
Learning to classify software defects from crowds:
a novel approach

Jerónimo Hernández-Gonzáleza,∗, Daniel Rodriguezc, Iñaki Inzaa, Rachel
Harrisond, Jose A. Lozanoa,b

a Department of Computer Science and Artificial Intelligence, University of the Basque
Country UPV/EHU, Donostia, Spain

b Basque Center for Applied Mathematics BCAM, Bilbao, Spain
c Department of Computer Science, University of Alcala, Madrid, Spain
d Department of Computering, Oxford Brookes University, Oxford, UK

Abstract

In software engineering, associating each reported defect with a category allows,

among many other things, for the appropriate allocation of resources. Although

this classification task can be automated using standard machine learning tech-

niques, the categorization of defects for model training requires expert knowl-

edge, which is not always available. To circumvent this dependency, we propose

to apply the learning from crowds paradigm, where training categories are ob-

tained from multiple non-expert annotators (and so may be incomplete, noisy

or erroneous) and, dealing with this subjective class information, classifiers are

efficiently learnt. To illustrate our proposal, we present two real applications

of the IBM’s orthogonal defect classification working on the issue tracking sys-

tems from two different real domains. Bayesian network classifiers learnt using

two state-of-the-art methodologies from data labeled by a crowd of annotators

are used to predict the category (impact) of reported software defects. The

considered methodologies show enhanced performance regarding the straight-

forward solution (majority voting) according to different metrics. This shows

the possibilities of using non-expert knowledge aggregation techniques when ex-

∗Corresponding author
Email addresses: jeronimo.hernandez@ehu.eus (Jerónimo Hernández-González),

daniel.rodriguezg@uah.es (Daniel Rodriguez), inaki.inza@ehu.eus (Iñaki Inza),
rachel.harrison@brookes.ac.uk (Rachel Harrison), ja.lozano@ehu.eus (Jose A. Lozano)

Preprint submitted to Applied Soft Computing September 29, 2017

pert knowledge is unavailable. The proposed approach to defect classification

is, to the best of our knowledge, novel at this time.

Keywords: Learning from crowds, Orthogonal defect classification, Missing

ground truth, Bayesian network classifiers

1. Introduction

Defect classification is an important task during software maintenance [1]

which can be used to facilitate defect prioritization, faster and cheaper defect

resolution, and analysis of module and component quality [2, 3, 4, 5]. It is

a time-consuming task which has been traditionally performed manually by5

developer team members with expert knowledge of the task. Recently, machine

learning (ML) techniques, such as supervised classification, have been applied

to the classification of defects [6].

Given a classification task of interest, standard supervised classification tech-

niques infer, from a set of previously labeled examples (certainly categorized10

defects in our case), the mapping between examples and categories. Classifiers

can thus be trained to anticipate the category of new unlabeled examples (i.e.,

new defects). In this paradigm, each training example describes a specific case

(defect) by means of a set of features and is provided together with its real

category. In software engineering, obtaining the real category of a large set of15

previous defects, as required by standard ML techniques, is a difficult task which

needs to be carried out by a domain expert. This fact usually prevents managers

from advocating ML techniques to automate the classification of defects in their

projects. In the first place, every developer team does not necessarily include an

expert on defect classification. And, even when an expert is available, a careful20

categorization (one by one) of defects may be impractical.

In this paper, we address the following research question: can we learn to

classify defects without the labeling of a domain expert? Although no expert

knowledge is available in our scenario, we do have access to a pool of computer

scientists who may have partial knowledge about the task. In contrast to the25

2

concept of “expert”, the term novice is used throughout the rest of the paper

to refer to annotators without expert knowledge who provide partially reliable

categorizations (possibly inaccurate and/or biased annotations). Certainly, the

use of a single novice for labeling a whole dataset of defects is risky. The output

of a learning process where the class information is only provided by such an30

annotator will likely be a classifier which reproduces their unreliable labeling

behavior; that is, an inaccurate classifier. A key study of sources of error [7]

showed that a straightforward solution for dealing with the problem of learning

from a single novice annotator is to take into account the opinion (labeling) of

a set of novices. This is the fundamental idea behind the learning from crowds35

paradigm [8, 9], which inspires the solution proposed in this paper.

