ev(g) > 4 ˄  totalOp > 80   

19   .31    .01  34 5    iv(G) > 8   

CN2-SD 0   .35    .01  38 5   uniqOpnd > 34 ˄  ev(g) > 4   

1   .4     .02  43 9    totalOp > 80 ˄  ev(g) > 4   

2 .78 .21 84 88    uniqOP>11 

Examples Rules – KC2 Dataset 



 #   pd   pf   TP   FP   Rules 

SD 0   .27    .02  56 16   lcom > 171 ˄  rfc > 88  ˄ cbo > 16 ˄  wmc > 141    

1   .3     .02  62 16   rfc > 88 ˄  wmc > 141   cbo > 16    

2   .3     .02  62 16   cbo > 16  ˄ wmc > 141    

3   .29    .02  60 16   lcom > 171 ˄  rfc > 88  ˄ wmc > 141    

4   .29    .02  60 16   lcom > 171 ˄  wmc > 141    

5   .33    .03  68 24   rfc > 88 ˄  wmc > 141    

6   .32    .03  66 24   rfc > 88 ˄  wmc > 141  ˄ dit≤ 5    

7   .33    .03  68 24   wmc > 141    

8   .32    .03  66 24   dit <= 5 ˄  wmc > 141    

9   .18    .02  38 16   wmc > 141 ˄  noc = 0 ˄  dit≤ 5    

10   .19    .02  40 16   wmc > 141 ˄   noc = 0    

11   .18    .02  38 16   cbo > 16 ˄  rfc > 88 ˄  noc > 0   dit≤ 5    

12   .42    .04  87 32   cbo > 16 ˄  rfc > 88 ˄  dit≤ 5    

13   .3     .03  62 24   lcom > 171 ˄   rfc > 88  ˄ cbo > 16 ˄  dit≤ 5    

14   .2     .02  42 16   cbo > 16 ˄ rfc > 88 ˄   noc > 0    

15   .24    .03  50 24   cbo > 16 ˄  rfc > 88 ˄  noc = 0 ˄  dit≤ 5    

16   .45    .05  93 40   cbo > 16 ˄  rfc > 88    

17   .32    .03  66 24   lcom > 171 ˄  rfc > 88 ˄  cbo > 16    

18   .25    .03  52 24   cbo > 16 ˄  rfc > 88 ˄  noc = 0    

19   .33    .05  68 40   cbo > 16 ˄  lcom > 171    

CN2-SD 0   .45    .05  93 40   rfc > 88  ˄ cbo > 16    

1   .55    .09  114 72   rfc > 88    

Example Rules – JDT Core Dataset 



       Cov Sup  Size   Cplx  Sig  RAcc   Acc  AUC 
SD 

  

  

  

  

  

  

   CM1   .233   .72   20 3.045 4.548  .029       .602   .748   

   KC1   .079   .426  20  2.61       16.266  .023       .61    .657   

   KC2   .085   .533  20 2.185 9.581  .049       .703   .74    

   KC3   .294   .91   20 2.435 5.651  .037       .608   .83    

   MC2   .161   .647  20 2.055 2.204  .042       .643   .689   

   MW1   .071   .5    20 2.515 3.767  .02        .736   .678   

   PC1   .118   .37   20 3.515 3.697  .01        .66    .621   

CN2-SD 

  

  

  

  

  

  

   CM1   .113   .64   5  1.3   2.972  .023   .628    .617  

   KC1   .107   .607  5  1.1   2.912  .03    .634    .71   

   KC2   .156   .795  5  1.6   11.787  .065   .733    .816  

   KC3   .126   .885  4.9    1.295 3.146  .019   .68   .797  

   MC2   .152   .427  5  2.32  2.186  .04    .593    .593  

   MW1   .079   .558  5  2.02  3.517  .02    .661    .743  

   PC1   .087   .661  5  1.86  2.814  .007   .632    .688  

SD 

  

  

  

  

   JDT Core   .082   .539   20 2.485 13.774  .039       .662   .726   

   PDE UI    .11    .407   20  3.94       1.936  .023       .603   .642   

   Equinox   .269   .899   20  2.08       4.577  .054       .62    .759   

   Lucene    .106   .579   20 2.295 4.368  .017       .741   .696   

   Mylyn     .104   .425   20  2.9        12.631  .021       .675   .633   

CN2-SD 

  

  

  

  

   JDT Core   .121   .543  5  1.58  18.961  .055   .613   .732  

   PDE-UI     .144   .593  3.7   2.89  1.106  .023   .575   .684  

   Equinox    .166   .797  5 1.020 3.772  .043   .636   .712  

   Lucene     .070   .405  5  2.2   4.378  .016   .584    .653  

   Mylyn      .081   .376  4.5  2.818 11.062  .018   .555   .632  

Cross-validation Results (10 CV) 



ROC and Rule visualisation for KC2 (SD & CN2-SD) 

Visualisation of SD 



Rules obtained using SD are intuitive but needed to be analysed by an expert.  

The metrics used for classifiers cannot be directly applied in SD and need to be 
adapted. 

Current and future work 

• Further validation and  application in other software engineering domains, e.g., project 
management. 

• SD is a search problem! 

• Development of new algorithms and metrics  

• EDER-SD (Evolutionary Decision Rules SD) in Weka 

• Unbalanced data (ROC, AUC metrics?), etc. 

• Feature Selection (as a pre-processing step, part of the algorithm?, which metrics really 
influence defects) 

• Discretisation 

• Different search strategies and fitness functions (and multi-objective!) 

• Use of global optimisation (set of metrics) vs. local metrics (individual metrics) 

 

Conclusions 
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