
Maintenance of Object Oriented Systems through Re-engineering: A Case Study

Manoranjan Satpathy1, Nils T Siebel2 and Daniel Rodrı́guez1

1Applied Software Engineering Group
2Computational Vision Group

Department of Computer Science
The University of Reading

Reading RG6 6AY, England

m.satpathy@reading.ac.uk

fnts,drgg@ieee.org

Abstract

Unregulated evolution of software often leads to software
ageing which not only makes the product difficult to main-
tain but also breaks the consistency between design and im-
plementation. In such a case, it may become necessary to
re-engineer the software so that it becomes maintainable
again. In this paper, we present the case study of the re-
engineering of the People Tracking subsystem of a surveil-
lance system written in C++. We discuss the problems, the
challenges and the approaches taken, and we show how the
re-engineered product is now better maintainable. We also
discuss the generation of the relevant artefacts — from re-
quirement document through to design document.

Keywords. Software Maintenance, Reverse Engineering,
Re-engineering, Case Study, OO Systems.

1. Introduction

Software maintenance is the modification of a software
product after delivery. It is classified into four categories [5,
p. 354–355]:

1. Corrective maintenance refers to modifications for cor-
recting problems in an implementation.

2. Adaptive maintenance refers to modifications for
adapting a product to changed environments, both soft-
ware and hardware.

3. Perfective maintenance refers to enhancements such as
making the product faster, smaller, better documented,
creating a cleaner structure, and adding new function-
alities because of new user requirements.

4. Preventive maintenance involves changes which are
done aiming at preventing malfunctions and improv-
ing maintainability of the software.

Initial design of a software aims at developing a prod-
uct so that modifications of the above kinds become easy
to perform in terms of time and effort. Furthermore, it is
expected that as a consequence of these changes, the soft-
ware should preserve the original aim of the initial design.
However, it often happens that modifications are done with-
out proper software engineering principles, and therefore
the initial design soon becomes unclean in the sense that its
maintainability becomes costly in terms of effort and time.

Consider the example of cohesion and coupling [5,
p. 309–317]. The interaction between various elements
within a class should be maximised and the interaction
across classes should be minimised. However, if too much
of “patch work” was done in a “half-hazard” manner, then
the implementation would no longer exhibit the desired lev-
els of cohesion and coupling. Furthermore, for better main-
tainability, it is expected that the various artefacts of a soft-
ware product — from requirement document through to de-
sign — remain consistent with each other and the implem-
tation. However, because of bad maintenance over a long
period of time, in many cases this consistency is lost. As a
result the software loses traceability.

In such a case, it may become necessary to re-organise
the software with the following aims:

� to recover the system artefacts from the implementa-
tion and the existing documents,

� to bring the artefacts to a consistent state, possibly
through re-design or re-specification. The re-design
should aim at restoring the quality characteristics of
the software [9],

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

� and to re-structure the implementation in order to re-
flect the new design.

Consequently, the system is made maintainable again.
This approach is often called re-engineering. Re-
engineering is the approach of understanding the old code
to keep much of it and to modify it to meet new needs [20].
This approach involves reverse engineering. Reverse engi-
neering is the process of understanding and modifying soft-
ware systems. It involves identification of the components
of an existing system and the relationship among them. Fur-
thermore, it also aims at creating high level descriptions of
various aspects of the existing system [19].

The primary challenge with regards to re-engineering is
to understand the existing software along with its associated
artefacts. In order to accomplish this, we need two kinds of
information: static information and dynamic information.
Static information describes the structure of the software
in relation to the source code, while dynamic information
describes its run-time behaviour [16].

In this paper, we discuss the case of the People Track-
ing subsystem of an integrated surveillance system for un-
derground stations. The details of this system will be pre-
sented in Section 3. We briefly discuss the evolution of the
system and how it became unmaintainable over time and
why it became necessary to re-design it. We describe how a
re-engineering approach was carried out and what benefits
were obtained from it.

The organisation of the paper is as follows. Section 2
discusses the related work. Section 3 presents the object of
our case study and the reasons behind its re-design. Sec-
tion 4 discusses the approach taken for the re-design. Sec-
tion 5 discusses the system after the re-design, the benefits
achieved and the lessons learnt from this case study. Sec-
tion 6 concludes the paper.

