
JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. 2003; 15:9–25 (DOI: 10.1002/smr.264)

Research

Latitudinal and longitudinal
process diversity

Nils T Siebel1,∗,†, Stephen Cook2, Manoranjan Satpathy2

and Daniel Rodrı́guez2

1Computational Vision Group, Department of Computer Science, The University of Reading, U.K.
2Applied Software Engineering Research Group, Department of Computer Science,
The University of Reading, U.K.

SUMMARY

Software processes vary across organizations and over time. Managing this process diversity is a delicate
balancing act between creative, healthy diversity and chaos. In this paper, we examine a particular aspect
of this issue, namely some relationships between diversity in software processes, software evolution and the
quality of software products and processes. Our main contribution is to distinguish between two broad kinds
of process diversity, which we call latitudinal and longitudinal process diversity. To illustrate the differences
between these two, we examine the case of a medium-sized system (50 000 lines of C++ code) which has
undergone major changes during its lifetime of 10 years. The software was originally developed by an
individual academic using a research-oriented process to develop a standalone proof-of-concept system. In a
current multi-team project, involving three industrial and three academic partners, the software has been
adapted for integration as a subsystem of a near-market product. We suggest ways in which the observed
process diversity seems to be linked to a change in the software’s propensity for evolution, and we discuss
the impact of this on both product and process quality. Copyright c© 2003 John Wiley & Sons, Ltd.

KEY WORDS: process diversity; process improvement; software evolution; software maintenance

1. INTRODUCTION

It is now widely accepted that most software evolves significantly over its lifetime. One of the
implications is that there are relationships between software processes and software evolution; that
is, the way in which software is developed and maintained may have longterm effects on the software
itself.

∗Correspondence to: Nils T Siebel, Computational Vision Group, Department of Computer Science, The University of Reading,
Reading RG6 6AY, U.K.
†E-mail: nts@ieee.org

Received 28 June 2002
Copyright c© 2003 John Wiley & Sons, Ltd. Revised 25 September 2002



10 N. T SIEBEL ET AL.

In this paper, we examine a particular aspect of this issue, namely some relationships between
diversity in software processes, software evolution and the quality of software products and processes.
Our main contribution is to distinguish between two broad kinds of process diversity: latitudinal
and longitudinal process diversity. This classification provides a conceptual framework for a
better understanding of process diversity and thereby helps managers to apply specifically tailored
countermeasures to control the negative effects of a particular type of diversity. We illustrate these
concepts with a case study and suggest ways in which they appear to affect product and process quality.

1.1. Process diversity

A process is a collection of activities carried out by people and/or machines that are intended to
achieve some desired outcome, are related to each other in time, and have inputs and outputs. For
management purposes, processes are often recursively decomposed into subprocesses to reach what
are called atomic processes. The possible granularity of processes covers a very wide range, from high-
level business processes to finely detailed processes for software maintenance. In order to understand
process diversity, we need to situate software processes in the context of larger business processes.

A process is represented by a process model and executed within a process environment [1]. The
process environment links together the people executing the process (e.g. managers and software
developers) and any domain-specific tools that may be used. As processes do not have unique
representations, and they can be executed within differing process environments, processes invariably
differ. In this paper, we consider process diversity as it occurs when a project is executed within
different process environments, and we study its impact. This diversity can happen either concurrently
(e.g. in multi-team projects) or when a project encounters different process environments during its
life-cycle. Process diversity can have negative consequences. Two well-known examples are problems
during system integration (as project partners might follow differing software processes), and problems
arising from software re-use in a new environment.

Diversity in software processes is usually inevitable, and managing it can be a delicate balancing act.
Too much process diversity can lead to chaos, but too little may suppress creativity and lead to missed
opportunities. Whilst day-to-day process management will be more concerned with deliverables,
schedules and budgets, the management of process improvement should periodically review whether
a satisfactory balance between uniformity and diversity in software processes is being achieved. Our
paper supports this aspect of process review and improvement by proposing a simple high-level model
of process diversity that distinguishes two broad categories that have different sources and impacts.

1.2. Related work

The need for quality improvement and cost reduction in software production and maintenance has
led to a research emphasis on process improvement. The Software Engineering Institute (SEI) has set
up a dedicated group of software process improvement networks (SPINs) with the aim of connecting
individuals involved in improving software engineering practice. Research and case studies show how
much money an improved software process can save a company [2], but also stress the complexities
involved in process improvement [3–6]. A number of process models and standards have been
developed to analyse and improve software processes, most prominently the capability maturity model
(CMM), but also ISO standards such as ISO 9000 and ISO 15504 (see [7] for a review of these and

Copyright c© 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:9–25



LATITUDINAL AND LONGITUDINAL PROCESS DIVERSITY 11

other standards). Process improvement is usually carried out using a process model, and a measurement
framework like the goal/question/metric (G/Q/M) method [8].

