Introduction to Weka

Daniel Rodríguez, University of Alcalá

OXFORD BROOKES UNIVERSITY

Weka

Weka Toolkit

<u>http://www.cs.waikato.ac.nz/ml/weka/</u>

Developed in Java and Open source

GNU Licence

Well supported by the community through mailing lists and Wiki:

• <u>http://weka.wikispaces.com/</u>

Also, supported commercially by Pentaho

- <u>http://weka.pentaho.com/</u>
- Acknowledgement: J Hernandez & C Ferri (UPV) for some some examples

Weka Tookit

Composed of several tools

- GUI Chooser
 - Package manager,
 Visualisation and Viewers
- Explorer (the one to use most of the time)
- Experimenter
- KnowlegeFlow
- SimpleCLI
 - (Command Line Interface) Obsolete

ARFF, XRFF, and sparse formats

ARFF (Attribute-Relation File Format) is Weka's native file format

- Composed of Header and Data
 - Header of the ARFF file contains the name of the relation, a list of the attributes (the columns in the data), and their types (numeric, nominal, date).
 - Data is compsed of comma separated values after @data

XRFF (eXtensible attribute-Relation File Format) is an XML-based extension of the ARFF format. It has the advantage of the following additional capabilities:

- class attribute specification
- attribute weights (So far, only Naïve Bayes can handle attribute weights)

and instance weights are also supported in ARFF de

It can be compressed using the xrff.gz extension

Both ARFF and XRFF formats support sparse data when most data values are zeros

• (e.g. supermarket dataset)

ARFF Example

@relation weather % Comment

@attribute outlook {sunny, overcast, rainy}
@attribute temperature real
@attribute humidity real
@attribute windy {TRUE, FALSE}
@attribute play {yes, no}

@data

```
sunny,85,85,FALSE,no
sunny,80,90,TRUE,no
overcast,83,86,FALSE,yes
rainy,70,96,FALSE,yes
rainy,68,80,FALSE,yes
rainy,65,70,TRUE,no
overcast,64,65,TRUE,yes
sunny,72,95,FALSE,no
sunny,69,70,FALSE,yes
rainy,75,80,FALSE,yes
sunny,75,70,TRUE,yes
overcast,72,90,TRUE,yes
overcast,81,75,FALSE,yes
rainy,71,91,TRUE,no
```

🛛 😑 🔲 🛛 ARFF-Viewer - /home/drg/weka/data/weather.arff								
File	File Edit View							
we	weather.arff							
Rela	ation: wea	ather						
No.	1: outlook	2: temperature						
	Nominal	Numeric	Numeric	Nominal	Nominal			
1	sunny	85.0	85.0	FALSE	no			
2	sunny	80.0	90.0	TRUE	no			
3	overcast	83.0	86.0	FALSE	yes			
4	rainy	70.0	96.0	FALSE	yes			
5	rainy	68.0	80.0	FALSE	yes			
6	rainy	65.0	70.0	TRUE	no			
7	overcast	64.0	65.0	TRUE	yes			
8	sunny	72.0	95.0	FALSE	no			
9	sunny	69.0	70.0	FALSE	yes			
10	rainy	75.0	80.0	FALSE	yes			
11	sunny	75.0	70.0	TRUE	yes			
12	overcast	72.0	90.0	TRUE	yes			
13	overcast	81.0	75.0	FALSE	yes			
14	rainy	71.0	91.0	TRUE	no			

Package Manager (version > 3.7.2)

Just the most common algorithms are included with the download but others can be installed via the Package Manager.

😵 🖨 🗊 Package Manager									
Official					1Г	Install/Uninstall/Re	fresh prog	-Unofficial-	
Refresh reposito	ry cache	Insta	11	Uninstall				File/URL	
🔾 Installed 🛛 Avail	able 🖲 All	lgnore (depend	dencies/conflicts					
Package	Categ		Inst	alled version		Repository version	Loa	aded	
ArabicStemmers_Light		1		1.	.0.	.0			
CHIRP	Classification			1.	.0	.0			_
CLOPE	Clustering			1.	.0.	.0			
DMNBtext	Text classifica	tion		1.	.0	.0			
	Classification			1.	.0.	.0			
DistributionBasedBala	Preprocessing		1. <mark>0.0</mark>	1.	0.	.0	Yes		
EMImputation	Preprocessing		1.0.0	1.	0.	.0	Yes		
J48graft	Classification			1.	0.	.0			
JDBCDriversDummyPac	Misc			1.	0.	.0			
LVQ	Clustering			1.	0.	.1			
LIDLINEAR	Classification			1.	8	.0			
LibSVM	Classification			1.	0.	.1			
NNge	Classification			1.	0.	.0			
PCP	Visualization			1.	0.	.0			
PSOSearch	Attribute selec	ction		1.	.2	.0			
RBFNetwork	Classification/	regression		1.	.0	.0			-

Weka 3: Data Mining Software in Java

Weka is a collection of machine learning algorithms for data mining tasks. The algorithms can either be applied directly to a dataset or called from your own Java code. Weka contains tools for data pre-processing, classification, regression, clustering, association rules, and visualization. It is also well-suited for developing new machine learning schemes.