2. Related Work

A lot of research has been carried out and presented on
software maintenance and reverse engineering. We cite here
those which we consider relevant to our case study.

Lientz et al [11] have surveyed 120 organisations and
analysed their maintenance efforts in terms of their cate-
gories. Their observation: on average, 17.4% of the main-
tenance effort is corrective, 18.2% is adaptive, 60.3% is per-
fective and 4.1% is preventive.

Domsch et al [4] have presented a case study in object-
oriented maintenance in which the text based user interface
(UI) of a product, which determined the number of power
supplies required for a system configuration, was replaced
by a graphical UI (GUI). The additional requirements were:
(i) the new software must print relevant graphical outputs
to a printer and (ii) the new product must run on various

32-bit Microsoft Windows platforms. The requirements
constrained the maintainer to use Microsoft specific APIs.
The software engineer who developed the product was also
the maintainer. The total maintenance effort was 116 man
hours; 95% of the maintenance effort was perfective (devel-
opment of GUI), 3.2% adaptive and 2% corrective.

One of the important issues in re-engineering is the de-
tection and location of design flaws which prevent an effi-
cient maintenance and further development of the system.
Marinescu [13] has discussed a metric-based approach to
detect such design flaws. The two most well-known design
flaws are god classes and data classes. God classes are those
which tend to centralise the intelligence of the system, while
data classes are those which define data fields and almost no
methods except some accessor methods. The author uses a
metric-based approach for detecting god classes and data
classes. A case study was done on an industrial project of
50,000 lines of C++ code. The author points out that the ap-
proach was highly effective, though there are design flaws
like duplicated code and the number of detected bugs in a
class which would not be addressed by his approach be-
cause they rely on metrics other than the ones which can be
obtained from the source code.

Refactoring [6] is a technique to correct design flaws in
object oriented systems. Refactoring operations reorganise
a class hierarchy by shifting responsibility between classes
and redistributing instance variables and methods. There-
fore it would be better if reverse engineering approaches
found out which refactoring approaches have been applied,
for understanding system evolution. Demeyer et al [3] dis-
cuss four heuristics for identifying various types of refactor-
ing operations which were applied to the past versions. The
authors deal with the following three types of refactoring:
(i) splitting methods into smaller chunks to separate com-
mon behaviour from the specialised parts so that subclasses
can override, (ii) moving functionality to a newly created
sibling class and (iii) insertion/removal of classes from a
class hierarchy and redistribution of their functionality.

3. The Object of our Case Study

The system studied for this article is the People Track-
ing subsystem of ADVISOR3, an integrated system for au-
tomated surveillance of people in underground stations (see
Figure 1). ADVISOR is being built as part of a European
research project involving 3 academic and 3 industrial part-
ners. The task of the People Tracker is to automatically
analyse images from one or many camera inputs. The sys-
tem has to detect all the people in the image and track them
in realtime as a stream of video images is continuously fed

3Annotated Digital Video for Intelligent Surveillance and Optimised
Retrieval

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

Video & Annotation

Behaviour

Analysis

Video Capture

Motion Detection

Crowd Density &

Motion Estimation

Interface

Human−Computer

Database

Tracking
People

Figure 1. ADVISOR System Overview

to the system. The image in Figure 2 shows an example of
the visualised output from the People Tracker.

3.1. Brief History

The original People Tracker was written at the Univer-
sity of Leeds in 1993–1995 using C++ running under IRIX
on an sgi. It was a research and development system and
a proof of concept for a PhD thesis [2]. The main focus
during development was on functionality and experimen-
tal features which represented the state-of-the-art in people
tracking at that time. No software design technique was
employed during the code development. The only docu-
mentation generated was a short manual on how to write a
program using the People Tracking module.

In 1995–1998 the code was used in a collaboration be-
tween the Universities of Leeds and Reading. The software
was adapted at the University of Reading to inter-operate
with a vehicle tracker which ran on a Sun/Solaris plat-
form [15]. Only little functionality was changed and added
during this time and no new documentation was created.