The identification of software evolution as a research topic originated in Lehman’s pioneering studies
of the long-term development of IBM systems in the 1960s [9], which resulted in the formulation of
Lehman’s widely respected ‘Laws of Software Evolution’ and his S-P-E classification of information
systems [10,11], which we will address in Section 2.3. Many of the core concepts and approaches that
are currently used can be traced back to Lehman’s work.

In Section 2 we describe our concept and classification of process diversity, establishing a link
between process diversity and software evolution. Section 3 introduces the object of our case study,
which is further analysed in Section 4. Section 5 covers the lessons learned from our analysis and
Section 6 concludes the paper.

2. CLASSIFYING AND MODELLING PROCESS DIVERSITY

Diversity in software processes can occur on many different scales, and its impact on product and
process quality can also cover a wide range. In order to understand the likely impact of particular
examples of diversity, it is helpful to distinguish two high-level categories.

• Latitudinal process diversity. This category describes the kind of variation that occurs when
diverse processes operate concurrently within the same project. This is often observed in multi-
team projects [12].

• Longitudinal process diversity. This is the variation that occurs in software processes over time.
An example which is often observed is the transition from development to maintenance phases
in a project.

Thus latitudinal and longitudinal process diversity are not properties of individual processes; they are
properties of the system (in this case, a software development or maintenance system) that provides
the context for processes—the process environment. Consequently, these properties may be of greatest
interest to people who are responsible for managing, designing or improving processes, rather than
directly executing them.

2.1. Latitudinal process diversity

We use the term latitudinal process diversity to refer to the phenomenon of diverse software processes
operating concurrently. This type of process diversity is often found in projects that span across
company boundaries, and it has its most severe impact when software from more than one project
partner is to be integrated together [12]. This section proposes a model for understanding its main
dimensions.

2.1.1. Role differentiation

In the simplest kind of software project, the roles of customer, developer and user are subsumed in
a single person. However, as projects increase in complexity, these roles tend to differentiate in two
ways.

Copyright c© 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:9–25



12 N. T SIEBEL ET AL.

1. The various functional roles (customer, developer, maintainer etc.) become more distinct and
behave as separate stakeholders in the system, each having characteristic objectives, concerns
and priorities.
The idea that any view of a software system implies the viewpoint of a particular stakeholder has
been incorporated into the recent IEEE Standard 1471-2000 [13].

2. Particular roles become shared by individuals, teams or organizations, who may have different
notions about how the role should be carried out.

Both kinds of differentiation can lead to latitudinal process diversity. At any moment, the various units
(individuals, teams, departments) within an organization may be involved in:

• performing different processes (because the units occupy different roles, e.g. maintainer,
product-line architect, customer); and/or

• performing the same process in different ways (because the units have different cultural or
professional approaches to the role’s responsibilities, e.g. programmers and technical writers
producing system documentation).

2.1.2. Cultural diversity

As an engineering product, software is affected by the environment in which it is produced. A
variety of sociological factors (e.g. the socio-cultural backgrounds of team members, the structure
and business practices of organizations) may lead to differences in the processes that teams use to
produce software—see [14] for examples. Thus cultural diversity of various kinds can lead to latitudinal
diversity in software processes. This becomes most apparent in multi-team projects, where pieces of
software from different teams need to be integrated into one system.

2.2. Longitudinal process diversity

The relationship between process diversity and software evolution can be seen most clearly in the
longitudinal case. A fundamental kind of longitudinal process diversity occurs when software changes
in its propensity for evolution. For example, a program may be originally developed as a proof-of-
concept for some abstract computation with essentially static requirements. Subsequently, the program
may be integrated into an information system that supports an evolving business process. This brings
the program within the influences of a more dynamically evolving system, and its software process
may need to be adapted accordingly.

The concept of longitudinal process diversity implies a long-term viewpoint on software processes.
In this view, the detailed definitions of individual steps in a software process are less important than the
overall scope and configuration of the process considered as a system. Over the long term, factors such
as the sources of change to the software product and the nature of the feedback paths in the process
become more influential; these are also important factors in software evolution [15]. Conversely, factors
such as the choice of programming language or the use of specific software engineering techniques,
like design reviews or code inspections, become less influential. Thus a longitudinal process diversity
viewpoint has strong similarities with, and complements, a software evolution viewpoint. They share
many concerns (e.g. system maintainability) and modelling techniques (e.g. system dynamics), but
differ in whether the viewpoint’s focus is on the process or its product.

Copyright c© 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:9–25



LATITUDINAL AND LONGITUDINAL PROCESS DIVERSITY 13

Changes

Requirements
Functional
Analyse

Define Abstract
Computation

Define Abstract
Computing Platform

Assess Impact of
Exogenous

Analyse
Non−functional
Requirements

Deploy

Release

Generic
Software Change

Process

Figure 1. Software process model, Stereotype 1—low propensity for evolution.

