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Abstract

Context: Although many papers have been published on software defect
prediction techniques, machine learning approaches have yet to be fully ex-
plored.
Objective: In this paper we suggest using a descriptive approach for defect
prediction rather than the precise classification techniques that are usually
adopted. This allows us to characterise defective modules with simple rules
that can easily be applied by practitioners and deliver a practical (or engi-
neering) approach rather than a highly accurate result.
Method: We describe two well-known subgroup discovery algorithms, the
SD algorithm and the CN2-SD algorithm to obtain rules that identify de-
fect prone modules. The empirical work is performed with publicly available
datasets from the Promise repository and object-oriented metrics from an
Eclipse repository related to defect prediction. Subgroup discovery algo-
rithms mitigate against characteristics of datasets that hinder the applica-
bility of classification algorithms and so remove the need for preprocessing
techniques.
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Results: The results show that the generated rules can be used to guide test-
ing effort in order to improve the quality of software development projects.
Such rules can indicate metrics, their threshold values and relationships be-
tween metrics of defective modules.
Conclusions: The induced rules are simple to use and easy to understand
as they provide a description rather than a complete classification of the
whole dataset. Thus this paper represents an engineering approach to defect
prediction, i.e., an approach which is useful in practice, easily understandable
and can be applied by practitioners.
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1. Introduction

In the recent past, the application of data mining techniques in software
engineering has received a lot of attention. Problems such as planning and
decision making, defect prediction, effort estimation, testing and test case
generation, knowledge extraction, etc. can be reformulated using a set of
techniques under the umbrella of data mining [15, 73, 27]. The extracted
patterns of knowledge can assist software engineers in predicting, planning,
and understanding various aspects of a project so that they can more effi-
ciently support future development and project management activities.

Data mining provides techniques to analyze and extract novel, interest-
ing patterns from data. Formally, it has been defined as the process of
inducing previously unknown and potentially useful information from data
collections [23]: “The two high-level primary goals of data mining in practice
tend to be prediction and description”. The former is related to the predic-
tion of unknown or future values (e.g. classification tree models, regression
models, etc.), the latter, involves finding interesting patterns that can be
easily understood by humans (e.g. association and clustering algorithms). It
is worth noting that Fayyad et al. also state that: “the boundaries between
prediction and description are not sharp (some of the predictive models can
be descriptive, to the degree that they are understandable, and vice-versa)”.
For example, clustering algorithms can be used as classifiers or supervised
feature selection methods can be considered descriptive. There are also tech-
niques that hybridise prediction and description as in the case of supervised
descriptive techniques [43]. The aim of these techniques is to understand
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the underlying phenomena rather than to classify new instances; i.e., to find
interesting information about a specific value. The information should be
useful to the domain experts and easily interpretable by them.

In this work, we tackle the defect prediction problem through a descrip-
tive induction process using Subgroup Discovery (SD) techniques. These
kinds of algorithms are designed to find subgroups of data that are statis-
tically different given a property of interest [39, 71, 72, 32]. SD algorithms
can be both predictive, finding rules given historical data and a property of
interest; and descriptive, discovering interesting patterns in data. For the
same purpose, there are other types of supervised descriptive techniques,
Contrast Set Mining (CSM) [6] and Emerging Pattern Mining (EPM) [19].
CSM finds contrast sets which are defined as conjunctions of attribute-value
pairs that differ significantly in their distributions across groups (class vari-
able). These contrast sets may have a very low support but they must clearly
differentiate the different groups. EPM captures emerging patterns (EP) in
time-stamped databases or useful contrasts in classification datasets (with a
class attribute). EPs are defined as itemsets (using association rule terminol-
ogy) whose support increases significantly from one dataset, D1, to another
dataset, D2. EPM searches for characteristics that differentiate two item-
sets, D1 and D2, based on the growthRate1 (ratio between both supports)
as quality measure. These techniques have similarities: they all use rules
as a representation techniques and have been proved to be equivalent [43].
However, the SD approaches have better tool support (including the Orange
toolkit) and the quality measures used as objective function focus on finding
statistically different subgroups (this is explained in § 3).

The main contributions of this paper are as follows. Firstly, to propose
a descriptive approach based on Subgroup Discovery for defect prediction
which allows us to characterise defective modules with simple rules that can
easily be applied by practitioners. Such rules can describe thresholds and
relationships between metrics. In this paper, we show how SD algorithms
induce rules that can indicate defective software modules with a fairly high
probability. To do this, we rely on the fact that SD algorithms mitigate
against some of the characteristics of datasets that hinder the applicability
of many classical classification algorithms such as (i) imbalanced datasets in
which the number of non-defective modules is much larger than the number

1growthRate(itemset) =
supportD2 (itemset)

supportD1 (itemset)
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of defective modules, (ii) duplicated instances and contradictory cases and
(iii) redundant and irrelevant attributes. In the literature these problems
have mainly been tackled with preprocessing techniques such as sampling
and feature selection. SD algorithms can be an alternative to classical clas-
sification algorithms without the need of applying preprocessing techniques.
Modifying the original data or using preprocessing techniques does not always
guarantee better results and can make it more difficult to extract knowledge
from the data. SD algorithms, on the other hand, can be applied to the
original data without the need for sampling or feature selection techniques
and the representation of the rules makes them easy to apply.

In summary, we search for simple models represented as rules capable
of detecting defective modules rather than highly accurate models. Thus
our research question is: can subgroup discovery be used to detect the most
defective modules in a system?

We describe and compare two well-known SD algorithms, the Subgroup
Discovery (SD) algorithm [25] and the CN2-SD algorithm [44], by applying
them to several datasets from the publicly available Promise repository [52],
as well as the Bug Prediction Dataset (BPD) created by D’Ambros et al. [16,
17].

The organization of the paper is as follows. Section 2 covers the related
work in defect prediction followed by background related to subgroup dis-
covery concepts in Section 3. Next, Section 4 describes the experimental
work, including datasets, rule induction, study of the generalisation of the
rule induced and discussion of the results. Section 5 covers the threats to the
validity. Finally, Section 6 concludes the paper and outlines future research
work.

2. Related Work

Defect prediction has been an important research topic for more than a
decade with an increasing number of papers including two recent and com-
prehensive systematic literature reviews [12, 29]. Many studies in defect pre-
diction have been reported using techniques which originated from the field
of statistics and machine learning. Such techniques include regression [8],
logistic regression [18, 75], Support Vector Machines [20], etc. Others have
their origin in machine learning techniques such as classification trees [34]),
neural networks [35], probabilistic techniques (such as Näıve Bayes [53] and

4



Bayesian networks [24]), Case Based Reasoning ([36]), ensembles of differ-
ent techniques and meta-heuristic techniques such as ant colony optimisa-
tion [33, 5, 67], etc.

Work has also been done on using rules as a representation model or de-
cision trees such as C4.5 [59] which can be easily transformed to rules. For
example, Koru and Liu [41]) used C4.5 for defect prediction with the NASA
datasets to analyse the relationships between defects and module size. Also
descriptive rules such as association rules [1] have been applied by Song et
al. [66] to predict the defect associations and defect correction effort. In gen-
eral, rules are easier to understand and apply than many other classification
techniques such as neural networks or ensembles of multiple classifiers which
behave as black boxes and are difficult to generalise across different datasets
even when the same attributes are used. Hierarchical rules, such as chained
if . . . then . . . else rules are harder to interpret and use by domain experts
than independent rules such as the ones obtained by SD approaches. For
example, Vandecruys et al. [67] reported the use of ant colonies as opti-
mization technique for generating rules. A drawback of their approach is
that they cannot handle imbalanced datasets appropriately and hierarchical
rules can become hard to understand and apply. Azar and Vybihal [5] have
also used metaheuristic optimization to induce rules capable of predicting
defective modules from a number of static metrics that measure size, cohe-
sion, coupling and inheritance. In this case, the authors recognised and deal
with the imbalance by reporting Younden’s Jindex per class. In another work,
Azar et al. [4] also combine rules from different algorithms using metaheuris-
tics. Their approach could be used to combine and select rules induced from
different SD algorithms (as shown in this work) or as a postprocessing step
if a large number of rules are generated.