For this work, two different groups of 5 novice annotators have labeled the

defects reported in two real domains, the Compendium and Mozilla open-source

projects. Although our approach could be applied to any classification problem

in software engineering, we have selected, without loss of generality, to categorize40

defects based on their impact as defined by the Orthogonal Defect Classification

(ODC) taxonomy [10]. The 13-category ODC taxonomy allows developers to

separate defects depending on their impact on the customer. It is particularly

suitable for open-source projects, where users are also commonly developers,

as the impact classification will, in theory, find the defects that impact user45

experience the most. Thus, novices are asked to associate each defect (training

example) with an impact (category). Apart from the problem of the reliability of

the annotators, this application faces the issue of processing the text in which

the defect has been reported, mainly written in natural language. However,

this work has been carried out to illustrate the applicability of the learning50

from crowds paradigm to real defect classification domains in the absence of

expert supervision. Thus, the NLP challenge is beyond the scope of this paper.

Standard text processing techniques have been applied to deal with it.

Keeping in line with this scenario, the research question could be rephrased

as: can we learn a classification model of software defects using the impact cate-55

gories provided by a set of novice annotators? Addressing the research question,

3

the main contribution of this paper is an in-depth analysis of two real appli-

cations (the Compendium and Mozilla projects). In order to carry out the

analysis, two learning from crowds state-of-the-art techniques have been ap-

plied. On the one hand, a K-means based approach [11], which assumes the60

existence of common tendencies of category-confusion among the annotators,

tries to find out which distributions of labels are usually associated with ev-

ery category. On the other hand, an adaptation to defect classification of an

Expectation-Maximization (EM) based technique [9], which follows the popular

Dawid-Skene [12] strategy to infer a classification model, has been also used.65

This technique (i) models the subjective point of view of the different novices

(reflected in significant rates of disagreement as observed in Section 3.1), (ii)

estimates their reliability individually and (iii) takes it into account to learn the

resulting classifiers. Moreover, we would like to note that, to the best of our

knowledge, this approach to defect classification is novel.70

The rest of the paper is organized as follows. In the next section, background

definitions and related work are described. Next, the real domains on which the

empirical studied is carried out and the applied methodology are presented. The

experimental work is explained and discussed in Section 4. The paper concludes

with conclusions and future work.75

2. Background

According to the IEEE Standard 1044-1993 [13], a defect is “an imperfec-

tion or deficiency in a work product where that work product does not meet its

requirements or specifications and needs to be either repaired or replaced”. In

practice for each defect a report is usually generated through an issue track-80

ing system. A defect report is a description of the issue which can be used to

replicate and fix the problem. An issue tracking or bug reporting system is

typically used by software project managers for reporting and tracking defects

as well as proposing new functionalities, other project management tasks and

infrastructure decisions and code reviews. Open source issue tracking systems85

4

include Bugzilla, Launchpad, GitHub and RedMine. Tickets are used to orga-

nize the information. Each ticket maintains data such as an identifier, summary,

description, opening/closing/modification dates, reporter, priority, severity, en-

vironment, current status, etc.

The classification of software defects aims to capture the semantics of the90

reports of each type of defect. Software defect classification provides extra

information about defects and so is valuable for many tasks such as prioritizing

software defects, improvement of defect prediction, assignment of defects to

developers, defect resolution, identifying the quality of components, etc. One

of the most popular defect classification taxonomies is IBM’s ODC, although95

it has been criticized due to a variety of drawbacks such as being neither fully

orthogonal nor consistent in the terminology [14]. It is said to be difficult to

apply in practice [15], and complicated to customise to specific contexts [16, 17].

In a controlled experiment with students, Falessi et al. [18] also reported that

there is affinity between some ODC defect types and previous training is needed100

to apply it. Nevertheless, IBM and other organizations have applied ODC to

improve software development processes [19, 20, 21, 22].

ODC consists of four steps: (i) classify the data; (ii) validate; (iii) assess the

ODC attributes and defect trend analysis; and (iv) act to implement the actions.

When a defect is reported following the ODC process, three attributes have to105

be added: (i) ODC activity, such as design review, unit test, etc.; (ii) ODC

trigger, which is the environment or condition that led to the failure; and (iii)

ODC defect impact, which relates the impact of the software defect to customer

satisfaction. As opposed to the goal of reducing the total number of defects,

ODC impact can be used with severity to focus quality improvement effort on110

reducing the defects that most significantly impact customer satisfaction.