2.3. Evolution-oriented models of software processes

To illustrate the relationship between longitudinal process diversity and software evolution, we have
developed two stereotypes of the software process that are distinguished by their propensity for
software evolution. Stereotype 1 models a process that is appropriate for software with a low propensity
for evolution, Stereotype 2 models a process for software with a high propensity for evolution. These
two represent the extremes of the range that is likely to be found in practice. Longitudinal process
diversity can be understood as movement within this range during the lifetime of a software product.

Both stereotypes use the viewpoint described in the previous section to situate the engineering
process of changing software in a broader context. Consequently, most of the details (and diversity)
of software engineering techniques have been subsumed into a single node generic software change
process. This is a generic placeholder; it represents a software change process in relation to any life-
cycle model (e.g. the waterfall model or agile processes like XP) [16]. The main features of our process
models are illustrated by schematic process diagrams in which the boxes represent (sub)processes
and the arrows represent information flow between them. The diagrams are intended to highlight
the distinguishing characteristics of each model and not to be complete specifications of software
processes.

2.3.1. Stereotype 1: low propensity for software evolution

The process model shown in Figure 1 is intended for software products with a low propensity for
evolution. In terms of Lehman’s S-P-E taxonomy, they fall into the S-type (specified) and P-type

Copyright c© 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:9–25



14 N. T SIEBEL ET AL.

Changes

Business Process and
Co−evolution of

Information System

Assess Impact of
Exogenous

Requirements
Functional
Analyse

Information
System Usage

Analyse
Re−engineering
Requirements Release

Deploy

Analyse
Non−functional
Requirements

Generic

Process
Software Change

System Change
Case for Information
Evaluate Business

Figure 2. Software process model, Stereotype 2—high propensity for evolution.

(problem-solving) categories. Their functional requirements are likely to evolve slowly, if at all.
Implementations of P-type software may need to be adapted occasionally to take account of changes
in their technical environments. In the case of an S-type program, by definition, its requirements
provide a complete description of the problem to be solved and its implementation does not require
any design compromises. Consequently, there are no strong pressures for such programs to evolve.
For a P-type program, the first condition is slightly relaxed; its functional requirements may be
an abstraction (which can be redefined) from the problem to be solved, but the problem itself is
static. A P-type program has significant non-functional requirements that must be reconciled with the
functional requirements by the program’s design. Changes in the technical environment can require
the program to be adapted. For example, if a manufacturer stops supporting particular hardware or
compilers, a program which depends on them may have to be ported to a new platform if it is not to
become unusable. Conversely, when new technical capabilities become available, they can trigger a
reconsideration of design compromises, and possibly a redefinition of the problem abstraction.

2.3.2. Stereotype 2: High propensity for software evolution

When software is embedded in an information system that supports a business (or social) process, its
software process inevitably becomes more complex than the model in Stereotype 1. Parnas has used
the notion of software aging to characterize the additional pressures that affect software and software
processes in this situation [17].

Copyright c© 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:9–25



LATITUDINAL AND LONGITUDINAL PROCESS DIVERSITY 15

One approach to understanding these differences in process can be found in Lehman’s ‘Laws of
Software Evolution’ [11] and related studies (e.g. [15]). In Figure 2 we show Stereotype 2, which
is a model of the software process that takes account of the findings from Lehman’s work that are
most relevant to longitudinal process diversity [11]. The software process modelled in Stereotype 2
is intended for programs which fit into Lehman’s E-type (embedded or evolving) category [10].
The increase in complexity in this model compared with Stereotype 1 arises from three principal
characteristics of E-type programs.

1. Both initial development and subsequent changes to the software are affected by an evolving
business case. The business case can change at any time for reasons that ultimately are open-
ended.

2. The usage of the system produces business benefits. If the system is successful, this will tend to
stimulate co-evolution [18] of the information system and the business process. This will often
result in unanticipated changes in the system’s requirements.

3. One of the side-effects of the increased propensity for evolution is that periodically it may be
necessary for the business case to include some re-engineering of the information system [19].
This path through the process model is shown with dashed lines and boxes in Figure 2.

3. DESCRIPTION OF THE PEOPLE TRACKING SOFTWARE

The software package studied for this article is the people tracking subsystem of ADVISOR‡, which is
an integrated system for automated surveillance of people in underground stations (Figure 3(a)).

ADVISOR is being built as part of a European research project involving three academic and three
industrial partners. The task of the people tracking subsystem is to automatically analyse images
from one or more camera inputs. A stream of video images is continuously fed to the system, and
the subsystem detects all the people in the image and tracks them in realtime. Figure 3(b) shows an
example of the output from the people tracker.

3.1. Brief history

The evolution of the people tracker can be divided into three main phases, extending over 10 years.
Figure 4 shows an overview of these phases.

3.1.1. Phase 1: initial development (1993–1995)

The original people tracker was written at the University of Leeds in 1993–1995 using C++ running
under IRIX on an sgi platform. It was a research and development system and a proof of concept for
a PhD thesis [20]. The main focus during development was on functionality and experimental features
which represented the state-of-the-art in people tracking. For code development, a simple process cycle

‡ADVISOR—Annotated Digital Video for Intelligent Surveillance and Optimized Retrieval.