Several papers have compared multiple techniques with single datasets
(e.g.[37]) or multiple datasets with multiple evaluation measures. Peng et
al. [57] evaluated 13 classification algorithms with 11 measures over 11 soft-
ware defect datasets. Although Support Vector Machines, nearest neighbour
and the C4.5 algorithm were ranked as the top three classifiers, the au-
thors indicated that a classifier which obtains the best result for a given
dataset according to a given measure may perform poorly with a different
measure. Also in another work, Peng et al. [58] used ten NASA datasets
to rank classification algorithms, showing that a CART boosting algorithm
and the C4.5 decision-tree algorithm with boosting are ranked as the opti-
mum algorithms for defect prediction. Another extensive study, Lessman et
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al. [45] compared 22 classifiers grouped into statistical, nearest neighbour,
neural networks, support vector machine, decision trees and ensemble meth-
ods over ten datasets from the NASA repository. The authors discuss several
performance metrics such as TPrate and FPrate but advocate the use of Area
Under the ROC (AUC) [21] as the best indicator for comparing the different
classifiers.

However, there are discrepancies among the outcomes of these works
where (i) no classifier is consistently better than the others; (ii) there is
no optimum metric to evaluate and compare classifiers as highlighted in [49,
56, 74, 53]; and (iii) there are quality issues regarding the data such as im-
balanced datasets, class overlaps, outliers, transformation issues, etc. that
affect different classifiers differently. Menzies et al. [55] argue that we may
have reached the limit of what we can do with standard classifiers and new
paths need to be explored, for example considering cost. Arisholm et al. [3]
compared a classification tree algorithm (C4.5), a coverage rule algorithm
(PART), logistic regression, neural networks and support vector machines
over 13 releases of a Telecom middleware system developed in Java using
three types of metrics: (i) object-oriented metrics, (ii) churn (delta) met-
rics between successive releases, and (iii) process management metrics from
a configuration management system. The authors concluded that although
there are no significant differences regarding the techniques used, large differ-
ences can be observed depending on the criteria used to compare them. The
authors also propose a new cost-effectiveness metric based on the area-under-
the-curve (AUC) and the number of statements so that larger modules are
more expensive to test. Arisholm and Briand also considered cost [2]. Mende
and Koschke [50] also explored module size in conjunction with the AUC as
evaluation metrics in defect prediction using the NASA datasets as well as
datasets from three versions of Eclipse2 using random forests [9] as the classi-
fication technique. Here we want to to explore another alternative, Subgroup
Discovery, which is explained in detail in the next Section.

3. Subgroup Discovery

Subgroup Discovery (SD) [39, 71, 72, 32] concerns the discovery of sta-
tistically distinct subgroups with respect to some property of interest. Sub-
groups are generally represented through rules, e.g. if LoC > 100 and

2http://www.eclipse.org/

6



(a) Classification (b) Subgroup Discovery

Figure 1: Classification (a) vs. Subgroup Discovery (b)

complexity > 4 then defective. More formally, rules are represented as
Cond → Class, where Class (the consequent) is a specific value of an at-
tribute of interest (e.g. defective = true), and Cond (the antecedent) is
usually composed of a conjunction of attribute-value pairs through relational
operators. Discrete attributes can have the form of att = val or att ̸= val and
for continuous attributes ranges need to be defined, e.g. val1 ≤ att ≤ val2.
We can generate rules for all values of the attribute class; however, in this pa-
per, we want to focus only on finding rules that identify defect prone modules.
Rules have various advantages: they are able to explain the learned models
(they provide knowledge of the learned domain), they are easily applicable
and they are understandable by domain experts.

As shown in Figure 1(a), classification techniques are concerned with
prediction (dividing the data as accurately as possible) while SD algorithms
focus on finding subgroups of data related to some property of interest (see
Figure 1(b)).

Rules induced by SD algorithms are different from the ones induced by
classification algorithms. Figure 2(a) shows rules induced as a classification
tree using Weka’s implementation of C4.5 and Figure 2(b) shows the rules
generated by the SD algorithm CN2-SD. Graphically, we can also observe
that the three rules induced by the C4.5 classifier – which can be derived
from the classification tree – cover disjoint areas of the search space. The
rule R1 divides the search space into two partitions depending on whether the
variable total loc is less than or equal to 155. Next, R2.1 and R2.2 spaces
are created depending on design complexity being less or equal than 54.
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R1 total loc ≤ 155: false

total loc > 155

R2.1 | design complexity ≤ 54: true

R2.2 | design complexity > 54: false

(a) Classification Example

S1 unique operators > 15

S2 unique operators > 15 & branch count > 32

S3 unique operators > 15 & design complexity > 3

S4 unique operators > 15 & branch count > 32 & design complexity > 3

S5 cyclomatic complexity > 17 & design complexity > 3

(b) Subgroup Discovery Example

Figure 2: Example of Rules induced with Classification (a) vs. Subgroup Discovery (b)

The graphical interpretation of the three disjoint search spaces is shown in
Figure 3(a).

On the other hand, SD algorithms can generate redundant rules (see
Figure 3). For example, the rule or subgroup S4, unique operators > 15

& branch count > 32 & design complexity > 3 is more restrictive (spe-
cific) than the rules S2 and S3, which in turn are again more restrictive than
the first rule S1, unique operator > 15. Figure 3 shows graphically how
the SD rules find subgroups of data for the property of interest (in this case,
defective modules).

As stated previously, the idea of SD is to label interpretable groups of data
in an intuitive manner. Therefore, there is a balance between the specificity
and generality of the induced rules. The more conditions rules have (the
more specific they are), the fewer false positives the rules have. On the other
hand, the fewer conditions the rules have, the more generic the rules are,
possibly generating a larger number false positives. For example, Figure 4
shows three different subgroups, the subgroup S1 covers a small number of
instances with only one error. However, subgroup S2 is more generic (there
are fewer conditions in the rules) but these more generic rules increase the
number of false positives, and the same for S3. In this sense, SD can be
compared to a form of cost-sensitive classification which aims to find a high
proportion of a particular class. For a comprehensive survey of subgroup
discovery, we refer the reader to the work of Herrera et al. [32]. Table 1
summarises the main differences between rules induced by classification and
SD techniques.
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(a) Classification Example

(b) Subgroup Discovery Example

Figure 3: Graphical Representation: Classification (a) vs. Subgroup Discovery (b)

Table 1: Classification vs. Subgroup Discovery
Classification Subgroup Discovery

Induction Type Predictive Descriptive
Output Set of classification rules Individual rules to describe sub-

groups
Purpose To learn a model for

classification or prediction
To find interesting and inter-
pretable patterns with respect to
a specific attribute
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Figure 4: Specificity vs. Generality of the Induced Rules

In this paper, we use two well-known SD algorithms widely cited in the
literature and which are implemented in an extension3 of the Orange data
mining tool4. We then describe both algorithms including their objective
functions.