Starting in 2000, the People Tracker has been changed
for its use within the ADVISOR system shown in Figure 1.
This new application required a number of major changes at
different levels. This article focuses on the changes carried
out so far within ADVISOR.

Figure 2. People Tracking Results

Table 1 shows a brief summary of the characteristics of
the People Tracker at different stages of the project, start-
ing from January 2000. These metrics were obtained using
the CCCC (C and C++ Code Counter) tool by Little-
fair [12]. The size is given in Lines of Code (LOC) in-
cluding comment lines. The original version (as of January
2000) is referred to as “PT0”.

Version LOC Classes Methods Global Func.

PT0 38,520 154 1,177 271
PT1 45,762 191 1,363 286
PT2 51,435 183 1,431 25
PT3 40,902 178 1,437 24

Table 1. Versions of the People Tracker

3.2. Motivation for Re-design

The planned use of the People Tracker within the
ADVISOR System carried a lot of requirements that could
not be met by the original implementation. Most of the new
requirements arose from the fact that the People Tracker
would now have to be part of an integrated system, while
earlier it was standalone. The use of the People Tracker
within the ADVISOR system also meant moving it “from
the lab to the real world” which necessitated many changes.
Figure 1 shows how the People Tracking subsystem is con-
nected to the other components of the ADVISOR system.

The new requirements for the People Tracker were:

� The People Tracker has to be fully integrated within
the ADVISOR system.

� It has to run multiple trackers for video input from
multiple cameras (original software: one tracker, one
camera input).

� The ADVISOR system requires the People Tracker to
operate in realtime. Previously, the People Tracker
used to read video images from hard disk which meant
there were no realtime requirements.

� Within ADVISOR, the People Tracker has to run au-
tonomously without requiring input from an operator.

� The software has to be ported from sgi to a standard
PC running GNU/Linux to make economical system
integration feasible.

The status of the existing People Tracker was evaluated
in relation to the new requirements. It was observed that
the system had significant deficiencies which hindered the
implementation of the required new functionality:

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

� Heavy use of global variables and functions meant that
multiple cameras could not be used.

� Excepting a few pages of operating manual, no other
documentation was available.

� Though the code was written in C++, it made a limited
use of object oriented features.

� There were very little comments in the source code
which made it difficult to read.

� The names of some of the classes and methods were
misleading.

4. Approaches Taken for the Re-design

4.1. Stages of Work

Figure 3 shows the sequence of steps which were fol-
lowed to re-engineer the People Tracker. The original Peo-
ple Tracker is marked as “PT0”, which was running on
an sgi platform. In the first phase of the work the soft-
ware was ported to a PC running GNU/Linux. The ap-
proach taken was “take code and compile”, replacing the
non-existent functions in the process. PT0 contained calls
to sgi video hardware and to a mathematical library which
did not exist on the PC.

Porting to
GNU/Linux

0PT

Re−engineering
Reverse Eng. /

PT1

PT2

PT3

Addition of little
Functionality

Addition of new
Functionality

Mar 2001

Sep 2001

Mar 2002

Jan 2000

Figure 3. Sequence of Work

Once the porting was complete, attempts were made to
incorporate new functionality to the code. These were in-
put/output data format changes. Added functionality in-
cluded the capability to read XML files which adhered to

a given XML Schema [21] and to decode JPEG images. We
refer to the product at this stage as “PT1”. The characteris-
tics of PT1 have again been shown in Table 1.

While incorporating the new functionality the deficiency
of the software became evident. These deficiencies were
discussed in section 3.2; some important influences of these
were:

� As the code was badly documented it was difficult to
understand.

� The lack of structure in the code (many global vari-
ables etc) meant that the collateral effects of changes
were not localised.

At this stage two options were considered: (i) to re-
engineer the system (ii) to develop a new system from
scratch. For the following reasons it was decided to follow
the re-engineering approach:

� The new developers did not have sufficient domain
knowledge to develop a new system at that time, as
they were learning the system in an incremental man-
ner. The original developers were not available, and no
useful documentation existed.

� It was considered necessary to have a prototype ready
as soon as possible.