Weka is open source software issued under the <u>GNU General Public</u> <u>License</u>.

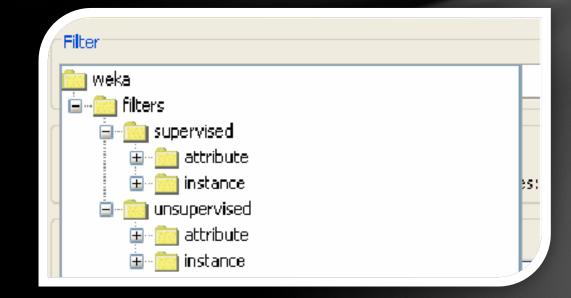
Explorer

The one to use most of the time. It can be used to find the most appropriate algorithm and parameters for a given dataset (usually trial & error approach)

🛞 🚍 🗊 🛛 Weka Explorer							
Preprocess Classify Clust	er Associate	Select attrib	utes Vis	ualize			
Open file Open URL	. Open D	B Gene	rate	Undo	Edit		Save
Filter							
Choose None Apply							
Current relation			Selected	l attribute			
Relation: weather Instances: 14		Attributes: 5 of weights: 14		e: outlook j: 0 (0%)	istinct: 3	Type: Unique:	Nominal 0 (0%)
Attributes			No.	Label	Count		Weight
				overcast	5	5.0 4.0	
All None	Invert	Pattern		rainy	5	5.0	
No.	Name			rainy		0.0	
1 outlook	Humo						
2 temperature							
3 humidity			Class: pla	ay (Nom)		-	Visualize All
4 windy 5 play			· ·				
Jupiay			F			-	
			5			5	
				4			
·							
Remo	ove						
Status							
ОК						Log	- × 0

Explorer's panels

Explorer has 6 panels to analyse and prepare data:


- **Preprocess**: Tools and filters for data manipulation
- **Classification**: Classification and regresión techniques
- **Cluster**: Clustering techniques
- **Associate**: Association techniques
- Select Attributes: Permite aplicar diversas técnicas para la reducción del número de atributos
- Visualize: Visualisation techniques
- **Other panels** can be added (e.g., Time series analysis)

Preprocess Panel

Filter algorithms are classifed as

- Supervised if the filter takes into account the class
- Unsuvervised otherwise
- An in turn they are also classifed according to whether the filter applies to instances or attributes

Filter examples include discretisation (can be supervised or unsupervised, attribute selection (we will cover this one later in detail), etc.

Unsupervised Discretize Filter Example

Image: Select attributes Visualize NAME Version of the select attributes Visualize NAME Weka.filters.unsupervised.attribute.Discretize Visualize NAME	
Preprocess Classify Cluster Associate Select attributes Visualize weka.filters.unsupervised.attribute.Discretize	
Open fil Open U Open D Generat Undo SYNOPSIS Filter An instance filter that discretizes a range of numeric attributes in the dataset into nominal attributes. Discretization is by simple binning. Skips the class attributes if set.	
Currer weka.gui.GenericObjectEditor Rela OPTIONS Instal weka.filters.unsupervised.attribute.Discretize Attribu This is a comma separated list of attribute indices, we "first" and "last" valid values. Specify an inclusive rant with "-". E.g: "first-3,5,6-10,last".	ith
An instance filter that discretizes a range of numeric attributes in the dataset into nominal attributes. No. No. No. No. No. No. No. No. No. No	red
attributeIndices first-last binning. bins 10 findNumBins Optimize number of equal-width bins u leave-one-out. Doesn't work for equal-frequency binn	
desiredWeightOfInstancesPerInterval -1.0 ignoreClass The class index will be unset temporarise findNumBins False Image: Second	ly
ignoreClass False range will be discretized; if true, only non-selected attributes will be	-
invertSelection False addiscretized.	
useEqualFrequency If set to true, equal-frequency	
Status OK UseEqualFrequency Faise I binning will be used instead of equal-width binning.	
Open Save OK Cancel	