Copyright c© 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:9–25



16 N. T SIEBEL ET AL.

(a) (b)

Figure 3. People tracking as one of six subsystems of ADVISOR: (a) ADVISOR system
overview; (b) People tracking results.

Porting to Linux Re−Engineering New Functionality System Integration

Initial Development
Phase 1

Integration with RVT
Phase 2

ADVISOR
Phase 3

Figure 4. Main development and maintenance phases of the Reading people tracker.

was used to develop the software. The only documentation generated was a short programmer’s manual
(about five pages) describing how to write an application using the people tracker software.

3.1.2. Phase 2: integration with a vehicle tracker (1995–1998)

In 1995–1998 the code was used in a collaboration between the Universities of Leeds and Reading.
The software was changed to inter-operate with the Reading vehicle tracker which ran on a Sun/Solaris
platform [21]. Little functionality was changed or added during this time and no new documentation
was created. Most of the functional changes made to the People Tracker during this phase were carried
out by its original developer.

Copyright c© 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:9–25



LATITUDINAL AND LONGITUDINAL PROCESS DIVERSITY 17

3.1.3. Phase 3: re-design and integration into the ADVISOR surveillance system (2000–2002)

Since 2000, the people tracker has been adapted for use within the ADVISOR system shown in
Figure 3(a). Its planned use within ADVISOR carried many requirements the original implementation
could not meet. Most of the difficulties arose from the fact that the people tracker would now have to
be part of an integrated system. Using the people tracker in the ADVISOR system also meant moving
it ‘from the lab to the real world’ which necessitated many further changes (e.g. porting it from sgi to
a PC running GNU/Linux to make economical system integration feasible).

An analysis of the system revealed that the current implementation was not maintainable enough
to be adapted to the new requirements. Therefore it was decided to re-engineer the software. After
the re-engineering step, new functionality was incorporated into the software and the missing software
artefacts were recovered. Among these is extensive documentation which describes the new software
process which is now to be followed for all maintenance work. As the last step within Phase 3, the
people tracker was integrated into ADVISOR.

3.2. Current status and outlook

An important result of the re-engineering and documentation process is a new software process which
is now in place. This documented software process defines:

• detailed coding standards, including design patterns [22];
• configuration management (includes the use of cvs for concurrent version management);
• a number of ‘HowTos’ which document how to implement new classes for the most important

functionalities (e.g. acquiring images, tracking).

One can compare the software process followed in Phase 1 with the one defined by the capability
maturity model (CMM) [23] in ‘Level 1’, while some key process areas are now comparable to those
in CMM ‘Level 3’. The current (June 2002) status of the people tracker can be summarized as follows.

• The software is fully operational with all necessary functionality implemented.
• It can run either in standalone mode or integrated within ADVISOR.
• The re-engineered people tracker exhibits a high level of maintainability and all software

artefacts are consistent with the implementation.
• The code is being maintained under GNU/Linux. For integration purposes within the ADVISOR

project, releases of the people tracker subsystem have been compiled and integrated under
Microsoft Windows 2000.

The testing phase for the tracker running in standalone mode has been successfully completed. The
testing phase for its use in the integrated system is in progress. Within a few months from now, a
prototype of the ADVISOR system will be tested in underground stations in Brussels and Barcelona.
There are a number of proposals for extending the use of the tracking system. An example is to use it
to monitor the activity of a species of rare bat [24].

4. ANALYSIS OF THE PROCESS DIVERSITY FOR THE PEOPLE TRACKER

Over the 10 years that the people tracker software has been maintained and used, a wide range of
software processes have been employed. In the following sections, we examine this phenomenon in

Copyright c© 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:9–25



18 N. T SIEBEL ET AL.

Academic Individual A:

Standalone Development
Academic Group D:

Creation of Subsystem 1

Industrial Partner C:
Supply of Input, Integration

Subsystem 2 using 1’s Output

Academic Partner E:

Adaptation and Integration
Academic Individuals A and B:

Longitudinal Process Diversity

La
tit

ud
in

al
 P

ro
ce

ss
 D

iv
er

si
ty

Time

Figure 5. Latitudinal and longitudinal process diversity.

more detail, differentiating between the latitudinal process diversity experienced during Phase 3 and
the longitudinal process diversity occurring over all three phases. The relationships between the phases
of the people tracker’s history and its latitudinal and longitudinal process diversity are summarized in
Figure 5. We analyse whether and how the impact of process diversity on the project differs with its
type—latitudinal or longitudinal.