The Subgroup Discovery algorithm SD [25] is a covering rule induction
algorithm [69] that uses beam search (where a set of alternatives are kept
while finding optimal solutions) to find rules that maximise the following
equation:

qg =
n(Cond · Class)

n(Cond · ¬Class) + g
=

TP

FP + g
(1)

where n(Cond · Class) represents the number of instances covered by a rule
in which both the antecedent (Cond) and consequent (Class) are true (this
is the number of true positives, TP ). and n(Cond · ¬Class) is the number
of instances in which the antecedent is true but not the consequent (FP ).
The generalisation parameter g allow us to control the specificity of a rule,
i.e., the balance between the complexity of a rule and its accuracy, typically
between 0.5 and 100. For values smaller than or equal to one, the induced
rules will have very high specificity. For values larger than one, the larger
the value, the larger the percentage of errors.

3http://kt.ijs.si/petra kralj/SubgroupDiscovery/
4http://www.ailab.si/orange/
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Algorithm 1 SD Algorithm [25]
Require: D dataset; g generalisation parameter; minSupp; beamWidth
Require: l ∈ L, where L is the set of all attribute values
Ensure: set of rules
1: for all rules in Beam and newBeam do
2: {} → Cond ▷ Initialisation
3: qg(i)← 0 ▷ i=1 to beamWidth
4: end for
5: while there are improvements do
6: for all rules in Beam and newBeam do
7: for all l ∈ L do
8: Cond(i)← Cond(d) ∧ l ▷ add new condition to the beam
9: qg = TP

FP+g ▷ calculate quality for the new rule

10: if TP
|E| ≥ minSupp and qg ≥ (qg(i) ∈ newBeam) and relevant then

11: replace worst rule with new rule
12: sort rules in newBeam according to quality
13: end if
14: end for
15: end for
16: Beam← newBeam
17: end while

The CN2-SD [44] algorithm induces subgroups in the form of rules using
as a quality metric the relation between true positives and false positives. It
is an adaptation of the CN2 classification rule algorithm [14], which consists
of a search procedure using beam search within a control procedure that
iteratively performs the search (see Algorithm 2). The CN2-SD algorithm
uses the rule Weighted Relative Accuracy (WRAcc) as a covering measure of
the quality of the induced rules:

WRAcc(Ri) =
n(Cond)

N
·
(
n(Cond · Class)

n(Cond)
− n(Class)

N

)
(2)

where N is the total number of instances, n(Cond) and n(Class) are re-
spectively the number of instances in a dataset in which the antecedent and
consequent hold. This measure, WRAcc, represents a trade-off between the
coverage of a rule, i.e., its generality or probability of the condition (p(Cond))
and its accuracy gain (p(Class ·Cond)−p(Class) expressed as probabilities),
which is proportional to TPrate − FPrate [43].

Discretisation in both algorithms is required for continuous attributes and
so an entropy based discretisation method (Minimum Description Length) [22]
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Algorithm 2 CN2-SD Algorithm [44]
Require: D dataset with discrete attributes.
Ensure: Set of rules
1: RuleSet← ∅
2: function UnsortedCN2(D, classV alue)
3: for all target ∈ Class do
4: RuleSet← RuleSet

∪
OneClassCN2(D, classV alue)

5: end for
6: return RuleSet
7: end function
8:
9: function OneClassCN2(D, classValue)
10: rules← ∅
11: repeat
12: bestCond← findBestCond (D, classV alue)
13: if bestCond ̸= null then
14: rules← addRule (BestCond, classV alue)
15: addWeightsToInstances(D, bestCond) ▷ Instances covered by the rule
16: end if
17: until bestCondition = null
18: return rules
19: end function

is used internally by the algorithms.

4. Experimental Work and Discussion

In this section, we first describe the datasets used and then show the
rules obtained by the SD algorithms for the individual datasets as well as a
simple validation dividing the datasets into training and testing. Together
with the rules we show the number of true positives (TP ) and false positives
(FP ) captured by the rules to clarify of rule evaluation. Although there are
multiple metrics that can be used to measure the goodness of the induced
rules are, those metrics can all be derived from the number of true positives
and false positives.

4.1. Datasets

In this paper we have used datasets from the Promise repository5 [52]
related to NASA projects (CM1, KC2, KC2, KC3, MC2, MW1 and PC1)

5http://code.google.com/p/promisedata/

12



Table 2: Description of the Datasets

Dataset # inst. Non-def Def % Def. Lang

CM1 498 449 49 9.83 C
KC1 2,109 1,783 326 15.45 C++
KC2 522 415 107 20.49 C++
KC3 458 415 43 9.39 Java
MC2 161 109 52 32.29 C++
MW1 434 403 31 7.14 C++
PC1 1,109 1,032 77 6.94 C

AR 428 368 60 14.01 C

Eclipse JDT Core 997 791 206 20.66 Java
Eclipse PDE-UI 1,497 1,288 209 13.96 Java
Equinox 324 195 129 39.81 Java
Lucene 691 627 64 9.26 Java
Mylyn 1,862 1,617 245 13.15 Java

and projects from a Turkish white-goods manufacturer (AR) as well as from
the Bug Prediction Dataset (BDP)6 collected by D’Ambros et al. [16, 17]
from open source Java projects.

Table 2 shows the number of instances (modules or classes) for each
dataset with the number of defective and non-defective modules. The per-
centage of defective modules shows that all are highly imbalanced varying
from 7% defective to 40%. The last column is the programming language
used to develop those modules.

Table 3 summarizes the non-derived metrics collected for each module.
The NASA datasets and the AR dataset from the Promise repository each
contain different McCabe [47], Halstead [30] and branch-count metrics to-
gether with the binary class attribute (true or false indicating whether a
module has reported defects). We have decided to use base metrics, i.e. non-
derived metrics, as there is high variability in the metrics selected by feature
selection algorithms [61]. The McCabe metrics are based on the count of the
number of paths contained in a program based on its control flow graph [48].
The other set of metrics included in these datasets is Halstead’s Software
Science [30].

The NASA datasets were created from projects carried out at NASA and

6http://bug.inf.usi.ch/
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Table 3: Summary of Metrics — Promise Datasets

Metric Definition

McCabe loc McCabe’s Lines of code
v(g) Cyclomatic complexity
ev(g) Essential complexity
iv(g) Design complexity

Halstead uniqOp Unique operators, n1

Base uniqOpnd Unique operands, n2

totalOp Total operators, N1

totalOpnd Total operands N2

Branch branchCount No. of branches of the flow graph

Class false, true Does the module contain defects?

collected under their metrics programme using the MaCabeIQ7 tool. The AR
dataset was obtained by combining several datasets (AR1, AR3, AR4, AR5,
AR6) all from embedded systems developed in C by a Turkish white-goods
manufacturer as the individual datasets were very small. In this case, the
metrics were obtained using the PREST tool8. Although both the NASA
and the AR datasets share the same metrics, we did not merge them as they
were collected using different tools and belong to different domains. It has
been reported that different tools can obtain very different results for the
same metrics [46].