Discretize Supervised Filter Example

😣 🖨 🗊 🛛 Weka Exp	lorer			
Preprocess Cla	assify Cluster Associate Select attrib	😣 🗊 Information		
Open fi	Open U Open D Genera	NAME weka.filters.supervised.attribute.Discretize		
😣 🗊 🛛 weka.gui.Generi	cObjectEditor	SYNOPSIS		
weka.filters.supervis	sed. attribute. Discretize	An instance filter that discretizes a range of numeric attributes in the dataset into nominal attributes. Discretization is by Fayyad & Irani's MDL method (the default).		
An instance filter that	discretizes a range of numeric	For more information, see:		
attributes in the data	set into nominal attributes.	Usama M. Fayyad, Keki B. Irani: Multi-interval discretization of continuousvalued attributes for classification learning. In: Thirteenth International Joint Conference on Articial Intelligence, 1022-1027, 1993.		
attributeIndices first-last		Igor Kononenko: On Biases in Estimating Multi-Valued Attributes. In: 14th		
invertSelection False		International Joint Conference on Articial Intelligence, 1034-1040, 1995.		
makeBinary	False	OPTIONS attributeIndices Specify range of attributes to act on. This is a comma		
useBetterEncoding	False	separated list of attribute indices, with "first" and "last" valid values. Specify inclusive range with "-". E.g: "first-3,5,6-10,last".		
useKononenko	False	invertSelection Set attribute selection mode. If false, only selected (numeric) attributes in the range will be discretized; if true, only non-selected attributes will be discretized.		
Open	Save OK Can	makeBinary Make resulting attributes binary.		
Status	- 65	useBetterEncoding Uses a more efficient split point encoding.		
ок				
		useKononenko Use Kononenko's MDL criterion. If set to false uses the Fayyad & Irani criterion.		

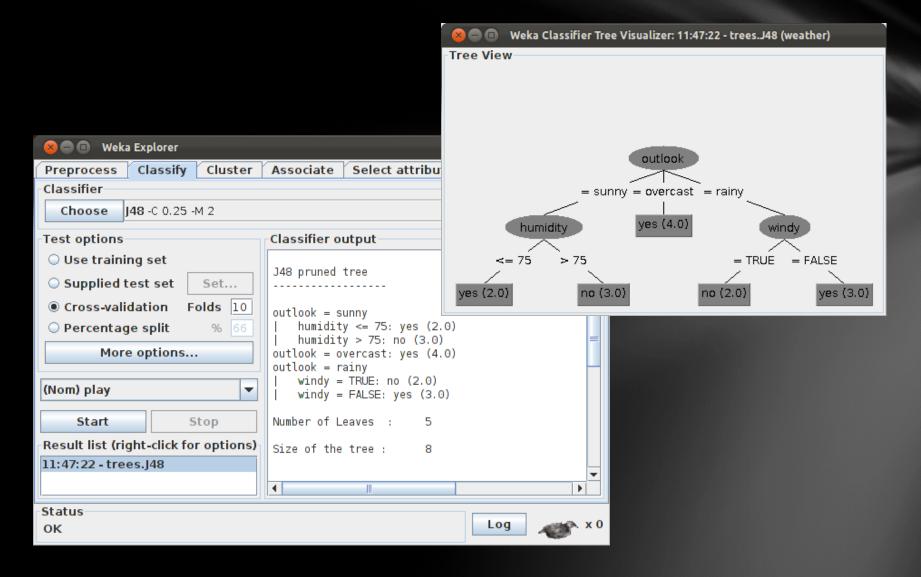
'Classify' Panel

Classification and regression Techniques:

Decission Trees: ID₃, C_{4.5} (J₄8), ...

Regresssion Trees: LMT (M5), ...

Rules: PART, CN2, ...

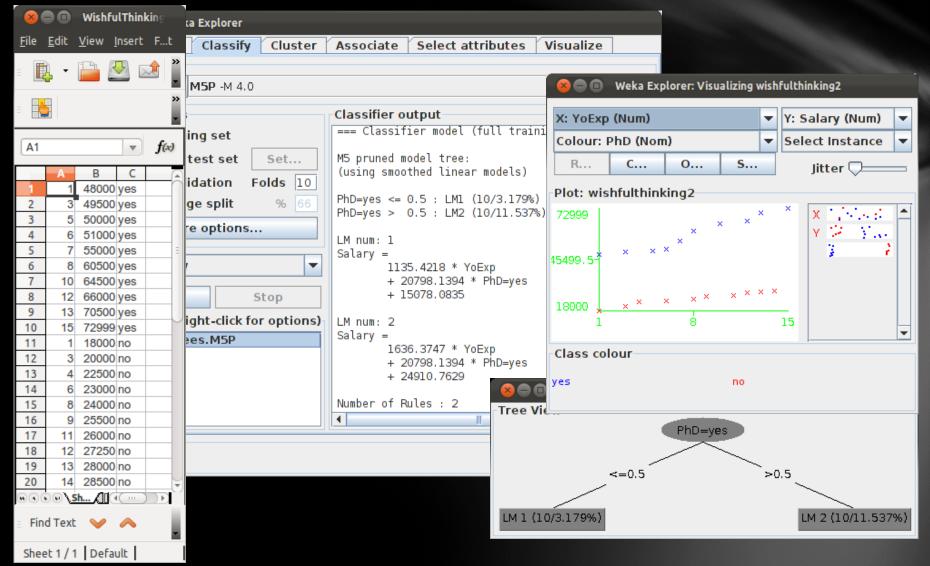

Functions: Regression, Neural Networks, logistic regression, Support Vector Machines (SMO), ...