4.1. Latitudinal process diversity: diversity between co-operating groups

The use of the people tracker within the ADVISOR project led to increased latitudinal process diversity
in Phase 3 as compared with Phases 1 and 2. The principal change was that the academic maintainers,
denoted by ‘D’ in Figure 5, had to co-operate with an industrial partner ‘C’, and also with an academic
partner ‘E’ in a different country. This meant more actors with distinct roles, as well as different (kinds
of) organizations sharing roles, as discussed in Section 2.1.1. In the following description, we will
concentrate on these three out of the six groups within ADVISOR, as the others do not directly interface
with the people tracking subsystem (cf. Figure 3(a)).

In the collaboration with the industrial partner ‘C’, the maintainers of the people tracker and their
partners experienced many ‘cultural’ differences. For example, there were differences in the partners’
approaches to the use of standards and choices of tools and platforms. The new people tracker
subsystem was maintained under GNU/Linux on a PC platform. Academic group D adhered to the ISO
C/C++ standard, compliant with ISO/IEC 9899:1999(E) [25]. Towards the end of the development, all
the design and the implementation were consistent with each other. The module developed by industrial
partner ‘C’, however, was developed under Microsoft Windows 2000 using Microsoft Visual C++.

A consequence of these differences is that the people tracker code, maintained under GNU/Linux,
had to be compiled with Microsoft Visual C++. It became clear that Microsoft Visual C++ could not

Copyright c© 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:9–25



LATITUDINAL AND LONGITUDINAL PROCESS DIVERSITY 19

compile the ISO C code as its compiler is not compatible with that standard. The resolution of this
incompatibility required resources that neither partner had budgeted for.

4.2. Longitudinal process diversity and transition between process models

As the people tracker evolved through the three phases described above, its process model changed
accordingly. During Phase 1 the process was similar to Stereotype 1 (see Section 2.3.1); during Phase 3
it more closely resembled Stereotype 2 (see Section 2.3.2).

During Phase 1, the main design and programming work was carried out by an academic individual.
The goal was to develop a people tracking application which would excel existing applications in
performance. During the process cycle, testing and development were closely connected, and both
were in the hands of a single person. Being an academic research project, there were also few fixed
deadlines for the delivery of code. This meant that all parts of the code could be freely changed at
any given time, and many modules were actually changed or re-written many times before the final
delivery. Once the software and the PhD thesis were delivered, no functional changes needed to be
carried out.

Phase 2 only brought a slight change in the software process. The system was adapted to incorporate
a few new requirements, and the interaction with the vehicle tracker module was very localized—the
two programs were not even compiled together. The original developer of the software from Phase 1
was involved and carried out many of the functional changes. This reduced the necessity for a change of
processes from Phase 1 to Phase 2 as the necessary knowledge about the system was available without
the creation of documentation etc.

None of the people involved in Phases 1 and 2 participated in Phase 3. This resulted in Phase 3 being
completely de-coupled from Phases 1 and 2, the only linking element over time being the source code.
Because there was practically no documentation available for the software, the design methodologies
employed during the process were necessarily different from the ones employed before.

The following new requirements necessitated the creation of a process cycle which is close to
Stereotype 2 (cf. Figure 2).

• Close integration with another ADVISOR module required interaction with project partners;
interfaces needed to be agreed and delivery deadlines had to be kept.

• The significant functional changes necessitated re-engineering analysis and changes through
refactoring and re-design. For example, one new requirement was that more than one camera
could be used. The use of global variables in the Phase 2 code made this impossible.

• The people tracker subsystem had to be de-coupled from software- and hardware-dependent
functions like sgi hardware graphics routines so that it could be maintained under GNU/Linux,
but used (within ADVISOR) under Microsoft Windows.

• A strict project schedule with deliverables and milestones meant that a further feedback loop was
introduced; based on the deliverables and steering committee decisions, software requirements
were changed and adapted to previous results.

• The planned use of the people tracker for related, but different applications (like tracking
bats [24]) or the scaling of the system for larger applications inspired the generalization of
tracking concepts within the software, keeping in mind possible future uses.

Copyright c© 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:9–25



20 N. T SIEBEL ET AL.

Table I. Metrics of the people tracker over time.

Version LOC Classes Of which instantiated Methods Global functions

Pre-Phase 2 20 454 154 71 (46.1%) 1 695 271
Post-Phase 2 19 380 154 71 (46.1%) 1 690 271
Phase 3, a 24 797 191 80 (41.9%) 1 913 286
Phase 3, b 25 306 183 97 (53.0%) 1 714 25
Phase 3, c 23 581 178 85 (47.8%) 1 664 24
End Phase 3 16 472 122 82 (67.2%) 1 231 9

4.3. Metrics and further analysis

Table I shows a brief summary of the characteristics of the people tracker at different stages of its
lifetime. The size is given in lines of code (LOC), not counting empty or comment lines.

Code size. The code size as well as the number of classes and methods have varied considerably.
Up to the first stage within Phase 3, functionality was simply added without removing much unused
functionality. Nevertheless, very little code was added during Phase 2 when the people tracker was
changed to interoperate with the Reading Vehicle Tracker.