The Bug Prediction Dataset (BPD) by D’Ambros et al. is composed of
Chidamber and Kemerer’s object oriented metrics [13] (referred to here as the
(C&K) metrics) as well as other metrics such as fan-in, fan-out and number
of attributes. As with the previous dataset, we selected the C&K metrics
because they are well-known and the most used in defect prediction [60, 10].
Using this set of reduced metrics helped to speed up the learning algorithms
as and allows us to analyse and compare our results with previous work. The
wmc metric represents the sum of the complexity of all methods for a class.
If w = 1, this is equal to the number of methods. The dit metric counts
the maximum level of the inheritance hierarchy of a class; the root of the

7http://www.mccabe.com/
8http://code.google.com/p/prest/
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Table 4: Summary of the C&K Metrics — D’Ambros et al. [17] Dataset

Metric Definition

C&K wmc Weighted Method Count
dit Depth of Inheritance Tree
cbo Coupling Between Objects
noc No. of Children
lcom Lack of Cohesion in Methods
rfc Response For Class

Class true,false Does the module contain defects?

inheritance tree is at level zero of the inheritance tree. The cbo metric for
a class is a count of the number of other classes to which is coupled, i.e.,
when one class uses methods or variables of another class. The noc metric is
the count of the number of subclasses belonging to a class. The lcom metric
represents the extent to which methods reference a class instance data. The
rfc metric is the count of the set of all methods that can be invoked in
response to a message to an object of the class or by some method in the
class. Table 4 summarizes the metrics collected for each Java class in the
selected projects.

These metrics have been used for software quality assurance during test-
ing and maintenance to prioritise testing effort, to assess comprehensibility
and as thresholds. For example, if the cyclomatic complexity of a module is
between 1 and 10 then it is considered to be a very low risk module; however,
any module with a cyclomatic complexity greater than 50 is considered to
have an unmanageable complexity and is a high risk module [11]. For essen-
tial complexity (ev(g)), the threshold value is 4. Similarly, other papers have
suggested thresholds for the C&K metrics (e.g., [63, 7, 65, 31]). Although
all these metrics have been used for some time, there are no clear thresholds
and they are open to interpretation. For example, although McCabe [47, 68]
suggests a threshold of 10 for v(g), NASA’s in-house studies for this metric
concluded that a threshold of 20 can be a better predictor of a module being
defective. This may indicate the need to use multiple metrics as we suggest
in this paper.
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4.2. Inducted Rules for the Individual Datasets
We next present examples of rules and their quality measures induced for

the KC2 dataset (Table 5 from the Promise repository) and the JDT Core
(Table 6 from the BPD dataset) as an example of the rules obtained using
the individual datasets. As stated previously, we used the Orange tool and
its extension for subgroup discovery.

After carrying out a manual sensitivity analysis we maintained the de-
fault parameters in both algorithms as they allowed us to obtain rules with
a good balance between specificity and generality. For the SD algorithm we
can modify the minimal support (5%) and confidence (80%), the generali-
sation parameter g (5) and beam width (20) which refers to the number of
solutions kept in each iteration of the algorithm. For the CN2-SD algorithm,
we can modify the k (5) parameter, which represents the number of times
an instance is kept before being removed from the training set (CN2-SD is
a weighted covering algorithm). The rules were quite stable to modifications
of the parameters because once a rules complies with the parameters, i.e.,
minimal support and confidence, such a rule will be kept in the solution and
the best rules did not change as g varies. Also discretisation is an internal
preprocessing step of the algorithms and as a result, the intervals created
from the metrics remain constant (and consequently so do the rules).

As we can observe from Tables 5 and 6, rules tend to be accurate ac-
cording to their Positive Predictive Value or precision rate ( TP

TP+FP
) or when

comparing the number of true and false positives (TP or FP ) with the total
number of defective examples in the dataset. There are differences in the
number of induced rules between the subgroup discovery algorithms. The
CN2-SD algorithm tends to produce simpler and fewer rules covering more
samples (defective and non-defective) as weights are used to increase the
probability of inducing rules that cover unseen examples.

As we allow the SD algorithm to generate a large number of rules, some
SD rules extend previous rules (rules that contain a previously induced rule)
generating a pyramidal effect (the refined rules adding extra conditions a to
previously induced rule). Such refined rules with more conditions are more
accurate but cover fewer instances. For example, consider the last two rules of
the SD algorithm in Table 6 (R18: rfc > 88) and (R19: lcom > 171 ∧ rfc >
88). The rule R19 covers 113 out of 206 modules and 72 false positives;
however, R18 is more specific as it covers 74 instances with 48 false positives.
However, although it is more specific this does not necessarily mean that it
is a better rule as we must also consider the other metrics. For a practical
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Table 5: Rules for the KC2 Dataset using the SD and CN2-SD Algorithms
# TP FP Precision Rule

S
D

0 26 2 0.93 ev(g) > 4 ∧ totalOpnd > 117
1 30 3 0.91 iv(g) > 8 ∧ uniqOpnd > 34 ∧ ev(g) > 4
2 29 3 0.91 loc > 100 ∧ uniqOpnd > 34 ∧ ev(g) > 4
3 28 3 0.90 loc > 100 ∧ iv(g) > 8 ∧ ev(g) > 4
4 26 3 0.90 loc > 100 ∧ iv(g) > 8 ∧ totalOpnd > 117
5 33 4 0.89 iv(g) > 8 ∧ uniqOp > 11 ∧ totalOp > 80
6 31 4 0.89 iv(g) > 8 ∧ uniqOpnd > 34
7 31 4 0.89 totalOpnd > 117
8 30 4 0.88 loc > 100 ∧ iv(g) > 8
9 30 4 0.88 ev(g) > 4 ∧ iv(g) > 8

10 37 5 0.88 ev(g) > 4 ∧ uniqOpnd > 34
11 29 4 0.88 loc > 100 ∧ ev(g) > 4
12 33 5 0.87 iv(g) > 8 ∧ uniqOp > 11
13 41 7 0.85 ev(g) > 4 ∧ totalOp > 80 ∧ v(g) > 6 ∧ uniqOp > 11
14 33 6 0.85 iv(g) > 8 ∧ totalOp > 80
15 42 8 0.84 ev(g) > 4 ∧ totalOp > 80 ∧ uniqOp > 11
16 42 8 0.84 ev(g) > 4 ∧ totalOp > 80 ∧ v(g) > 6
17 34 7 0.83 loc > 100 ∧ uniqOpnd > 34
18 43 9 0.83 ev(g) > 4 ∧ totalOp > 80
19 33 7 0.83 iv(g) > 8

C
N
2
S
D 0 37 5 0.88 uniqOpnd > 34 ∧ ev(g) > 4

1 43 9 0.83 totalOp > 80 ∧ ev(g) > 4
2 83 88 0.49 uniqOp > 11

Table 6: Rules for the JDT Core Dataset using the SD and CN2-SD Algorithms
# TP FP Precision Rule

S
D

0 55 12 0.82 cbo > 16 ∧ lcom > 171 ∧ wmc > 141 ∧ rfc > 88
1 62 14 0.82 cbo > 16 ∧ rfc > 88 ∧ wmc > 141
2 55 13 0.81 cbo > 16 ∧ lcom > 171 ∧ wmc > 141
3 62 15 0.81 cbo > 16wmc > 141
4 60 16 0.79 lcom > 171 ∧ wmc > 141 ∧ rfc > 88
5 60 17 0.78 lcom > 171 ∧ wmc > 141
6 69 21 0.77 rfc > 88 ∧ wmc > 141
7 69 22 0.76 wmc > 141
8 39 14 0.74 wmc > 141 ∧ noc = 0
9 42 17 0.71 noc > 0 ∧ rfc > 88 ∧ cbo > 16