Lazy Techniques: IB1, IBK, ...

Bayesian Techniques: Naive Bayes

Meta-techniques

'Classify' Panel – Trees (C4.5 – J48)



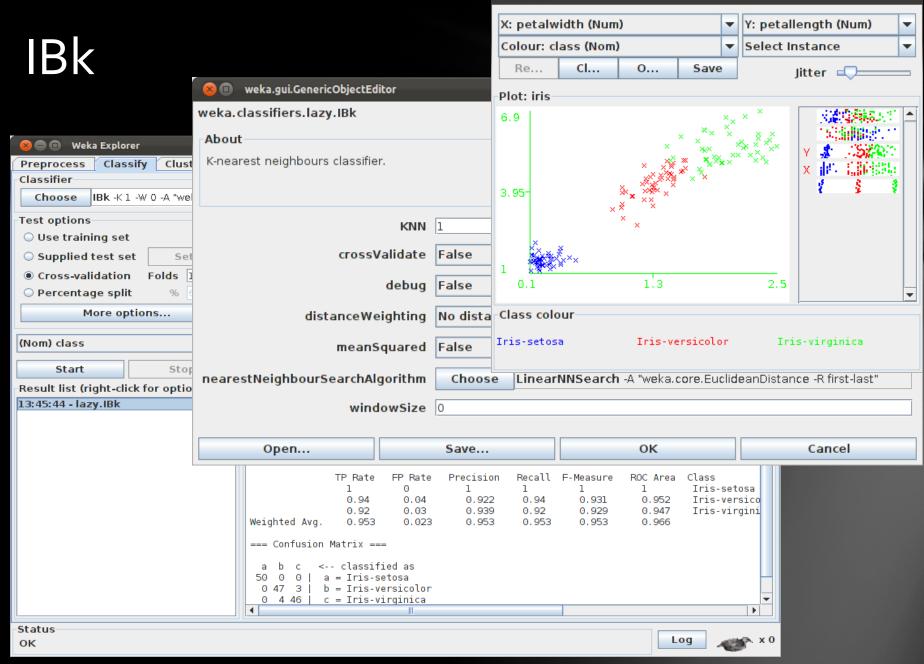
'Classify' Panel – Rules

We can generate rules from trees or there are other algorithms to generate rules directly

😣 🗖 🔳 🛛 Weka Explorer	
Preprocess Classify Cluster	Associate Select attributes Visualize
Classifier	
Choose PART -M 2 -C 0.25 -Q 1	
Test options	Classifier output
Ouse training set	=== Classifier model (full training set) ===
○ Supplied test set Set	PART decision list
Cross-validation Folds 10	
O Percentage split % 66	outlook = overcast: yes (4.0) 💻
More options	windy = TRUE: no (4.0/1.0)
(Nom) play 🔽	outlook = sunny: no (3.0/1.0)
Start Stop	: yes (3.0)
Result list (right-click for options)	Number of Rules : 4
11:52:27 - rules.PART	
Status OK	Log 💉 x 0

'Classify Panel – Regression trees (M5P)

Lazy Techniques


Lazy techniques (also known as Collaborative Filtering or Instance-based Learning) do not build models, just retain instances.

Once a new instance needs to be classifed, these techniques search for 'similar' instances in the repository

Weka's IBk implements k-NN.

- Weka's IBk uses the Euclidean distance by default.
- The sum of the squared differences between normalized attribute values is computed; this is then normalized by the number of attributes in the data; finally the square root is taken.
- Following this, weighting can be applied to the distances (if selected).
 - Normalising distances for all attributes so that attributes have the same impact on the distance function.
- It may return *k* neighbours. If there are ties in the distance, neighbours are voted to form the final classification.

😕 🔵 🔲 🛛 Weka Explorer: Visualizing iris

Cluster Tab

🛛 🗢 🗊 🛛 Weka Explorer								
Preprocess Classify	Cluster	Associate	Select attributes	Visualize				
Clusterer								
Choose SimpleKM	eans -N 3 -A	"weka.core.Eu	u <mark>clide</mark> anDistan <mark>ce</mark> -R firs	t-last" -l 500 -S I	10			
Cluster mode		C	Clusterer output					
Use training set			<means< th=""><th></th><th></th><th></th><th></th><th></th></means<>					
Supplied test set	Set.							
O Percentage split	%	0.0	Number of iterations: Nithin cluster sum of	-	s: 7.817456892309	574		
Classes to clusters	evaluation		Missing values global					
(Nom) class			Cluster centroids:					
Store clusters for v	isualization	_	Attribute	Full Data	Cluster# ດ	1	2	
				(150)	(50)	(50)	(50)	
Ignore at	tributes		sepallength	5.8433	5.936	5.006	6.588	
Start	Sto		sepalwidth petallength	3.054 3.7587	2.77 4.26	3.418 1.464		
Result list (right-click f	or options)	.	petalwidťh	1.1987	1.326	0.244	2.026	
15:13:30 - SimpleKMea	ns		class	Iris-setosa	Iris-versicolor	Iris-setosa	Iris-virginica	
								=
			Fime taken to build m	odel (full tra	ining data) : 0.0	l seconds		
		=	=== Model and evaluat	ion on trainin	g set ===			
			Clustered Instances					
			0 50 (33%)					
		1	1 50 (33%)					
			2 50 (33%)					-
U								
Status							Log	. x 0
UK								