When the re-engineering stage within Phase 3 started, there was also little change in code size. The
explanation the developers gave is that at this stage, unused functionality was identified and marked as
such. However, until the end of Phase 3, while new functionality for ADVISOR was added, most of the
unused legacy functionality was kept in case it would be needed again. When it was finally removed in
the last version examined here, one can see the sharp decrease in code size.

Global functions. The original code contained a large number of global functions. This number was
substantially reduced during the re-engineering stage and again when most of the unused functionality
was removed.

From our experience of Phase 3, we have inferred several connections between the process changes
described earlier and the product characteristics described above.

• The new software process, being closer to Stereotype 2, includes a new design strategy, which
observes more dependencies and also considers possible future uses of the software. One of its
effects is the reduction of global functions to a minimum.

• One result of the re-engineering step in Phase 3 is that the size of the code was reduced and
the proportion of used functionality increased. This can be seen in the percentage of instantiated
classes given in Table I. The reduction in redundancy directly improves software maintainability.

• The recovered software artefacts and the redesigned code structure make it easier to understand
and change the software. The current maintainers have already noticed the change as they
compared the way in which students approached the unknown code when they started to work
on the project, before and after the re-engineering process.

Copyright c© 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:9–25



LATITUDINAL AND LONGITUDINAL PROCESS DIVERSITY 21

5. LESSONS LEARNED

The proposed distinction between latitudinal and longitudinal process diversity is intended to help
software managers to analyse process diversity by providing a conceptual framework. Using this
framework, corrective or preventive measures can be related to a particular type of process diversity.
In this sense, our classification modularizes process diversity.

In process assessment and improvement, e.g. using G/Q/M, it is of great importance to have a
detailed analysis of the process. Such knowledge decreases the semantic gap between the high-level
G/Q/M goals and the questions which need to be asked in building the ‘G/Q/M tree’ (which is a directed
acyclic graph). Process improvement may be done to control the negative aspects of process diversity.
In this case, our classification framework can help in G/Q/M analysis by relating a G/Q/M goal to an
improvement action.

A process is executed within a process environment. The environment should provide mechanisms
to address the issues related to process diversity. Our classification can provide additional insight into
such mechanisms.

In the following, we outline some of the actions which can be taken to counteract the negative
impacts of each type of process diversity.

5.1. Latitudinal process diversity

Whenever partners interact, it is important to build a good co-operative atmosphere where partners
can work together as a ‘virtual team’, joined by common goals [26]. Participating teams should spend
time together at the beginning of a project to understand each other’s processes, vocabulary, tools and
perspective. For example, one development team could participate in seminars or workshops sponsored
by the other team. This will also help to break down barriers stemming from cultural differences,
creating a better working environment.

Interface issues should be identified and resolved at the beginning of a project rather than reactively
as problems arise. Anderson et al. have proposed a similar idea for handling usability aspects at the
start of a project [27].

Project partners should be flexible about the detailed definition of processes and should try to
tolerate minor differences. For example, one partner’s processes cannot usually be imposed on another
partner without creating problems. One way to achieve the necessary flexibility could be a periodic
review process for processes, which should include a method for reaching consensus. This should
be compounded by a constant high level of communication, as recommended by Herbsleb and
Grinter [12].

5.2. Longitudinal process diversity

When developing software, one should be aware that in the future, it might be re-used in different
projects and contexts. In order to minimize problems stemming from longitudinal process diversity we
recommend to keep the following points in mind.

• Scalability. This mostly affects the software design process. Aim for a good object-oriented
structure, avoiding global functions.

Copyright c© 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:9–25



22 N. T SIEBEL ET AL.

• Portability. Use of ISO and other standards and minimize the use of non-portable software and
hardware functions.

• Generality. Use as few prior assumptions on input and output data as possible, and use abstract
concepts during design (e.g. when programming a people tracker, find a layer of abstraction for
tracking methods—the system might be used to track animals in the future).

• Interoperability. Use open standards (e.g. XML) for data exchange. This reduces platform
dependencies for data, documents, and configuration information.

• Maintainability. Probably the most important point, and connected to several of the above.
We recommend the following measures to attain a high level of maintainability:

– carefully choose, document, and follow a suitable software process to achieve a high
software process consistency over time;

– create all software artefacts (e.g. programmer’s and user manuals) and keep them
synchronized with the implementation;

– do refactoring [28] ‘on the fly’—this can involve incremental reverse engineering using
design patterns [22];

– use metrics periodically to monitor design quality.

6. CONCLUSIONS AND FUTURE WORK

We have presented a way to classify process diversity into latitudinal and longitudinal categories.
By studying the case of a project exhibiting both types of process diversity, we have shown how the
effects on the quality of products and processes differed with the type of process diversity encountered.

The effects of longitudinal process diversity are most relevant where software components or
products are re-used within significantly different processes. This implies that software engineers
should try to anticipate the possibility of component reuse within different processes, even when the
detailed form of reuse cannot be predicted.