10 93 38 0.71 cbo > 16 ∧ rfc > 88
11 66 27 0.71 cbo > 16 ∧ lcom > 171 ∧ rfc > 88
12 51 21 0.71 cbo > 16 ∧ noc = 0 ∧ rfc > 88
13 34 17 0.67 cbo > 16 ∧ wmc ∈ (68, 141]
14 35 18 0.66 cbo > 16 ∧ lcom > 171 ∧ noc <= 0
15 46 24 0.66 noc > 0 ∧ rfc > 88
16 69 38 0.64 cbo > 16 ∧ lcom > 171
17 34 19 0.64 noc > 0 ∧ rfc > 88 ∧ lcom > 171
18 113 72 0.61 rfc > 88
19 74 48 0.61 lcom > 171 ∧ rfc > 88

C
N
2
S
D 0 62 15 0.81 wmc > 141 ∧ cbo > 16

1 93 38 0.71 rfc > 88 ∧ cbo > 16
4 113 72 0.61 rfc > 88
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Table 7: Ranking of the C&K Attributes in the JDT Core and BPD Datasets
JDT Core BPD Combined

Inf gain Gain ratio ReliefF χ2 Inf gain Gain ratio ReliefF χ2

wmc 0.1657 0.1018 0.006534 263.872 0.06461 0.03673 0.001645 581.228
rfc 0.1494 0.1721 0.005472 248.415 0.07159 0.04772 0.001598 659.484
cbo 0.1397 0.0835 0.012259 222.905 0.06499 0.04184 0.002236 567.614
noc 0.0754 0.0494 0.007773 24.788 0.00219 0.00335 0.002616 17.236
lcom 0.0168 0.0207 0.000423 120.473 0.04412 0.02727 0.000121 396.321
dit 0 0 0.006563 0 0 0 0.001853 0

approach, we could opt for simpler or more accurate rules depending on the
application domain, e.g. safety critical systems vs. management information
systems.

It is also important to consider the thresholds defined by the discretisa-
tion which is carried out as a pre-processing step. Intervals, which can be
seen as thresholds, differ among datasets. Fayyad and Irany’s discretisation
method [22] is a supervised discretisation method that generates intervals
to maximise the probability of the class, i.e., detecting defective modules.
The dit metric did not provide any classification information, i.e. it does not
help to detect defective modules as its discretisation generated a single in-
terval. As a result we discarded this metric. Similar observations have been
reported in the literature [63, 26]. The noc metric also has poor prediction
power and the rules mainly differentiate between classes with and without
children. These findings are also corroborated by ranking the C&K attributes
of two of the datasets using Weka9 [69] with respect to various metrics as
shown in Table 7. The Information Gain and Gain ratio [28] are metrics
based on the entropy metric [59]. ReliefF [38, 40] is an instance-based based
ranking method (we used the default parameter which is 10 neighbours and
all instances). The χ2 ranking method is based on the χ2 statistic with re-
spect to the class. We did not find such extreme cases in the attributes from
the NASA and AR datasets.

4.3. Generalisation

For a project manager it may be interesting to extract general knowledge
so that any new expertise is not confined to a single project. We can obtain
general rules by applying the SD algorithms to metrics collected from several
projects or systems. In our case, datasets in Table 2 are grouped according

9http://www.cs.waikato.ac.nz/ml/weka/
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to their source. In this section, we work with three datasets: AR, NASA and
BDP, (these correspond to the datasets described in Section 4.1) in order to
determine whether the obtained rules are generalizable. We ran two different
experiments. First of all we applied the algorithms to complete databases
and then we divided the data into training and testing sets [5, 51].

Tables 8, 9 and 10 show the results for the combined datasets. The prob-
ability of a module being correctly identified as defective is the ratio between
the number of defective modules and the total number of modules. Therefore,
the probability that a random module is correctly identified as defective is
0.13, 0.14 and 0.16 for the NASA, AR and BDP datasets respectively accord-
ing to Table 2. Out of all possible evaluation measures that can be calculated
for a rule, we decided to use precision as it is both intuitive and useful. In
this context, precision can be understood as the probability of a module be-
ing correctly identified as defective when covered by the condition(s) of the
rule. Thus, a rule with high precision values will indicate which modules
should be tested most thoroughly.

The rules induced by the SD algorithm correctly identifies defective mod-
ules with probability between 0.66 and 0.83 for the AR dataset (Table 8),
between 0.43 and 0.47 for the NASA dataset (Table 9) and between 0.25 and
0.55 for the BDP dataset (Table 10). In the case of the CN2-SD algorithm,
the range is larger and the rules are sorted from the most specific to the most
generic.

Analysing the rules obtained by the SD algorithm, we can observe that
they indicate thresholds for the metrics. The combination of the metrics with
their threshold values can increase or decrease the specificity of the rule. For
example, in the case of the AR dataset (Table 8), the threshold value for lines
of code is set to 155 while the threshold values of iv(g) and v(g) are 3 and 17
respectively. In relation to the number of operators and operands, the ratio
of the thresholds for UniqOp (15) and UniqOpnd (47) is approximately 1 to
3, while the ratio for totalOpnd (112) and totalOp (170) is approximately 1
to 1.5. In the case of the NASA datasets (Table 9), the threshold is lower for
loc (88) and higher for complexity; the ratios between total operators and
operands is maintained (1:1.5) although it is different for unique operators
and operands (1:2).

In the case of the BDP dataset (Table 10), the thresholds of the wmc
metric obtained by the SD algorithm are 24 and 87. Similarly, there are also
two thresholds induced by SD for cbo (15 and 25). The threshold values for
lcom and rfc are 45 and 68 respectively. The obtained rules are combina-
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tions of these thresholds. The rules induced by the CN2-SD algorithm are
much simpler and the first two rules are more specific than the ones induced
by the SD algorithm; wmc > 87 ∧ cbo > 25 indicates a 0.7 probability of
correctly identifying a defective module and when rfc > 187 the probability
of correctly identifying a defective module is 0.63.

It can be observed that in the BDP datasets some rules define a range (e.g.
rules R2 lcom ∈ (45, 1225] ) rather than a threshold (e.g. rules R0 and R1).
From the software engineering point of view we could use the lower values of
these metrics as thresholds (i.e., lcom > 45 ) instead of the intervals induced
by the algorithms. The quality of the rule will be very similar if we ignore the
upper limit. In relation to noc metric, its distribution is also very skewed;
most modules do not have children (as stated previously) and so this metric is
not a good discriminator for correctly identifying defective modules. Again,
from the software engineering point of view, we could ignore this attribute
and the rule quality will be very similar (although small differences can be
observed in rules R4 and R5 using the SD algorithm).

An advantage of using the rules, in addition to simplicity, is that they
provide information about how to combine metrics that can indicate error-
prone modules. For example, when cbo > 25 a module may be identified as
error-prone, however when cbo is moderate (cbo ∈ (15, 25]) but occurs with
with high values of other metrics (e.g. lcom ∈ (45, 1225]) the probability of
correctly identifying a defective module is much higher. Finally, generating a
large number of rules, as the SD algorithm does, allows us to observe different
threshold values and their consequences (c.f. rules R0 and R18 in Table 10).

We can conclude that subgroup discovery rules can produce results for
heterogeneous projects to indicate the probability of finding defect-prone
modules. These rules are obviously less specific than the ones extracted from
single projects but still useful to project managers or quality engineers who
need some guidance in the testing process.

With respect to the comparison of SD and CN2-SD, the induced rules
are different due to the different approaches of the algorithms. With SD, we
can generate a larger number of rules with greater overlap (rules covering the
same examples). We could apply some post-processing to select rules as will
be explained in Section 4.4 depending on which rules are easier to apply or
control. On the other hand, CN2-SD induces a smaller number of rules but
with less overlap and similar specificity.