Association

🛛 🙁 🗐 🐨 🛛 Weka Explo	rer	
Preprocess Clas	ssify Cluster Associate Select attributes Visualize	
Associator		_
Choose Aprio	ri -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1 -S -1.0 -c -1	
Start Stop	Associator output	
Result list (right-cl	Apriori ick	
15:16:18 - Apriori	<pre>Minimum support: 0.15 (694 instances) Minimum metric <confidence:: 0.9="" 1="" 1.="" 105="" 17="" 380="" 44="" 633="" 788="=" 910="" best="" biscuits="t" cycles="" foods="t" found:="" frozen="" fruit="t" generated="" itemsets="" itemsets:="" l(1):="" l(2):="" l(3):="" l(4):="" l(5):="" l(6):="" large="" number="" of="" performed:="" rules="" set="" sets="" size="" total="high"> bread and cake=t 723 <conf: (0.92)=""> lift: (1.27) lev: (0.03) [155] conv: (3.26) Size if set of large itemsets L(6): 1 Best rules found: 1. biscuits=t frozen foods=t fruit=t total=high 770 ==> bread and cake=t 765 <conf: (0.92)=""> lift: (1.27) lev: (0.03) [159] conv: (3.28) Size if set of set of truit=t total=high 770 ==> bread and cake=t 775 <conf: (0.92)=""> lift: (1.27) lev: (0.03) [159] conv: (3.27) Abing needs=t frozen foods=t fruit=t total=high 777 ==> bread and cake=t 775 <conf: (0.92)=""> lift: (1.27) lev: (0.03) [159] conv: (3.28) Size if rozen foods=t fruit=t total=high 777 ==> bread and cake=t 775 <conf: (0.92)=""> lift: (1.27) lev: (0.03) [159] conv: (3.27) Abing needs=t frozen foods=t fruit=t total=high 777 ==> bread and cake=t 775 <conf: (0.92)=""> lift: (1.27) lev: (0.03) [159] conv: (3.28) Size if rozen foods=t fruit=t total=high 777 ==> bread and cake=t 775 <conf: (0.91)=""> lift: (1.26) lev: (0.03) [151] conv: (3.20) Size if rozen foods=t fruit=t total=high 777 ==> bread and cake=t 775 <conf: (0.91)=""> lift: (1.26) lev: (0.03) [150] conv: (3.20) Size if rozen foods=t fruit=t total=high 777 ==> bread and cake=t 775 <conf: (0.91)=""> lift: (1.26) lev: (0.03) [150] conv: (3.01) Size if rozen foods=t fruit=t total=high 777 ==> bread and cake=t 775 <conf: (0.91)=""> lift: (1.26) lev: (0.03) [150] conv: (3.01) Size if rozen foods=t fruit=t total=high 777 ==> bread and cake=t 775 <conf: (0.91)=""> lift: (1.26) lev: (0.03) [151] conv: (3.01) Size if rozen foods=t fruit=t total=high 777 ==> bread and cake=t 7</conf:></conf:></conf:></conf:></conf:></conf:></conf:></conf:></conf:></conf:></conf:></confidence::></pre>	
-Status OK	Log x	0

