INTRODUCTION TO DATA MINING

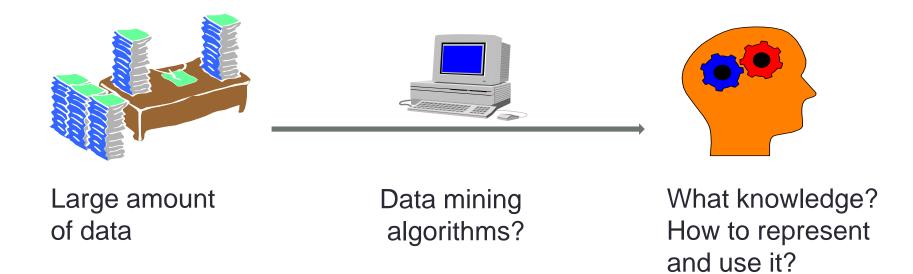
Daniel Rodríguez, University of Alcalá

Outline

- Knowledge Discovery in Datasets
- Model Representation
 - Types of models
 - Supervised
 - Unsupervised
- Evaluation
- (Acknowledgement: Jesús Aguilar-Ruiz for some slides)

Knowledge Discovery in Datasets

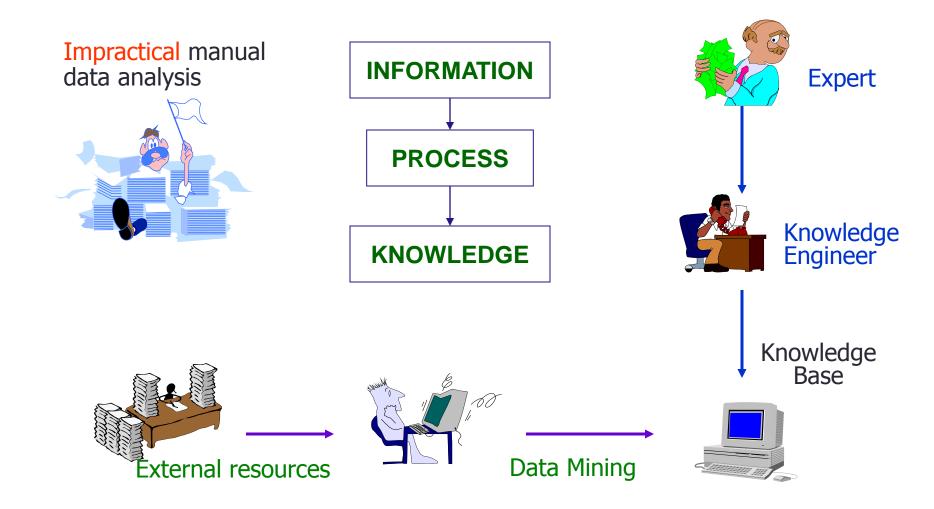
KDD is the automatic extraction of non-obvious, hidden knowledge from large volumes of data.



Knowledge Discovery in Datasets

The non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data - Fayyad, Piatetsky-Shapiro, Smyth (1996)

Knowledge Discovery in Datasets



KDD: Potential Applications

Business information

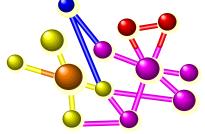
- Marketing and sales data analysis
- Investment analysis
- Loan approval
- Fraud detection
- etc.

Manufacturing information

- Controlling and scheduling
- Network management
- Experiment result analysis

- etc.

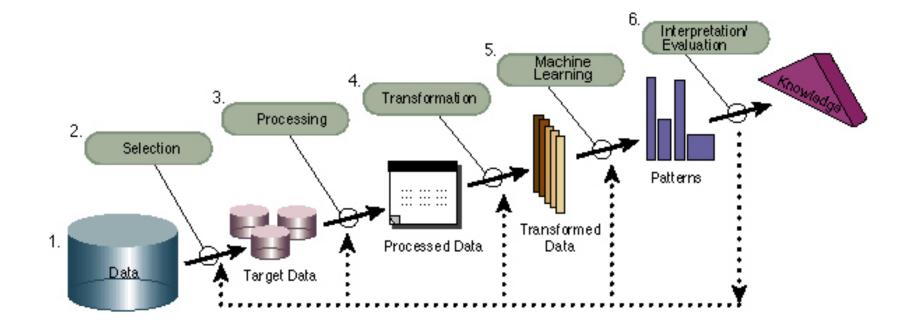
Scientific information



- Sky survey cataloging
- Biosequence Databases
- Geosciences: Quakefinder
- etc.