In order to check if the rules are generalizable we studied how the al-
gorithms behave when different datasets are used for training and testing
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Table 8: Rules of the Combined AR Dataset using the SD and CN2-SD Algorithms
# TP FP Precision Rules

S
D

0 19 4 0.83 totalOpnd > 112 ∧ iv(g) > 3 ∧ uniqOp > 15 ∧ totalOp > 170
1 19 4 0.83 uniqOp > 15 ∧ iv(g) > 3 ∧ v(g) > 17
2 20 5 0.8 uniqOpnd > 47 ∧ v(g) > 17 ∧ uniqOp > 15
3 19 5 0.79 uniqOpnd > 47 ∧ totalOp > 170 ∧ uniqOp > 15
4 18 5 0.78 totalOpnd > 112 ∧ iv(g) > 3 ∧ v(g) > 17
5 18 5 0.78 uniqOpnd > 47 ∧ iv(g) > 3 ∧ branchCount > 32
6 18 5 0.78 loc > 155 ∧ totalOpnd > 112
7 18 5 0.78 loc > 155 ∧ v(g) > 17
8 20 6 0.77 uniqOpnd > 47 ∧ branchCount > 32 ∧ uniqOp > 15
9 19 6 0.76 loc > 155

10 19 6 0.76 totalOp > 170 ∧ iv(g) > 3
11 19 6 0.76 totalOpnd > 112 ∧ iv(g) > 3 ∧ uniqOp > 15
12 23 8 0.74 uniqOp > 15 ∧ iv(g) > 3 ∧ branchCount > 32
13 20 7 0.74 uniqOpnd > 47 ∧ v(g) > 17
14 20 7 0.74 uniqOpnd > 47 ∧ uniqOp > 15
15 17 6 0.74 totalOpnd > 112 ∧ iv(g) > 3 ∧ uniqOpnd > 47
16 19 7 0.73 uniqOpnd > 47 ∧ totalOp > 170
17 25 11 0.69 uniqOp > 15 ∧ iv(g) > 3
18 20 9 0.69 uniqOpnd > 47 ∧ branchCount > 32
19 23 12 0.66 uniqOp > 15 ∧ totalOp > 170

C
N
2
S
D

0 20 5 0.8 v(g) > 17 ∧ iv(g) > 3
1 23 8 0.74 uniqOp > 15 ∧ branchCount > 32 ∧ iv(g) > 3
2 25 11 0.69 uniqOp > 15 ∧ iv(g) > 3
3 29 18 0.62 uniqOp > 15 ∧ branchCount > 32
4 36 34 0.51 uniqOp > 15

Table 9: Rules Combining the Promise Datasets using the SD and CN2-SD Algorithms
# TP FP Precision Rules

S
D

0 132 147 0.47 v(g) > 10 ∧ totalOp > 103 ∧ totalOpnd > 69 ∧ iv(g) > 7 ∧ branchCount > 20
1 133 150 0.47 iv(g) > 7 ∧ totalOpnd > 69 ∧ branchCount > 20
2 138 156 0.47 v(g) > 10 ∧ totalOp > 103 ∧ iv(g) > 7 ∧ branchCount > 20
3 133 155 0.46 v(g) > 10 ∧ totalOp > 103 ∧ totalOpnd > 69 ∧ iv(g) > 7
4 121 142 0.46 v(g) > 10 ∧ totalOp > 103 ∧ iv(g) > 7 ∧ uniqOpnd > 36
5 139 164 0.46 v(g) > 10 ∧ totalOp > 103 ∧ iv(g) > 7
6 134 159 0.46 iv(g) > 7 ∧ totalOpnd > 69 ∧ v(g) > 10
7 123 146 0.46 v(g) > 10 ∧ iv(g) > 7 ∧ uniqOpnd > 36
8 122 145 0.46 iv(g) > 7 ∧ totalOpnd > 69 ∧ uniqOpnd > 36 ∧ v(g) > 10
9 142 171 0.45 iv(g) > 7 ∧ branchCount > 20

10 118 186 0.39 v(g) > 10 ∧ iv(g) > 7 ∧ uniqOp > 17
11 148 186 0.44 iv(g) > 7 ∧ totalOp > 103 ∧ totalOpnd > 69
12 151 192 0.44 iv(g) > 7 ∧ totalOpnd > 69
13 125 159 0.44 iv(g) > 7 ∧ totalOp > 103 ∧ uniqOp > 17
14 123 157 0.44 iv(g) > 7 ∧ totalOp > 103 ∧ totalOpnd > 69 ∧ uniqOp > 17
15 127 163 0.44 iv(g) > 7 ∧ totalOp > 103 ∧ uniqOpnd > 36
16 130 167 0.44 iv(g) > 7 ∧ totalOpnd > 69 ∧ uniqOpnd > 36
17 131 169 0.44 iv(g) > 7 ∧ uniqOpnd > 36
18 143 185 0.44 v(g) > 10 ∧ iv(g) > 7
19 124 162 0.43 iv(g) > 7 ∧ totalOpnd > 69 ∧ uniqOp > 17

C
N
2
S
D 1 130 112 0.54 loc > 88

2 251 462 0.35 totalOp > 103
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Table 10: Rules Combining the BDP Datasets using the SD and CN2-SD Algorithms
# TP FP Precision Rules

S
D

0 181 148 0.55 wmc > 87
1 185 190 0.49 cbo > 25
2 139 251 0.36 cbo ∈ (15, 25] ∧ lcom ∈ (45, 1225]
3 117 223 0.34 cbo ∈ (15, 25] ∧ wmc ∈ (24, 87]
4 140 279 0.33 cbo ∈ (15, 25] ∧ noc = 0
5 176 374 0.32 cbo ∈ (15, 25]
6 227 496 0.31 rfc ∈ (68, 187]
7 189 414 0.31 lcom ∈ (45, 1225] ∧ rfc ∈ (68, 187]
8 124 277 0.31 lcom ∈ (45, 1225] ∧ rfc ∈ (68, 187] ∧ wmc ∈ (24, 87] ∧ noc = 0
9 150 336 0.31 lcom ∈ (45, 1225] ∧ rfc ∈ (68, 187] ∧ noc = 0

10 179 408 0.3 rfc ∈ (68, 187] ∧ noc = 0
11 148 339 0.3 lcom ∈ (45, 1225] ∧ rfc ∈ (68, 187] ∧ wmc ∈ (24, 87]
12 146 336 0.3 rfc ∈ (68, 187] ∧ noc = 0 ∧ wmc ∈ (24, 87]
13 174 406 0.3 rfc ∈ (68, 187] ∧ wmc ∈ (24, 87]
14 102 261 0.28 lcom ∈ (45, 1225] ∧ noc > 0
15 230 667 0.26 lcom ∈ (45, 1225] ∧ wmc ∈ (24, 87]
16 410 1202 0.25 lcom ∈ (45, 1225]
17 179 533 0.25 wmc ∈ (24, 87] ∧ noc = 0 ∧ lcom ∈ (45, 1225]
18 308 925 0.25 wmc ∈ (24, 87]
19 308 941 0.25 lcom ∈ (45, 1225] ∧ noc = 0

C
N
2
S
D 0 128 56 0.7 wmc > 87 ∧ cbo > 25

1 147 86 0.63 rfc > 187
2 410 1202 0.25 lcom ∈ (45, 1225]

(Table 11). In this case we used half of the modules for training algorithms
and the other half for testing. The figures shown in the table are the aver-
age results of running this process twice. The second column (%Def.Orig.)
shows the percentage of defective modules in each group of datasets. In addi-
tion, the table is divided vertically into two parts, one for each SD algorithm.
Each part has two columns: the first column indicates the average precision
of the rules generated by the algorithm; whereas the value of the second col-
umn indicates the percentage of defective modules captured (%Def.Capt.)
by the generated rules. This table shows that the obtained rules are gener-
alizable and not dependent on the training data. It can be observed that for
the NASA group application of SD rules increased the precision rate from
the original 0.13 to 0.37. With the AR and BDP data the results are even
better because the percision rate is above 50%. Results with CN2-SD are
very similar.