Association

🛛 🙁 🗐 🐨 🛛 Weka Explo	rer	
Preprocess Clas	ssify Cluster Associate Select attributes Visualize	
Associator		_
Choose Aprio	ri -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1 -S -1.0 -c -1	
Start Stop	Associator output	
Result list (right-cl	Apriori ick	
15:16:18 - Apriori	<pre>Minimum support: 0.15 (694 instances) Minimum metric <confidence:: 0.9="" 1="" 1.="" 105="" 17="" 380="" 44="" 633="" 788="=" 910="" best="" biscuits="t" cycles="" foods="t" found:="" frozen="" fruit="t" generated="" itemsets="" itemsets:="" l(1):="" l(2):="" l(3):="" l(4):="" l(5):="" l(6):="" large="" number="" of="" performed:="" rules="" set="" sets="" size="" total="high"> bread and cake=t 723 <conf: (0.92)=""> lift: (1.27) lev: (0.03) [155] conv: (3.26) Size if set of large itemsets L(6): 1 Best rules found: 1. biscuits=t frozen foods=t fruit=t total=high 770 ==> bread and cake=t 765 <conf: (0.92)=""> lift: (1.27) lev: (0.03) [159] conv: (3.28) Size if set of set of truit=t total=high 770 ==> bread and cake=t 775 <conf: (0.92)=""> lift: (1.27) lev: (0.03) [159] conv: (3.27) Abing needs=t frozen foods=t fruit=t total=high 777 ==> bread and cake=t 775 <conf: (0.92)=""> lift: (1.27) lev: (0.03) [159] conv: (3.28) Size if rozen foods=t fruit=t total=high 777 ==> bread and cake=t 775 <conf: (0.92)=""> lift: (1.27) lev: (0.03) [159] conv: (3.27) Abing needs=t frozen foods=t fruit=t total=high 777 ==> bread and cake=t 775 <conf: (0.92)=""> lift: (1.27) lev: (0.03) [159] conv: (3.28) Size if rozen foods=t fruit=t total=high 777 ==> bread and cake=t 775 <conf: (0.91)=""> lift: (1.26) lev: (0.03) [151] conv: (3.20) Size if rozen foods=t fruit=t total=high 777 ==> bread and cake=t 775 <conf: (0.91)=""> lift: (1.26) lev: (0.03) [150] conv: (3.20) Size if rozen foods=t fruit=t total=high 777 ==> bread and cake=t 775 <conf: (0.91)=""> lift: (1.26) lev: (0.03) [150] conv: (3.01) Size if rozen foods=t fruit=t total=high 777 ==> bread and cake=t 775 <conf: (0.91)=""> lift: (1.26) lev: (0.03) [150] conv: (3.01) Size if rozen foods=t fruit=t total=high 777 ==> bread and cake=t 775 <conf: (0.91)=""> lift: (1.26) lev: (0.03) [151] conv: (3.01) Size if rozen foods=t fruit=t total=high 777 ==> bread and cake=t 7</conf:></conf:></conf:></conf:></conf:></conf:></conf:></conf:></conf:></conf:></conf:></confidence::></pre>	
-Status OK	Log x	0

Attribute Selection

Feature selection is important in different ways:

- A reduced volume of data allows different data mining or searching techniques to be applied.
- Irrelevant and redundant attributes can generate less accurate and more complex models. Furthermore, data mining algorithms can be executed faster.
- We can avoid the collection of data for those irrelevant and redundant attributes in the future.

There exist two major approach in feature selection from the method's output point of view depending on the way that features are evaluated:

- **Feature ranking**, a.k.a. feature weighting, assesses individual features and assigns them weights according to their degrees of relevance
- Feature subset selection (FSS) evaluate the goodness of each found feature subset (Unusually, some search strategies in combination with subset evaluation can provide a ranked list).

Feature Ranking

Feature ranking algorithms category, one can expect a ranked list of features which are ordered according to evaluation measures

Each attribute correlation with the class is evaluated independenly of other attributes according to a statistical test (e.g.: χ -squared, Infogain, etc.)

- A subset of features is often selected from the top of a ranking list. A feature is good and thus will be selected if its weight of relevance is greater than a user-specified threshold value,
- or we can simply select the first *k* features from the ranked list.

This approach is efficient for high-dimensional data due to its linear time complexity in terms of dimensionality

Very fast method.

However, it cannot detect redundant attributes

Feature Subset Selection (FSS)

In the FSS category, candidate subsets are generated based on a certain search strategy:

• Exhaustive, heuristic and random search

Each candidate subset is evaluated by a certain **evaluation measure**. If a new subset turns out to be better, it replaces the previous best subset. The process of subset generation and evaluation is repeated until a given stopping criterion is satisfied. Existing evaluation measures include:

- Consistency measure attempts to find a minimum number of features that separate classes as consistently as the full set of features can. An inconsistency is defined as to instances having the same feature values but different class labels.
- Correlation measure evaluates the goodness of feature subsets based on the hypothesis that good feature subsets contain features highly correlated to the class, yet uncorrelated to each other.
- Accuracy of a learning algorithm (Wrapper-based attribute selection) uses the target learning algorithm to estimate the worth of attribute subsets. The feature subset selection algorithm conducts a search for a good subset using the induction algorithm itself as part of the evaluation function.

The time complexity in terms of data dimensionality is, exponential for exhaustive search, quadratic for heuristic search and linear to the number of iterations in a random search

FSS – CFS (Correlation Based FS)

Correlation measure is applied in an algorithm called CFS that exploit heuristic search (best first) to search for candidate feature subsets.

 One of the most frequently used search techniques is hill-climbing (greedy). It starts with an empty set and evaluates each attribute individually to find the best single attribute.