The aim of the reverse engineering/re-engineering step
was (i) to understand the program and the design, (ii) to
find and correct design flaws and (iii) to recover all the soft-
ware engineering artefacts like the requirement and the de-
sign documents. From the source code, the class diagram
was obtained by using the tool Rational Rose 2000e [14].
The analysis of the class diagram revealed that many class
names did not reflect the inheritance hierarchy, a number of
classes were found to be redundant, and many classes did
have duplicated functionality. The following correctional
steps were performed next:

� Redundant classes and some “dead code” [1] were re-
moved.

� Global variables and functions were eliminated and
their functionality distributed into both existing and
new classes. Exceptions were global helper functions
like min(), max() etc which were extracted and
moved into one C++ module.

� Many refactoring techniques [3] were applied, such as:

– Filtering out functionality duplicated in similar
classes and moving it into newly created base
classes.

– Re-distribution of functionality between classes
and logical modules.

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

– Re-distribution of functionality between meth-
ods.

� Consistent renaming of file names to reflect classes de-
fined in them.

� Meaningful names were given to classes and methods.

� PT1 contained many class implementations in the
header files; they were moved to the implementation
(.cc) files.

� Assertions [7, chap. 6] were introduced at strategic
points in the existing code and in all of the new code.

� From both static analysis and dynamic analysis [16],
a requirement document and the UML artefacts like
the Use Case, component, and package level sequence
diagrams [17] were obtained. The UML diagrams have
been shown in Figures 6 through 8 respectively.

During this time, about 1 man month of testing was done
to show that the modifications and additions were function-
ing correctly. The product after the reverse/re-engineering
step is referred to as “PT2”. The characteristics of PT2 can
be seen in Table 1.

In the final step, the remaining part of the required
new functionality was incorporated into the re-engineered
product. This includes the addition of separate processing
threads for each video input, addressing the synchronisa-
tion and timing requirements etc. A newly created master
scheduler manages all processing in order to guarantee re-
altime performance with multiple video inputs. We will re-
fer to this version of the People Tracker as “PT3”. Table 1
shows the characteristics of PT3. This version of the People
Tracker incorporates most of the functionality needed for
its use within ADVISOR and improvements to the people
tracking algorithms which make it appropriate for the ap-
plication [18]. The module has been validated against test
data. Currently (March 2002), the final stage of system in-
tegration is being undertaken.

4.2. Maintenance Effort

The maintenance effort (in man months) in relation to
the various stages in Figure 1 can be found in Table 2. Con-
sidering the size of the project, a total of 26 man months
of maintenance effort might seem a lot. The reason is that
the developers were doing porting and re-engineering for
the first time. Hence they took some time to understand

Stage Porting Little Func. Re-Eng. New Func.
Effort 8 MM 4 MM 8 MM 6 MM

Table 2. Distribution of Maintenance Effort

the underlying concepts. Table 3 shows the percentage of
maintenance effort by various maintenance categories. For
comparison purposes, we also give the average effort ob-
served by Lientz, Swanson and Tompkins (LST) [11]. We
can infer the following:

� Little corrective effort was necessary as the software
was running without showing any significant errors at
the start of the project.

� As the software needed to be ported to a different plat-
form, the adaptive effort is higher than average.

� While the sum of perfective and preventive mainte-
nance effort were found to be similar to the LST av-
erage, there is a clear shift towards preventive mainte-
nance. The reason is that a lot of effort was put into
improving the maintainability of the software, like in-
corporating assertions into the code.

Category Effort Average (LST)

Corrective 8 % 17.4 %
Adaptive 31 % 18.2 %
Perfective 38 % 60.3 %
Preventive 23 % 4.1 %

Table 3. Maintenance Effort by Category

4.3. Code Size

Figure 4 shows the measures of code size as the software
was passing through the various stages shown in Figure 3.
Up to PT1, functionality was simply added without remov-
ing much unused functionality. During the re-engineering
phase, the code size increased. This is because the code was
made more modular and scalable through the introduction
of new middle layers, and documentation was added to the
code. Also, unused functionality was identified and marked
as such. However, almost up to version PT3, while new
functionality for ADVISOR was added, most of the unused
legacy functionality was kept in case it would be needed
again. When it was finally removed in the last version ex-
amined here, one can see the sharp decrease in code size.