The effects of latitudinal process diversity are likely to be felt most strongly where ‘virtual teams’
are created for a specific project, especially if the participants are drawn from contrasting traditions of
software development processes.

Understanding the differences between these kinds of process diversity will help software engineers
and project managers to assess their implications for process and product quality, and their impact
on risk management in projects. Furthermore, relating process diversity to broader concepts of
software evolution provides a linkage between fine-grained process improvements and larger-scale
organizational models of the co-evolution of software and business processes.

Our current work includes the collection of more data from the early stages of the project. We are
working with the project leader of Phase 1 to acquire copies of its source code. With this additional
data, we would like to analyse the trends of software metrics further back into Phase 1, thereby covering
the whole lifetime of the software.

The classification into latitudinal and longitudinal process diversity has been illustrated with a
project strongly exhibiting both types. It would be interesting to see how these two types of process
diversity differ in other projects. Further study into projects with only one type of process diversity and
projects featuring both types within their lifetime might help to answer this question.

Copyright c© 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:9–25



LATITUDINAL AND LONGITUDINAL PROCESS DIVERSITY 23

ACKNOWLEDGEMENTS

The authors wish to thank the original developer of the people tracker, Dr Adam Baumberg, and the project leader
at that time, Professor David Hogg from the University of Leeds, for their kind support in providing information
about Phase 1 of the project. The authors also gratefully acknowledge the comments and suggestions of the
anonymous reviewers, which have helped to improve the article.

REFERENCES

1. Doppke JC, Heimbigner D, Wolf AL. Software process modeling and execution within virtual environments. ACM
Transactions on Software Engineering and Methodology 1998; 7(1):1–40.

2. Dion R. Process improvement and the corporate balance sheet. IEEE Software 1993; 10(4):28–35.
3. Humphrey W. Introduction to software process improvement. Technical Report CMU/SEI-94-TR-007, Software

Engineering Institute, Carnegie Mellon University, Pittsburgh PA, August 1992. (Revised version, August 1993.)
4. Herbsleb J, Carleton A, Rozum J, Siegel J, Zubro D. Benefits of CMM-based software process improvement: Initial results.

Technical Report CMU/SEI-94-TR-013, Software Engineering Institute, Carnegie Mellon University, Pittsburgh PA, August
1994.

5. Cattaneo F, Fuggetta A, Lavazza L. An experience in process assessment. Proceedings of the 17th International Conference
on Software Engineering (ICSE-17). ACM Press: New York NY, 1995; 115–121.

6. Sharp H, Woodman M, Hovenden F, Robinson H. The role of ‘culture’ in successful software process improvement.
Proceedings 25th Euromicro Conference (EUROMICRO ’99), vol. 2. IEEE Computer Society Press: Los Alamitos CA,
1999; 2170–2176.

7. Paulk MC. Models and standards for software process assessment and improvement. Software Process Improvement, ch. 1,
Hunter RB, Thayer RH (eds). IEEE Press: Piscataway NJ, 2001; 1–36.

8. van Solingen R, Berghout E. The Goal/Question/Metric Method. McGraw-Hill: London, 1999; 200 pp.
9. Lehman MM. The programming process. IBM Research Report RC 2722, IBM Research Center, Yorktown Heights, U.S.A.,

1969.
10. Lehman MM. Programs, life cycles, and laws of software evolution. Proceedings of the IEEE 1980; 68(9):1060–1076.
11. Lehman MM, Perry DE, Ramil JF, Turski WM, Wernick P. Metrics and laws of software evolution—the nineties view.

Proceedings of the Fourth International Conference on Software Metrics (Metrics 97). IEEE Press: Los Alamitos CA,
1997; 20–32.

12. Herbsleb JD, Grinter RE. Splitting the organization and integrating the code: Conway’s law revisited. Proceedings of the
21st International Conference on Software Engineering (ICSE 1999). ACM Press: New York NY, 1999; 85–95.

13. IEEE Computer Society. Recommended Practice for Architectural Description of Software Intensive Systems. IEEE
Std-1471-2000. IEEE Computer Society Press: Los Alamitos CA, 2000.

14. Carmel E. Global Software Teams: Collaborating Across Borders and Time Zones (1st edn). Prentice-Hall: Englewood
Cliffs NJ, 1999; 200 pp.

15. Chatters BW, Lehman MM, Ramil JF, Wernick P. Modelling a software evolution process: A long-term case study.
Software Process Improvement and Practice 2000; 5(2/3):91–102.

16. Beck K. Extreme Programming Explained: Embrace Change. Addison-Wesley: Reading MA, 1999; 224 pp.
17. Parnas DL. Software aging. Proceedings 16th International Conference on Software Engineering (ICSE-16). IEEE

Computer Society Press: Los Alamitos CA, 1994; 279–287.
18. Warboys BC, Greenwood RM, Kawalek P. Modelling the co-evolution of business processes and IT systems. Systems

Engineering for Business Process Change: Collected Papers from the EPSRC Research Programme, Henderson P (ed.).
Springer: London, 2000; 10–23.