The conclusion of this analysis is twofold: first, the software engineer can
generate rules to improve the probability of correctly detecting defect prone
modules using historical data and apply the rules to future development;
and second, these rules provide knowledge about which metrics are best at
correctly detecting defective modules and what threshold values we should
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Table 11: Rule Generalisation Results
SD CN2-SD

Dataset % Def.Orig. Precision % Def.Capt. Precision % Def.Capt.

NASA 0.13 0.37 0.52 0.44 0.29
AR 0.14 0.58 0.55 0.62 0.63
BDP 0.16 0.51 0.40 0.44 0.53

Table 12: Rule Overlap
SD CN2-SD

Dataset Avg. # Rules % Rules % Def. Avg. # Rules % Rules % Def.

CM1 13.86 69.32 77.08 3.40 68.00 83.33
KC1 14.69 73.44 34.36 2.54 50.83 62.88
KC2 13.22 66.10 46.73 2.89 57.86 78.50
MC2 11.23 56.17 57.69 2.79 55.86 55.77
MW1 15.69 78.44 51.61 3.95 78.95 61.29
PC1 9.76 48.78 53.25 2.16 43.20 64.94
AR 12.68 63.39 51.67 3.59 71.89 61.67
Eclipse JDT Core 10.07 50.34 57.28 4.02 80.35 54.85
Eclipse PDE-UI 14.47 72.33 62.68 1.03 20.61 62.68
Equinox 10.20 51.02 79.84 1.91 38.13 74.42
Lucene 9.68 48.38 57.81 3.73 74.67 46.88

use. This implies the rules provide a mechanism to establish which modules
should be subjected to increased surveillance during the testing phase.

4.4. Overlapping and Rule Selection

From the software engineering point of view, we want to select a set of
accurate rules covering a large number of samples in the dataset. However
this is not an easy task and expert knowledge is required in most cases to
select and understand the most useful rules (as individual pieces of knowl-
edge) in order to apply them successfully. Although it is not the case with
the CN2-SD algorithm, which creates a small number of rules, we might need
to select rules from those generated by the SD algorithm or combine rules
from different algorithms for optimal results.

In order to measure how much the rules generated by the algorithms
overlap, we built Table 12. This table shows three values for each algorithm:
the average number of rules which cover a unique defective module, the
percentage with respect to the total number of rules, and the number of
defective modules covered by all the rules. For example, for CM1, each
correctly identified defective module is covered by 13.86 rules on average
(69.32% of 20) and 77.08% of all defective modules are covered.
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In general, it can be seen that the SD algorithm provides numerous similar
rules regarding instances covered, although the metrics and thresholds are
different. To select a minimum set of rules that are as different as possible
and cover the same records as the complete set of rules we have to define a
distance measure between the rules based on their overlap.

Given a set of rules it is possible to measure their overlap by counting
the number of different instances covered by the rules. If c(Ri) is the set
of instances covered by a rule, Ri, then we define the distance between two
rules as:

dist(Ri, Rj) = |c(Ri)|+ |c(Rj)| − 2 · |(c(Ri)
∩

c(Rj)| (3)

where |..| indicates the cardinality of the set. This value represents the num-
ber of different instances covered by any of the two rules and provides a
measure of how different the rules are. If both rules cover the same in-
stances, their distance will be equal to zero. The greater the number of
different instances covered by the rules, the greater their distance. We can
calculate a matrix of distances from a set of rules using Eq.(3) in order to
cluster the rules. Each cluster will be composed of a set of rules that cover
similar instances and explain similar characteristics. As an example, given
the set of rules obtained by the algorithm SD from the AR dataset (Table 8),
we could form 6 different clusters. The clusters are composed of 7 rules, 5
rules, two clusters with 3 rules and a cluster with a single rule. The question
is: what information can these clusters provide? For example, the cluster
with five rules is composed of the following rules:

• totalOpnd > 112 ∧ iv(g) > 3 ∧ uniqOp > 15 ∧ totalOp > 170

• uniqOp > 15 ∧ iv(g) > 3 ∧ v(g) > 17

• totalOpnd > 112 ∧ iv(g) > 3 ∧ v(g) > 17

• totalOp > 170 ∧ iv(g) > 3

• totalOpnd > 112 ∧ iv(g) > 3 ∧ uniqOp > 15

As it can be observed, in this cluster all rules have a common condition
iv(g) > 3 and a number of different conditions involving the number of
operands and operators that vary from rule to rule. Software quality or
testing engineers can choose between these rules as they represent similar
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information. On the other hand, each cluster represents different conditions
for the modules that are identified as error-prone. In this example, we could
select 6 rules out of the 20 rules, one rule from each cluster, and we will be
able to cover a very similar number of instances as with the whole ruleset
but with minimal overlap. In this example, we could select for example the
following rules, one from each cluster:

• totalOp > 170 ∧ iv(g) > 3

• uniqOpnd > 47 ∧ v(g) > 17

• uniqOpnd > 47 ∧ iv(g) > 3 ∧ branchCount > 32

• loc > 155

• uniqOp > 15 ∧ totalOp > 170

• uniqOp > 15 ∧ iv(g) > 3

Bar charts are a rule visualisation technique for binary classes [42] that
can be used to evaluate and select rules in an intuitive way. The first bar
represents the distribution of the class attribute (a colour for each value)
where the imbalance can be observed with the percentage of positive cases
to the right and negative to the left. The rest of the bars represent one rule
each with their TP and FP ratios.

For example, Figure 5 shows bar chart representations of the rules ob-
tained using the CN2-SD algorithm for the AR dataset. The first bar in these
figures shows the proportion of non defective samples (on the left-hand side
of the bar) vs. defective samples (on the right-hand side of the bar) for the
entire dataset. The rest of the rules show the proportion of FP and TP for
each rule. For example, the first rule for CN2-SD (uniqOp > 34∧ ev(g) > 4)
covers 35% of the defective modules and only 1% of the non-defective ones.
A simpler rule like uniOp > 11 covers a larger number of defective modules
(78%) but also includes more non defective modules (21%). Both colours
together represent the size of the subgroup, i.e., the number of instances
covered by the rule.
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Figure 5: Bar Chart Visualization of Rules for the AR dataset using the CN2-SD Algorithm

5. Threats to Validity

There are some threats to validity [70] that we discuss in this section.
Construct validity is the degree to which the variables used in the study

accurately measure the concepts they are intended to measure. As discussed
previously, datasets are highly imbalanced and skewed. The algorithms used
in this work do not directly work with continuous attributes and so we
must discretise continuous attributes during pre-processing. Further work
is needed to look into different discretisation techniques and transformation
of the data as a preprocessing step before applying the SD technique. We
have carried out some work to deal with continuous attributes [62] but the
algorithm is not yet integrated with the Orange tool. Also, most of the met-
rics were selected manually, using non-derived metrics and the C&K metrics
for the BDP datasets. The validity of these metrics has been investigated
but is still open to debate [60].