Personal information

KDD Process



An Overview of the Steps That Compose the KDD Process

KDD Process

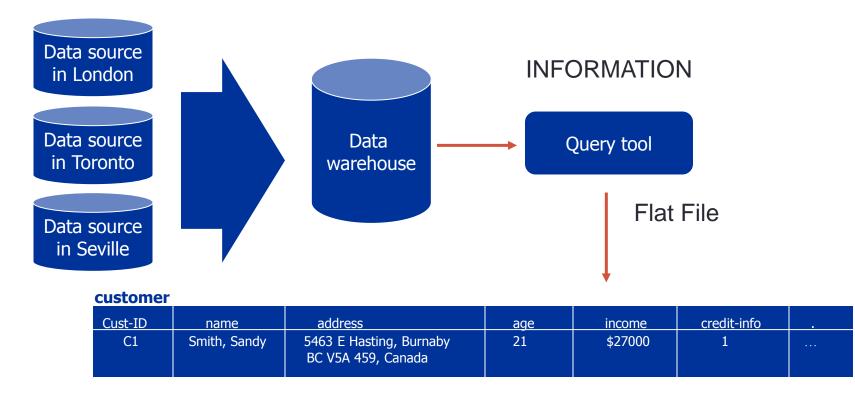
- 1. Data integration and recopilation
- 2. Selection, cleaning and transformation

Data

- 3. Machine Learning (data mining)
 - Patterns (e.g., classifiers, rules, etc.)
- 4. Evaluation and interpretation
 - Knowledge
- 5. Decision making

KDD Process: Integration & Recopilation

- Data warehousing, databases, data repositories from different and heterogeneous sources.
- We usually deal with a plain and flat matrix of data



KDD Process: Selection, cleaning and transformation

- Removing Outliers
- Data Sampling (if there are too much data)
- Missing Values
- Removing redundant and irrelevant attributes (feature selection)
- Derive new attributes from existing ones
 - E.g., Population density from population and area
- Discretisation, normalisation, etc.

KDD Model Classification

- DM algorithms are traditionally divided into
 - Supervised learning which aims to discover knowledge for classification or prediction (predictive)
 - Unsupervised learning which refers to the induction to extract interesting knowledge from data (descriptive)
- New approaches also consider semisupervised learning: goal is classification but the input contains both unlabeled and labeled data.
 - Subgroup Discovery approaches generate descriptive rules are also half way between descriptive and predictive techniques.

Supervised learning - classifiers

- A classifier resembles a function in the sense that it attaches a value (or a range or a description) to a set of attribute values.
- Induce a classification model, given a database with
 - *m* instances (samples) characterized by
 - *n* predicted attributes, *A*₁, ..., *A*_n,
 - and the class variable, C (it is possible to have more than one class).

A ₁	 A _n	С
a _{1,1}	 a _{1,n}	<i>C</i> ₁
a _{m,1}	a _{m,1}	C _m

Supervised Techniques

- Decision trees are trees where each leaf indicates a class and internal nodes specifies some test to be carried out.
 - There are many tree-building algorithms such as C4.5 (Quilan) or ID3.

Rule induction

- If condition then class_{label}
- If ... then ... else if ... (hierarchical)
- Lazy techniques store previous instances and search similar ones when performing classification with new instances
 - **k-nearest neighbour** (k-NN) is a method for classifying objects based on closest training examples in the feature space.