It then tries each of the remaining attributes in conjunction with the best to find the most suited pair of attributes. In the next iteration, each of the remaining attributes are tried in conjunction with the best pair to find the most suited group of three attributes.

This process continues until no single attribute addition improves the evaluation of the subset; i.e., subset evaluator is run M times to choose the best single attribute, *M-1* times to find the best pair of attributes, *M-2* times the best group of three, and so on.

E.g., if we have chosen 5 attributes through this method, the subset evaluator has been run M+(M-1)+(M-2)+(M-3)+(M-4) times.

CFS Example

Weka Explorer								
Preprocess Classify Cluster Associate	Select attributes Visualize Forecast							
Attribute Evaluator								
Choose CfsSubsetEval								
	Search Method							
Choose BestFirst -D 1 -N 5								
Attribute Selection Mode	Attribute selection output							
O Use full training set								
Cross-validation Folds 10	Start set: no attributes Search direction: forward							
	Stale search after 5 node expansions							
Seed 1	Total number of subsets evaluated: 114							
	Merit of best subset found: 0.363							
(Nom) class 👻								
Start Stop	Attribute Subset Evaluator (supervised, Class (nominal): 17 class)							
	CFS Subset Evaluator							
Result list (right-click for options)	Including locally predictive attributes							
15:05:07 - BestFirst + CfsSubsetEval								
	Selected attributes: 2,3,5,11,12,13,14 : 7							
	wage-increase-first-year							
	wage-increase-second-year							
	cost-of-living-adjustment							
	statutory-holidays vacation							
	longterm-disability-assistance							
	contribution-to-dental-plan							
Status								
OK	Log 🗸 X O							

CFS-10CV

🥥 Weka Explorer	
Preprocess Classify Cluster Associate	Select attributes Visualize Forecast
Attribute Evaluator	
Choose CfsSubsetEval	
Search Method	
Choose BestFirst -D 1 -N 5	
Attribute Selection Mode	Attribute selection output
O Use full training set	=== Attribute selection 10 fold cross-validation (stratified), ^
Cross-validation Folds 10 Seed 1	number of folds (%) attribute
Seeu I	0(0 %) 1 duration
	10(100 %) 2 wage-increase-first-year
(Nom) class 🔹	7(70%) 3 wage-increase-second-year
Start Stop	0(0 %) 4 wage-increase-third-year
	7(70%) 5 cost-of-living-adjustment 1(10%) 6 working-hours
Result list (right-click for options)	1(10 %) 6 working-hours 0(0 %) 7 pension
15:05:07 - BestFirst + CfsSubsetEval	1(10%) 8 standby-pay
15:07:50 - BestFirst + CfsSubsetEval	0(0 %) 9 shift-differential
	1(10%) 10 education-allowance
	10(100 %) 11 statutory-holidays
	7(70 %) 12 vacation
	6(60 %) 13 longterm-disability-assistance
	8(80 %) 14 contribution-to-dental-plan
	0(0 %) 15 bereavement-assistance
	3(30%) 16 contribution-to-health-plan
	→
Status	
ОК	Log 🗸 x 0

Exercise - Hay fever

Find the best possible model to recommend the type of drug for hay fever depending on the patient. The attributes collected from historical patients include:

- Age
- Sex
- BP Blood Pressure
- Cholesterol level
- Na: Blood sodium level
- K: Blook potasium level
- There are 5 possible drugs: DrugA, DrugB, DrugC, DrugX, DrugY

The dataset can be downloaded from:

<u>http://www.cc.uah.es/drg/courses/datamining/datasets.zip</u>

Hints:

- Try C4.5, can you simplify the generated tree combining attributes?
- Naive Bayes: can you improve the 'default' results with Feature Selection?

Exercise – Cost Sensitive Example

Using the German credit dataset:

http://www.cc.uah.es/drg/courses/datamining/datasets.zip

This dataset is composed of 20 attributes (7 numeric and 13 nominal) of clients of a bank requesting a credit.

Please, check for details of the in the file itself, including the provided cost matrix:

	actual					
ed		good	bad			
redicted	good	0	1			
pre	bad	5	0			

This cost matrix means that it is 5 times more costly to give credit to a person that won't pay back than the other way around.