We found problems in the datasets such as duplicates, inconsistencies
etc. that need to be further investigated. Finally, there seems to be some
agreement about the practical usefulness of metrics as predictors of quality,
but there have also been some criticisms concerning their effectiveness.

Conclusion validity threats are related to finding the right relations be-
tween the treatments and the outcomes. Rules were induced using the algo-
rithms’ default parameters provided by the tool. Although results could be
further optimised with different parameters, a preliminary sensitivity anal-
ysis did not change the most relevant rules. Furthermore, the aim of this
paper is to explore the use of SD to generate simple rules that are easy to
apply by practitioners. It is probably the case that within some application
domains of software engineering, a higher percentage of errors (false posi-
tives) is admissible when compared with other disciplines such as medicine.
Finally, the induced rules do not cover all the defective modules, i.e. this is
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not a complete solution for the whole search space. Future research will anal-
yse other quality metrics for sets of rules such as measures of the dispersion
of a set of selected rules in addition to the ones outlined in this work.

Internal validity is the degree to which conclusions can be drawn. We used
a relatively small number of datasets and although there is some degree of
consistency among the metrics selected by the rules within each dataset, they
vary among datasets and so do the thresholds. Shepperd and Kadoda [64]
reported the influence of different data characteristics (dataset size, number,
type and independence of features, and type of distribution) using simulated
data over a number of different types of classifiers concluding there is no one
best classifier as the characteristics of the data affect the outcomes.

External validity is the degree to which the results of the research can
be generalised to the population under study and other research settings.
It is suggested that the NASA repository can be generalised to industry in
general [54]. However, the source of some of the data is not known and there
are some issues with the quality of the data. The object-oriented datasets
come from a unique open source project and therefore further replication
studies are needed with other datasets, as well as other SD algorithms and
application domains. There is also a problem with the size of the datasets
as the complexity of the algorithms is O(n2). There are new algorithms that
have been proposed in the literature [32]. However, they are spread across
multiple tools which makes them difficult to compare.

6. Conclusions and Future Work

Subgroup Discovery (SD) as initially proposed by Klösgen is defined as
the task of finding groups of individuals given a property of interest. Ma-
chine learning approaches to defect prediction in software engineering have
mainly focused on classification or clustering techniques. SD algorithms can
be both predictive (predicting the future given historical data and a prop-
erty of interest) and descriptive (discovering interesting patterns in data).
In our case, we used two SD algorithms to find rules for correctly predict-
ing modules which are likely to be defective. The algorithms are robust to
problems faced by classification techniques such as highly imbalanced data,
noisy data, and data with high numbers of inconsistencies and redundancies.
These problems are present in most defect prediction datasets in the software
engineering domain.
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In this paper, we analysed and compared different publicly available
datasets using two Subgroup Discovery algorithms, SD and CN2-SD, show-
ing that induced rules are capable of correctly characterising subgroups of
modules with a reasonable probability of being defective. The set of induced
descriptive rules is in general simpler and easier to use than those obtained
through classification algorithms. This can provide a software engineering
approach, i.e., an approach which is useful in practice, easily understandable
and can be applied by project managers, testers and quality engineers alike.

The experimentation was carried out in three different stages. First, all
datasets were analysed independently and the induced rules were found to in-
crease the probability of detecting defective modules. In the second stage, we
verified that subgroup discovery algorithms can obtain good results by com-
bining all datasets into three new datasets according to their source. Finally,
we analysed whether the rules could be generalised to unseen examples that
were not present in the training datasets. The results show that induced rules
can be used to correctly identify defect-prone modules. In any of the three
stages discussed above, rules induced by subgroup discovery algorithms were
simpler and easier to understand and apply. The main difference between
these two algorithms, is that the SD algorithm can induce a large number of
rules that cover the same instances while the CN2-SD algorithm takes any
overlap of rules into account (weighted covering algorithm). However, in gen-
eral, the rules obtained with both algorithms have similar values for support
and precision. The rules obtained by the SD algorithm can be post-processed
to select those that minimise overlap through a clustering process that finds
sets of rules that cover the same instances (the same process could be used to
select rules merged from different algorithms). It is worth noting that know-
ing the rules that overlap can be an advantage, because practitioners can
establish relationships between the metrics and select different metrics that
cover the same defects. In conclusion, we answer our research question in
the affirmative: subgroup discovery can be used to detect the most defective
modules in a system.

Future work will consist of further exploring other SD algorithms, datasets,
quality measures (including multi-objective approaches) and the sensitivity
of SD algorithms. There is a need for further investigation of issues related
to imbalanced data as a part of feature selection as well as methods for
evaluating the quality of defect prediction datasets.
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[46] R. Lincke, J. Lundberg, W. Löwe, Comparing software metrics tools, in:
Proceedings of the 2008 International Symposium on Software Testing
and Analysis (ISSTA’08), ISSTA’08, ACM, New York, NY, USA, 2008,
pp. 131–142.

[47] T. McCabe, A complexity measure, IEEE Transactions on Software En-
gineering 2 (1976) 308–320.

[48] T.J. McCabe, C.W. Butler, Design complexity measurement and testing,
Communications of the ACM 32 (1989) 1415–1425.

[49] T. Mende, R. Koschke, Revisiting the evaluation of defect prediction
models, in: Proceedings of the 5th International Conference on Predictor
Models in Software Engineering (PROMISE’09), ACM, New York, NY,
USA, 2009, pp. 1–10.

[50] T. Mende, R. Koschke, Effort-aware defect prediction models, in: Pro-
ceedings of the 2010 14th European Conference on Software Mainte-
nance and Reengineering (CSMR’10), CSMR’10, IEEE Computer Soci-
ety, Washington, DC, USA, 2010, pp. 107–116.

33



[51] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull,
B. Turhan, T. Zimmermann, Local vs. global lessons for defect predic-
tion and effort estimation, IEEE Transactions on Software Engineering
Preprint (2012).

[52] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters, B. Turhan,
The PROMISE repository of empirical software engineering data, 2012.

[53] T. Menzies, A. Dekhtyar, J. Distefano, J. Greenwald, Problems with
precision: A response to comments on data mining static code attributes
to learn defect predictors, IEEE Transactions on Software Engineering
33 (2007) 637–640.

[54] T. Menzies, J. Greenwald, A. Frank, Data mining static code attributes
to learn defect predictors, IEEE Transactions on Software Engineering
(2007).

[55] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, A. Bener, De-
fect prediction from static code features: currentresults, limitations,
new approaches, Automated Software Engineering 17 (2010) 375–407.
10.1007/s10515-010-0069-5.

[56] I. Myrtveit, E. Stensrud, M. Shepperd, Reliability and validity in com-
parative studies of software prediction models, IEEE Transactions on
Software Engineering 31 (2005) 380–391.

[57] Y. Peng, G. Kou, G. Wang, H. Wang, F. Ko, Empirical evaluation of
classifiers for software risk management, International Journal of Infor-
mation Technology & Decision Making (IJITDM) 08 (2009) 749–767.

[58] Y. Peng, G. Wang, H. Wang, User preferences based software defect
detection algorithms selection using MCDM, Information Sciences In
Press. (2010) –.

[59] J. Quinlan, C4.5: Programs for machine learning, Morgan Kaufmann,
San Mateo, California, 1993.
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