Numeric prediction

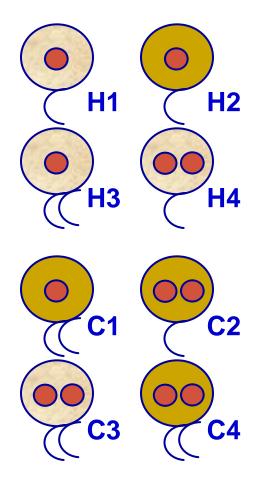
- Regression Techniques
- **Neural Networks** are composed by a set of nodes (units, neurons, processing elements) where each node has input and output and performs a simple computation by its node function.
- Statistical Techniques
 - **Bayesian networks classifiers** assign a set of attributes $A_1, A_2, ..., A_n$ to a class C_j such that $P(C_j | A_1, A_2, ..., A_n)$ is maximal.
- Meta-techniques

Unsupervised Techniques

- Association
 - Association Rules, APRIORI
 - E.g., rules among supermarket items
- Clustering
 - Tree clustering: join together objects (e.g., animals) into successively larger clusters, using some measure of similarity or distance.
 - Algorithms: K-Means, EM (Expectation Maximization)
- There is no 'class' attribute or class considered as another attribute

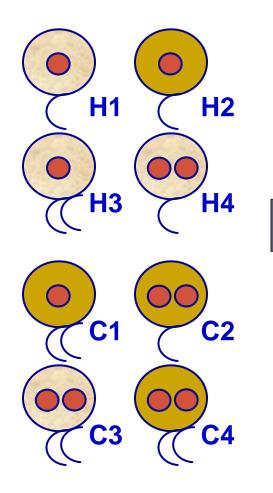
A ₁	 A _n
a _{1,1}	 a _{1,n}
a _{m,1}	a _{m,1}

KDD Representation (Models) Dataset: Cancerous and Healthy Cells



	colour	#nuclei	#tails	class
H1	light	1	1	healthy
H2	dark	1	1	healthy
H3	light	1	2	healthy
H4	light	2	1	healthy
C1	dark	1	2	cancerous
C2	dark	2	1	cancerous
C3	light	2	2	cancerous
C4	dark	2	2	cancerous

Decision Rules Mining with Decision Rules

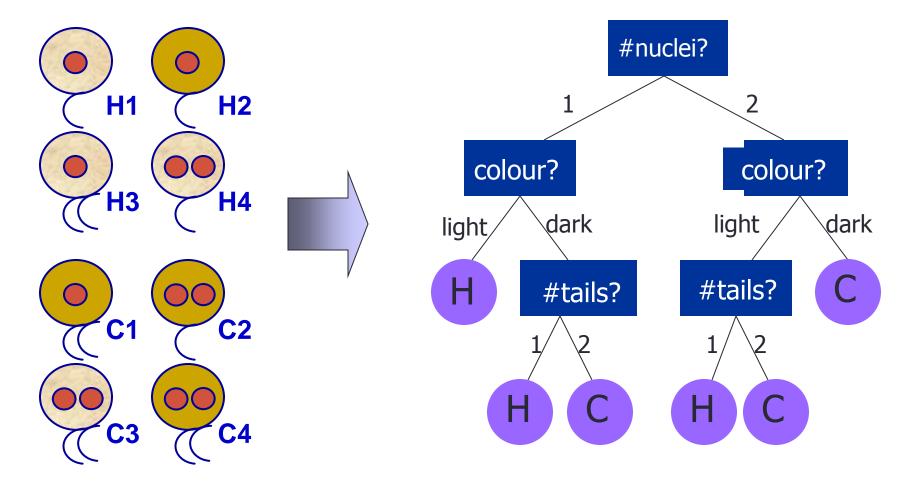


If colour = light and # nuclei = 1 Then cell = healthy

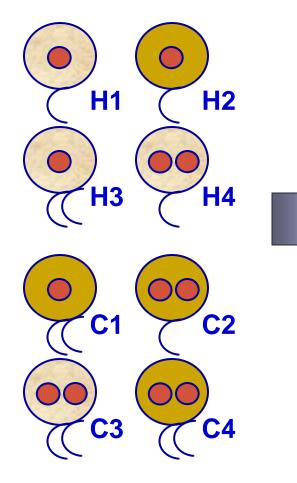
If #nuclei = 2 and colour = dark Then cell = cancerours

(and 4 rules more)