2.1. Related Work

There is a large amount of literature related to defect classification start-

ing with the seminal work by Endres [2], and followed by other studies such as115

5

those by [23], [24] or [25]. Multiple models, variations and customisation of the

initial taxonomies have been proposed (e.g., [26], [3], etc.). The IEEE Standard

Classification for Software Anomalies [13] defines both the terminology and the

process to deal with defects. Thus, reports can refer to errors (human mis-

takes), defects (deficiencies in a product), faults (issues in software) or failures120

(issue preventing normal use). It also defines the classification process and the

attributes to report. In addition to ODC [10], another popular approach was

developed by HP [15], where sources of defects are classified according to three

axes: origin, type and modes. Defect classification approaches and challenges

have been discussed previously [4]. Recently, a comprehensive taxonomy was125

proposed [27].

Typically, developers manually classify defects into the ODC categories based

on the reported descriptions using, for example, root-cause defect analysis (RCA)

[28, 29]. The automation of software engineering problems by means of machine

learning techniques is increasingly being explored. The differentiation between130

defects and requirements, the importance of which has been noted [30], has al-

ready been solved making use of the reported data. Additionally, the problem

of duplicate report recovery has been addressed by means of unsupervised learn-

ing techniques [31, 32]. The classification of reports during enhancement work

or other activities, reaching 77% and 82% of accuracy, has been reported [33].135

Recently, Zhou et al. [34] combined text mining on the defect descriptions with

structured data (e.g., priority and severity) to identify corrective bugs.

Related to our work, Thung et al. [6] classify defects into three super-

categories (control and data flow, structural, and non-functional) which cover

all the ODC defect types. As opposed to our approach, they rely on ex-140

pert knowledge to obtain the ground truth. Also, Huang et al. propose Au-

toODC [35], an automatic defect classification approach based on ODC to auto-

matically categorize reports taking advantage of extra expert knowledge. Rel-

evant words/phrases of the reports are identified and selected by experts to be

used as predictive variables. In this way, accuracy gains of up to 10 percentage145

points are obtained. Whereas our methodology aims to obtain defect categories

6

when experts are unavailable, AutoODC uses extra expert knowledge to enhance

the set of descriptive variables.

3. Materials and Methods

3.1. Datasets150

The first dataset used in this paper is composed of reports collected from

the Compendium project1, a software tool for mapping information, ideas and

arguments. The issue tracking system, implemented in Bugzilla, collects support

issues, feature requests and bug reports from the Compendium community.

The collected dataset comprises all the entries available in August 2014. For155

each of the 846 obtained defects, only the informative fields have been consid-

ered: severity, summary and description. Severity is a 3-value variable (Bug,

Support or Feature), and both summary and description are text fields. Five

novice annotators were asked to annotate the impact of each example, according

to the descriptions of the corresponding 13-category ODC standard [10]. We160

found that only 9 out of the original 13 categories were used by the annotators

to label the defects of the dataset. Moreover, we found high variability among

annotators: some categories were assigned to less than 10 reports whereas the

usability impact, for instance, was consistently assigned to about a third of the

collected defects.165

Rather than solve the classification task at hand, this paper aims to point

out the viability of a learning from crowds approach when no expert supervi-

sion is available in software engineering classification problems. Dealing with the

original annotations would require supplementary machine learning techniques,

which are not necessarily related to the crowd learning paradigm, in order to170

learn from such a highly unbalanced multi-class dataset. Including these tech-

niques would make it difficult to interpret the results and assess the contribution

of the learning from crowds approach. Therefore, for the sake of simplicity, the

1http://compendium.open.ac.uk/bugzilla/

7

http://compendium.open.ac.uk/bugzilla/

dataset has been pre-processed to reduce the number of categories: the three

majority categories (Installability, Requirements and Usability) have been main-175

tained while the other annotations have been grouped in a new label, Other.

The result is a dataset with four categories moderately balanced which aligns

with the essence of crowd labeling: a large number of disagreements among

annotators can be resolved by our techniques to learn trustworthy classifiers.

The second dataset has been collected from the Mozilla project, a popular180

open-source application which started back in the late 90s with the Netscape

browser. Nowadays, it is a suite of tools that includes the Firefox browser and

the Thunderbird e-mail client. This second dataset, which contains 598 defects,

has undergone a similar pre-processing step to reduce the number of labels. In

this case, only the Installability, Maintenance and Reliability defect impacts185

are kept from the 10 defect impacts originally labeled by the annotators. In

the same way as the first dataset, the other defect impacts are replaced by the

category Other.

Table 1 shows the number of examples that each annotator assigned to each

class label for both datasets. Although for Installability reports of the Com-190

pendium project the number of examples assigned by the different annotators is

almost the same, the variability is considerable in the other categories. In some

cases, such as the Maintenance reports of the Mozilla project, it is extreme.