5. Further Analysis and Discussion

5.1. Generated Artefacts of the People Tracker

As a part of the re-engineering process, various artefacts
were recovered from the code, and they were upgraded to
reflect the code of the latest version of the People Tracker.
In addition to the requirement document, the other remain-
ing artefacts were mostly UML diagrams. The initial class

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

1 2 3 4 5 6 7 8 9 10
version

30000

40000

50000

60000
LO

C
 (

w
ith

 c
om

m
en

ts
)

PT
PT

0

PT1

PT2

3

Figure 4. Lines of Code over Time

diagram which was obtained using the Rational Rose was
the primary source of all activities. Both static and dynamic
analysis were employed to obtain the remaining UML dia-
grams. We now present a brief description of these:

� Use Case diagram(s): We obtained two Use Case di-
agrams: one when the People Tracker works stan-
dalone, and the other when it is seen as a subsystem
of the ADVISOR system. They have been shown in
Figures 5 and 6 respectively. The former corresponds
to the Use Cases as seen by the developer, whereas
the latter corresponds to the Use Cases after the sub-
system is integrated with rest of the subsystems of the
ADVISOR.

� Class Diagram: The initial class diagram was up-
graded to incorporate the new class structure after
refactoring and other transformations. We have not
shown this diagram here because of its size. Figure 7
shows the package diagram.

� Sequence Diagram: Figure 8 shows the sequence dia-
gram of the People Tracker at a higher level.

5.2. Experience with the Re-engineered software

The re-engineering of the People Tracker (refer to Fig-
ure 3) made addition of new functionality easier. We illus-
trate this by a few examples:

� All classes handling the data and tracking functionality
for one camera (ie. one video input) were encapsulated
within one Camera class. As a result, the handling of
multiple cameras simply amounted to creating multi-
ple instances of the Camera classes. The original ver-
sion (PT0) of the software handled functionality like
the video input, tracking etc. directly in the main()
program, and only one video input was implemented.

� On a larger level, all Camera classes within one area
of the underground station are contained within one
PeopleTracker class. Hence the system design
allows for scaling of the system simply by instanti-
ating more than one PeopleTracker class. This
was done keeping the scalability aspect of the design
in mind, although this functionality is not required at
present.

� In the new design, all tracking results are contained
within one Results class. As a consequence, the
new requirement to write out the results in XML for-
mat was a very localised operation. Additionally,
changing the design to reflect the new functionality
was straightforward.

5.3. Improved Maintainability

The re-engineering of the software has improved its
maintainability. We show this by considering each of the
maintainability categories.

Corrective Maintenance The software now uses asser-
tions, hence it is easier to find bugs at an early stage.
Also, the new design means that malfunctions of par-
ticular functionalities can now be easily localised and
corrected.

Adaptive Maintenance The new software is not depen-
dent on any particular hardware any more. The code
now strictly follows the ANSI/ISO C/C++ standard,
compliant with ISO/IEC 9899:1999(E) [10], as well
as IEEE POSIX 1003.1c-1995 extensions [8] for all
multi-threading functionality. As a result, future port-
ing of the code should be easy.

Perfective Maintenance The software is now better docu-
mented and it has a clean structure. Furthermore, all
the artefacts of the system are in a consistent state.
Hence, adding new functionality is easier, as already
experienced, and discussed above.

Preventive Maintenance Assertions, which are now used,
help preventing malfunctions. Additionally, the re-
engineering and the new design have improved the
maintainability of the software.

5.4. Personnel Factors

The skills of the personnel involved in the work de-
scribed in this article are as follows:

1. A Ph.D. student having academic knowledge of soft-
ware engineering and OOP but little experience in soft-
ware maintenance. He was the team leader and he him-
self did 60% of the whole task.

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

2. A Ph.D. student having academic knowledge of soft-
ware engineering, moderate level of programming ex-
perience and no experience in maintenance. He did
15% of the task.

3. Two undergraduate students having no knowledge of
software engineering but good programming experi-
ence. They did 20% of the task.

4. A senior researcher having no knowledge of software
engineering and a moderate level of programming ex-
perience. He did 5% of the work described here.