Decision Trees Mining with Decision Trees



Hierarchical Decision Rules Mining with Hierarchical Decision Rules



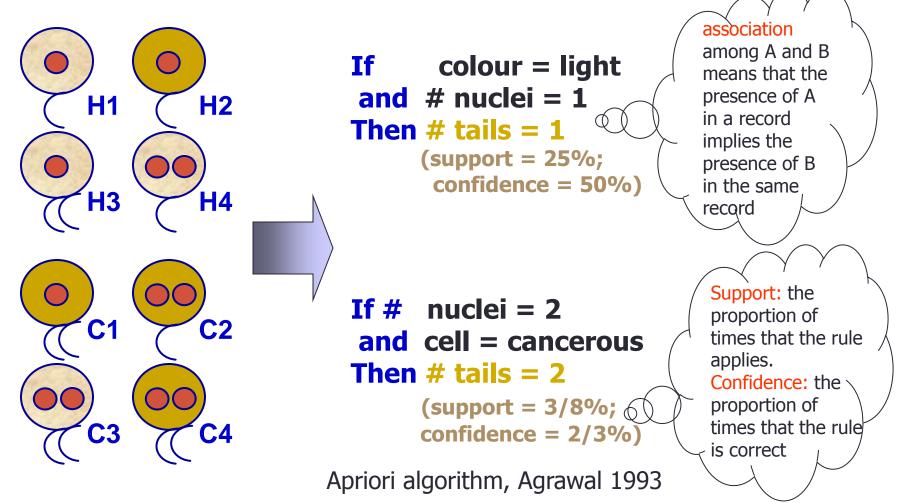
If colour = light and # nuclei = 1 Then cell = healthy

Else If #nuclei = 2 and colour = dark Then cell = cancerous

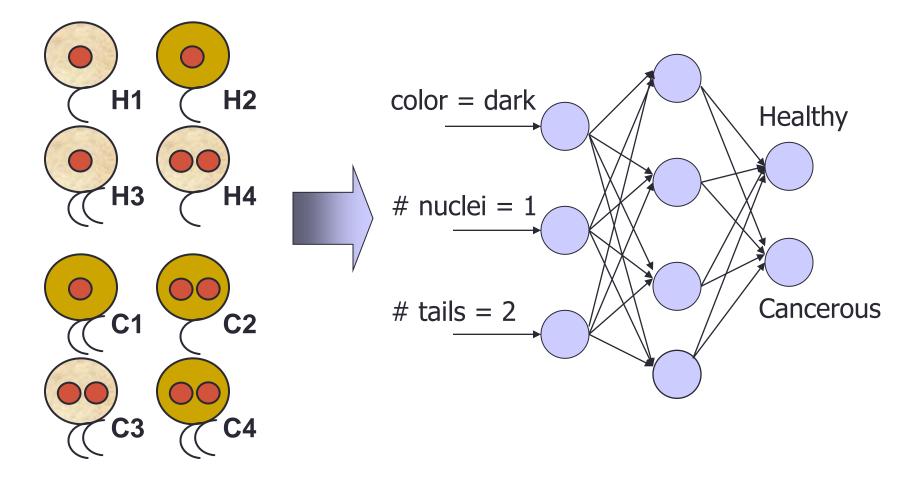
Else If #tails = 1 Then cell = healthy

Else cell = cancerous

Association Rules Mining with Association Rules



Neural Networks Mining with Neural Networks



Evaluation

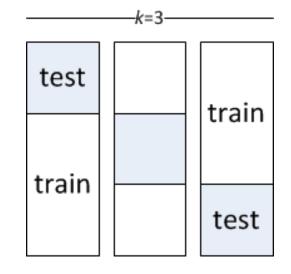
- Once we obtain the model with the training data, we need to evaluate it with some new data (testing data)
 - · We cannnot use the the same data for training and testing
 - · E.g., Evaluating a student with the exercises previouly solved
 - Student 's marks will be "optimistic" and we don't know about student capability to generalise the learned concepts.
- Holdout approach consist of dividing the dataset into training (approx. 2/3 of the data) and testing (approx 1/3 of the data).
 - Problems: Data can be skewed, missing classes, etc. if randomly divided
- Stratification ensures that each class is represented with approximately equal proportions
 - E.g., if data contains aprox 45% of positive cases, the training and testing datasets should mantain similar proportion of positive cases.
- Holdout estimate can be made more reliable by repeating the process with different subsamples (*repeated holdout* method)
 - The error rates on the different iterations are averaged (overall error rate)