19. Weide BW, Heym WD, Hollingsworth JE. Reverse engineering of legacy code exposed. Proceedings of the 17th
International Conference on Software Engineering (ICSE-17). ACM Press: New York NY, 1995; 327–331.

20. Baumberg AM. Learning deformable models for tracking human motion. PhD Thesis, School of Computer Studies,
University of Leeds: Leeds, U.K., October 1995; xiv+138 pp. ftp://ftp.comp.leeds.ac.uk/comp/doc/theses/baumberg.ps.gz.

21. Remagnino P, Baumberg A, Grove T, Tan T, Hogg D, Baker K, Worrall A. An integrated traffic and pedestrian model-
based vision system. Proceedings of the 8th British Machine Vision Conference (BMVC97), Clark A (ed.). BMVA Press:
Malvern, UK, 1997; 380–389.

22. Fowler M, Beck K, Brant J, Opdyke W, Roberts D. Refactoring: Improving the Design of Existing Code. Addison-Wesley:
Reading MA, 1999; 431 pp.

23. Paulk MC, Curtis B, Chrissis MB, Weber CV. Capability maturity model, version 1.1. IEEE Software 1993; 10(4):18–27.

Copyright c© 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:9–25



24 N. T SIEBEL ET AL.

24. Mitchell-Jones AJ. Personal communication, February 2002.
25. International Organization for Standardization. ISO: Programming Languages—C. ISO/IEC 9899:1999(E), 1999.
26. Wells M, Harrison R. The liminal moment. Understanding distributed communication and business processes. Proceedings

of the Conference on Empirical Assessment in Software Engineering (EASE 2001), 2001.
27. Anderson J, Fleek F, Garrity K, Drake F. Integrating usability techniques into software development. IEEE Software 2001;

18(1):46–53.
28. Demeyer S, Ducasse S, Nierstrasz O. Finding refactorings via change metrics. Proceedings of the 2000 ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA 2000). ACM Press: New
York NY, 2000; 166–177.

AUTHORS’ BIOGRAPHIES

Nils T Siebel received his degree in Mathematics from the University of Bremen,
Germany. He is currently a Doctoral Candidate for Computer Science at The University
of Reading, U.K., where he is researching the computer vision and software integration
issues within the people tracking subsystem presented here. In addition to software
processes and software maintainability, his research interests are control theory, computer
vision and robotics.

Stephen Cook received a BA (Hons.) in Social Science and an MSc in Computing
from the Middlesex Polytechnic and the University of Wales, respectively. After more
than 10 years of industrial experience as a Senior Scientific Officer and Principal
Analyst/Programmer he is now a Research Fellow at The University of Reading, U.K.,
where he is carrying out research in the areas of software processes and evolution,
software architectures and software design.

Manoranjan Satpathy received his undergraduate, postgraduate and PhD degrees, all in
Computer Science, from the Indian Institute of Science in Bangalore, the Indian Institute
of Technology in Kanpur and the Indian Institute of Technology in Bombay, respectively.
Currently he is working as a Lecturer in the Computer Science Department of The
University of Reading, U.K. His research interests are software engineering, programming
languages and formal methods.

Copyright c© 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:9–25



LATITUDINAL AND LONGITUDINAL PROCESS DIVERSITY 25

Daniel Rodrı́guez has a degree in Computer Science from the University of the Basque
Country, Spain. Currently, he is a Lecturer and Doctoral Candidate at The University of
Reading, U.K. His principal research interest is empirical software engineering, including
software assessment and improvement, data mining and the application of evolutionary
computation to decision making tasks.

Copyright c© 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:9–25


	1 INTRODUCTION
	1.1 Process diversity
	1.2 Related work

	2 CLASSIFYING AND MODELLING PROCESS DIVERSITY
	2.1 Latitudinal process diversity
	2.1.1 Role differentiation
	2.1.2 Cultural diversity

	2.2 Longitudinal process diversity
	2.3 Evolution-oriented models of software processes
	2.3.1 Stereotype 1: low propensity for software evolution
	2.3.2 Stereotype 2: High propensity for software evolution


	3 DESCRIPTION OF THE PEOPLE TRACKING SOFTWARE
	3.1 Brief history
	3.1.1 Phase 1: initial development (1993--1995)
	3.1.2 Phase 2: integration with a vehicle tracker (1995--1998)
	3.1.3 Phase 3: re-design and integration into the ADVISOR surveillance system (2000--2002)

	3.2 Current status and outlook

	4 ANALYSIS OF THE PROCESS DIVERSITY FOR THE PEOPLE TRACKER
	4.1 Latitudinal process diversity: diversity between co-operating groups
	4.2 Longitudinal process diversity and transition between process models
	4.3 Metrics and further analysis

	5 LESSONS LEARNED
	5.1 Latitudinal process diversity
	5.2 Longitudinal process diversity

	6 CONCLUSIONS AND FUTURE WORK