The lack of maintenance experience of all the people in-
volved was a prominent factor in making the whole process
inefficient. Instead of making an initial work schedule, they
started to implement new functionality at too early a stage.
Only after implementing a little functionality, they inferred
that re-engineering of the software was necessary. As a re-
sult, precious time was lost.

5.5. Lessons Learned

1. Any kind of maintenance activity, especially re-
engineering, must be preceded by adequate planning.
In the present case, initially attempts were made to in-
corporate the new functionalities and only when the
attempts failed the maintainers decided to re-engineer
the software.

2. Some training should be given to maintainers, espe-
cially when they are not experienced in doing mainte-
nance, for recognising that certain code is not main-
tainable. In the present case, the maintainers took time
to learn about the extent to which the code was not
maintainable. At this stage, some tool support could
aid in determining this aspect of the code. The tool
could use indicators like the number of global variables
and global functions, lack of documentation etc.

3. Initially, the maintainers felt a strong resistance against
re-engineering the software. Even when they found out
that adding new functionality would be difficult with
the current state of the code, they hesitated to take the
step to re-engineer the software because this was not a
part of their given task. This seems to be a common
problem within software projects: a tradeoff between
short-term goals like adding functionality to the code
on one side, and long-term effects like having a prod-
uct which is better maintainable. While developers are
more likely to determine the necessity to re-engineer a
product, managers tend to resist it and focus on short-
term goals. Re-engineering takes up a lot of time and
resources in the short term, although in the long term
it might save time as maintainability increases.

4. The knowledge of a precise model of re-engineering
process should be in place before initiating the re-
engineering approach. In the present case, the trial-
and-error approach consumed a lot of precious time.
A correct design should be a pre-requisite to imple-
menting new functionality. Design documents and
other artefacts should always remain consistent with
the source code.

5. In the present case, refactoring transformations were
applied by locating problem spots manually. Tool sup-
port could have been used to recognise bad classes (for
instance, god classes and data classes [13]).

6. Developers should stick to standard languages with-
out using language extensions. Similarly, the product
should not depend on specific hardware to run. If the
use of software- or hardware-specific functions are re-
quired, eg. for optimisation purposes, they should be
isolated and adequately documented so as to ease fu-
ture porting operations.

7. It was observed that domain knowledge was not a pre-
requisite for performing the porting task. So far as re-
engineering was concerned, very little domain knowl-
edge was required for performing the static analysis,
whereas dynamic analysis required significant amount
of domain knowledge. Furthermore, a moderate level
of domain knowledge was necessary while adding new
domain specific functionalities.

8. The maintainers of the People Tracker had occasional
short discussions (over lunch table or during coffee
hours) with experienced software engineers in the uni-
versity. They are of the opinion that this guidance in-
creased their awareness of technical aspects of soft-
ware maintenance. We therefore recommend the con-
sultation of an experienced software engineer before
and during the maintenance task.

6. Conclusion

In this paper, we have presented the case study of
the People Tracking subsystem of the integrated system
ADVISOR for the surveillance of people in an underground
station. The medium sized People Tracker was originally
developed in a University environment. We have described
how the module was re-engineered so that it could be used
in the “real world” as a subsystem of ADVISOR. The team
leader of the maintenance operation is a co-author of this
article and he has maintained the log of all the maintenance
activities, from beginning to end. None of the people in-
volved in the re-engineering task had any maintenance ex-
perience and therefore the whole process was carried out in

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

a suboptimal manner. The people involved took occasional
help from experienced software engineers and these, they
believe, provided important guidance when it came to soft-
ware engineering aspects of the work,

The maintainers successfully re-engineered the product
and upgraded it with new functionality. The product has
been found to be satisfactory by the project partners and
it is now in the final stage of its integration with the other
subsystems of ADVISOR. Furthermore, the maintainers are
satisfied with the work they have done. Initially there was
no documentation available with the software, but all UML
artefacts were generated from the source code. Our analysis
shows that the re-engineering process has been effective in
achieving a high level of maintainability.

The main observations of this case study were:

� Tool support or expert advice could aid in identifying
that a piece of software is not maintainable, to help in
the decision whether a re-engineering process needs to
be carried out.

� Increasing the maintainability of software by re-
engineering techniques has made the addition of new
functionality more efficient.