Cross-Validation

- Cross-validation (CV) avoids overlapping test sets
 - First step: split dataset (D) into k subsets of equal size $C_1 \dots C_k$
 - Second step: we construct a dataset D_i = D-C_i used for training and test the accuracy of the classifier f_{Di} on C_i subset for testing
 - Having done this for all k we estimate the accuracy of the method by averaging the accuracy over the k cross-validation trials

Called k-fold cross-validation

- Usually k=10
- Subsets are generally stratified before the CV is performed
- The error estimates are averaged to yield an overall error estimate



Evaluation Measures

- From the confusion matrix, we can obtain multiple measures about the goodness of a classifier.
- E.g. for a binary problem:

		Predicted		
		Positive	Negative	
Actual	Positive	TP True Positive	FN False Negative	TPrate=TP/(TP+FN)
			(Type II error)	(Sensitivity, Recall)
	Negative	FP False Positive (Type I error)	TN True Negative	TNrate=TN/(FP+TN) (Specificity)
		PPV=TP/(TP+FP) Positive Predictive Value (Confidence, Precision)	NPV=TN/(FN+TN) Negative Predicted Value	Accuracy= TP+FP/(TP+TN+FP+FN)

Evaluation Measures

- Many times we need to combine the TP and FP to estimate the goodness of a classifier
 - For example, with imbalance data, the accuracy of a classifer needs to improve the percentage of the mayority class. In a binay problem and 50/50 distribution, we need improve accuracy over 50%. However if the distribution is 90/10, accuracy needs to be over 90%
- *f* –*measure* is an harmonic median of these proportions:

$$f - measure = \frac{2 TP}{2 TP + FP + FN}$$

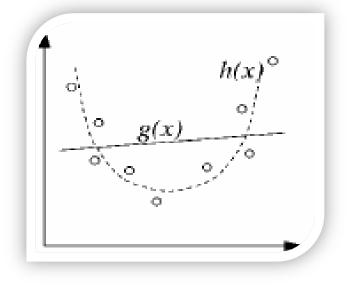
AUC (Area under the ROC)

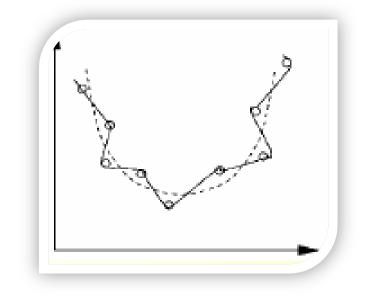
Evaluation: Underfitting vs. Overfitting

Underfitting

Too simple model

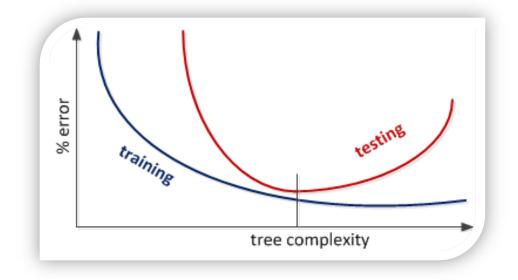
Too complex model





Overfitting – Decision trees example

- Increasing the tree size, decreases the training and testing errors. However, at some point after (tree complexity), training error keeps decreasing but testing error increases
 - Many algorithms have parameters to determine the model complexity (e.g., in decision trees is the prunning parameter)



Evaluation: Cost

- In many cases to fail in one way is not the same as failing in the other one (Type I error vs. Type II error).
- Cost can be considered when inducing the model from the data using the cost data.
 - Cost sensitive classifiers
 - Metacost (Dominos, 1999)
- Ej. Cost matrices
 - by default –left- and considering cost –right-:

		Predicted					Pre
		Positive	Negative				Positive
_	Positive	0	1				
ctual				ctual	iua		
Act	Negative	1	0	Act	ACI	Negative	Negative 1

Thanks!

Questions?