Check what happens with ZeroR, Naïve Bayes, Bagging

Association Rules and dependencies

The Titanic dataset (titanic.arff) is composed of 4 attributes

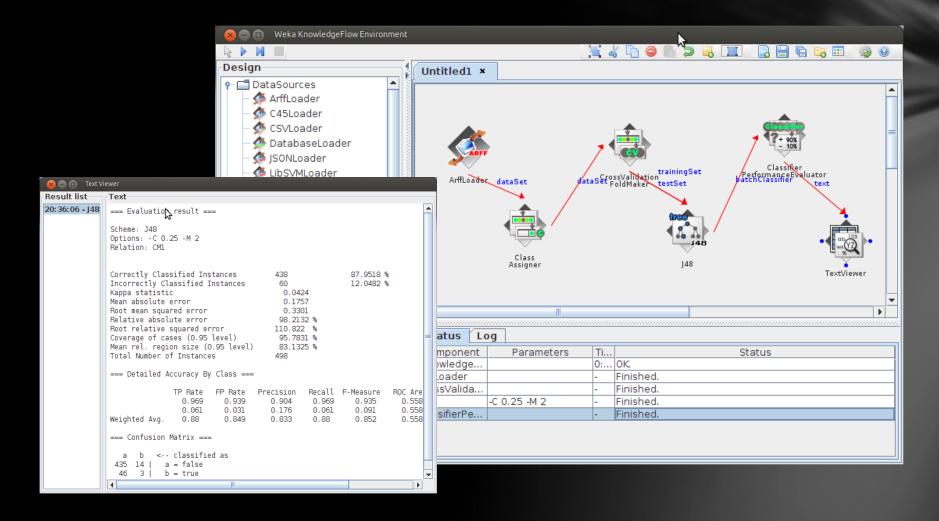
- Class (1st, 2nd, 3rd)
- Age (adult, child)
- Sex (male, femele)
- Survived (yes, no)

describing the actual characteristics of the 2,201 passengers of The Titanic ("Report on the Loss of the 'Titanic' (S.S.)" (1990), British Board of Trade Inquiry Report_ (reprint), Gloucester, UK: Allan Sutton Publishing)

Using the Apriori algorithm extract information contained in this dataset

 Modify the default parameters to obtain rules that consider 'child' in the Age attribute. As there is a small number of values containing samples of age = o, those rules are filtered out with due to their low coverage

Exercise – Clustering


Using the employees dataset:

http://www.cc.uah.es/drg/courses/datamining/datasets.zip

Checks the results for k Means usign 3 clusters.

KnowlegeFlow

Visual running of experiments. Example of running J4.8 (C4.5)

Experimenter

Allow us to compare multiple algorithms

Typically, 10 times 10-CV

🙁 🗖 🔲 Weka Experiment Environment				
Setup Run Analyse	Ş			
Experiment Configuration Mode:	Simple	Advanced		
<u>O</u> pen	<u>S</u> ave	New		
Results Destination				
ARFF file Filename: experimenterExample Brows				
Experiment Type	Iteration Control			
Cross-validation	 Number of repetit 	Number of repetitions: 10		
Number of folds: 10	Data sets first			
Classification CRegress	sion 🛛 Algorithms first	t		
Datasets	Algorithms			
Add new Edit sele	Delete se Add n	Edit select Delete sele		
✓ Use relative	ZeroR			
datasets/cml.arff		J48 -C 0.25 -M 2 Logistic -R 1.0E-8 -M -1 NaiveBayes		
datasets/kcl.arff datasets/kc2.arff	NaiveBayes			
uatasets/kt2.am				
Up D	Down Load optio	Save optio D		
Notes				

Experimenter – Output

After Running the experiment (Run tab) and loading the generated file (Analyze tab)

😢 🗖 🔲 Weka Experiment Environment					
Setup Run Analys	e v				
Source					
Got 1200 results		<u>F</u> ile <u>D</u> atabase <u>E</u>	xperiment		
Configure test		Fest output			
Testing <u>w</u> ith	Paired T-Tester (correct 🔻	Tester: weka.experiment.PairedCorrectedTTester Analysing: Area_under_ROC			
Select <u>r</u> ows and cols	Ro Cols Sw	Datasets: 3 Resultsets: 4			
Co <u>m</u> parison field	Area_under_ROC 💌	Confidence: 0.05 (two tailed) Sorted by: - Date: 02/05/12 21:06			
Significance	0.05				
<u>S</u> orting (asc.) by	<default></default>	Dataset (1) rules.ZeroR ' (2) trees.J48 (3) functions. (4	l) bayes.Naiv		
Test <u>b</u> ase	Select	KC1 (100) 0.50(0.00) 0.70(0.07) v 0.80(0.04) v	0.74(0.10) v 0.79(0.04) v		
D <u>i</u> splayed Columns	Select	KC2 (100) 0.50(0.00) 0.69(0.10) v 0.82(0.08) v	0.84(0.06) v		
Show std. devi <u>a</u> tions	×	(v/ /*) (2/1/0) (3/0/0)	(3/0/0)		
<u>O</u> utput Format	Select	Key: (1) rules.ZeroR '' 48055541465867954			
Perform <u>t</u> est	<u>Save output</u>	(2) trees.J48 '-C 0.25 -M 2' -217733168393644444 (3) functions.Logistic '-R 1.0E-8 -M -1' 3932117032546553727			
Result list		(4) bayes.NaiveBayes '' 5995231201785697655			
21:06:31 - Area_under_F 21:06:40 - Available res	ROC - rules.ZeroR '' 4805554				