� Surprisingly little domain knowledge was necessary
for porting or re-engineering the software. Domain
knowledge was mainly needed to extract dynamic in-
formation from the code, and partly during the addition
of new functionality. At this stage, the availability of
design documents can to a certain extent make up for
missing domain knowledge.

Acknowledgements

The authors wish to thank Steve Maybank and
Rachel Harrison for making this research possible. The
work was supported by the European Union (grant
ADVISOR, IST-1999-11287) and the EPSRC (grant EM-
PAF, ER/L87347).

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Princi-
ples, Techniques, and Tools. Addison-Wesley, 1986.

[2] A. M. Baumberg. Learning Deformable Models for Track-
ing Human Motion. PhD thesis, School of Computer Stud-
ies, University of Leeds, October 1995.

[3] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refac-
torings via change metrics. In Proceedings of the 2000 ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA 2000),
pages 166–177, October 2000.

[4] M. L. Domsch and S. R. Schach. A case study in object-
oriented maintenance. In Proceedings of the 1999 Inter-
national Conference of Software Maintenance (ICSM ’99),
pages 346–352, August 1999.

[5] N. E. Fenton and S. L. Pfleeger. Software Metrics. PWS
Publishing Company, 2nd edition, 1996.

[6] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[7] D. Gries. The Science of Programming. Springer-Verlag,
New York, 1981.

[8] IEEE Standards Association. IEEE POSIX 1003.1c-1995,
1995.

[9] International Organization for Standardization, Geneva,
Switzerland. ISO/IEC 9126, 1991.

[10] International Organization for Standardization. ISO: Pro-
gramming languages — C. ISO/IEC 9899:1999(E), 1999.

[11] B. P. Lientz, E. B. Swanson, and G. E. Tompkins. Character-
istics of application software. Communications of the ACM,
21(6):466–471, June 1978.

[12] T. Littlefair. An Investigation into the Use of Software Code
Metrics in the Industrial Software Development Environ-
ment. PhD thesis, Faculty of Communications, Health and
Science, Edith Cowan University, 2001.

[13] R. Marinescu. Detecting design flaws via metrics in object-
oriented systems. In Proceedings of the 39th Interna-
tional Conference and Exhibition on Technology of Object-
Oriented Language and System (TOOLS USA 2001), pages
173–182, July/August 2001.

[14] Rational Software Corporation, Cupertino, CA. Rational
Rose 2000e, 2000.

[15] P. Remagnino, A. Baumberg, T. Grove, T. Tan, D. Hogg,
K. Baker, and A. Worrall. An integrated traffic and pedes-
trian model-based vision system. In A. Clark, editor, Pro-
ceedings of the Eighth British Machine Vision Conference
(BMVC97), pages 380–389. BMVA Press, 1997.

[16] T. Richner and S. Ducasse. Recovering high-level views
of object-oriented applications from static and dynamic in-
formation. In Proceedings of the 1999 International Con-
ference of Software Maintenance (ICSM ’99), pages 13–22,
August 1999.

[17] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Mod-
eling Language Reference Manual. Addison-Wesley, 1999.

[18] N. T. Siebel and S. Maybank. Fusion of multiple track-
ing algorithms for robust people tracking. In A. Heyden,
G. Sparr, M. Nielsen, and P. Johansen, editors, Proceedings
of the 7th European Conference on Computer Vision (ECCV
2002), volume IV, pages 373–387, May 2002.

[19] R. C. Waters and E. Chikovsky. Reverse engineering
progress along many dimensions. Communications of the
ACM, 37(5):23–24, May 1994.

[20] B. W. Weide, W. D. Heym, and J. E. Hollingsworth. Re-
verse engineering of legacy code exposed. In Proceedings
of the 17th International Conference on Software Engineer-
ing (ICSE-17), pages 327–331, April 1995.

[21] World Wide Web Consortium (W3C). XML Schema Part 0:
Primer. W3C Recommendation, 2001.

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

Figure 5. Use Cases for the People Tracker (in Standalone/Development Mode)

Figure 6. Use Cases for the People Tracker (as a Subsystem of ADVISOR)

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

Figure 7. Software Packages of the People Tracker

Figure 8. ADVISOR Sequence Diagram (at a Higher Level)

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