Indeed, a similar number of annotations does not imply consensus. Table 2

shows the assignment of examples to labels based on the consensus among an-195

notators: each cell shows the number of examples assigned to a class label by a

certain number of annotators. The last column shows the number of examples

in which the consensus label is supported by a majority of annotators (three or

more in our case). This can be seen as an estimation of the class distribution of

the respective systems. It can be observed that the annotations for the Com-200

pendium dataset are more stable, resulting in the agreement of a larger number

of annotators than in the case of the Mozilla dataset.

In Table 3, examples of real defect reports and labelings are shown for both

studied systems. In some cases, the description of the defect is clear and the

8

Table 1: No. of examples assigned by each annotator to the different labels (defect impacts).

Impact
Annotator

Impact
Annotator

L1 L2 L3 L4 L5 L1 L2 L3 L4 L5

Installability 92 82 86 87 87 Installability 158 108 73 115 158

Requirements 192 236 139 239 242 Maintenance 2 140 184 36 62

Usability 392 267 473 279 353 Reliability 130 159 201 375 130

Other 170 261 148 241 164 Other 308 191 140 72 248

Compendium dataset Mozilla dataset

Table 2: Agreement on the assigned categories. Each cell shows the number of examples

assigned to a certain category (defect impact) —row— by a subset of annotators of certain

size —column. The last column shows the number of examples where a majority of annotators

(3 or more) agree on the assignment of a certain category.

Impact
Annotator

Impact
Annotator

2 3 4 5 ≥ 3 2 3 4 5 ≥ 3

Installability 6 6 20 59 85 Installability 64 32 16 52 100

Requirements 65 73 100 37 210 Maintenance 45 18 4 0 22

Usability 50 71 129 96 296 Reliability 66 64 40 52 156

Other 0 13 121 0 134 Other 4 36 105 0 141

Compendium dataset Mozilla dataset

agreement among annotators is high. This behavior is mainly observed with205

installability defects, which are usually identified easily by annotators, as also

reflected in Table 2. However, annotators do not usually show agreement in

other categories or their vote is not unanimous. As shown in Table 2, both

systems contain examples where annotators have reported two, three and even

four different categories for the same defect report. Maybe due to lack of ex-210

pertise or incomplete report description, the information provided by this type

of defect for the learning process is certainly limited.

3.2. Learning from crowds

In software engineering, crowdsourcing usually refers to outsourcing soft-

ware development to an undefined network of developers through web plat-215

9

T
a
b

le
3
:

E
x
a
m

p
le

s
o
f

d
ef

ec
ts

a
n
d

th
e

co
rr

es
p

o
n

d
in

g
la

b
el

in
g
s

p
ro

v
id

ed
b
y

th
e

a
n

n
o
ta

to
rs

.

S
u
m

m
a
ry

D
e
sc

ri
p
ti

o
n

L
1

L
2

L
3

L
4

L
5

E
rr

o
r

L
a
u
n
ch

in
g

C
o
m

p
e
n
d
iu

m
L

D

a
ft

e
r

in
st

a
ll

H
i

te
a
m

,
E

rr
o
r

m
e
ss

a
g
e

la
u
n
ch

in
g

C
o
m

p
e
n
d
iu

m
L

D
a
ft

e
r

in
i-

ti
a
l

in
st

a
ll
:

J
a
v
a

V
ir

tu
a
l

M
a
ch

in
e

L
a
u
n
ch

e
r

C
o
u
ld

n
o
t

fi
n
d

th
e

m
a
in

c
la

ss
:

c
o
m

.c
o
m

p
e
n
d
iu

m
.P

ro
je

c
tC

o
m

p
e
n
d
iu

m
.

P
ro

g
ra

m

w
il
l

e
x
it

.
I

h
a
v
e

ru
n

th
ro

u
g
h

th
e

su
g
g
e
st

io
n

o
n

th
e

fo
ru

m
s

o
f

a
d
d
in

g
th

e
p
a
th

to
ja

v
a
w

in
th

e
.b

a
t,

a
n
d

v
e
ri

fi
e
d

th
e

p
a
th

th
ro

u
g
h

a
c
o
m

m
a
n
d

p
ro

m
p
t

is
su

c
c
e
ss

fu
l,

sa
m

e
e
rr

o
r.

A
n
y

o
th

e
r

ti
p
s?

R
e
g
a
rd

s,
E

ri
c

In
st

a
ll
a
b
il
it

y
O

th
e
r

In
st

a
ll
a
b
il
it

y
In

st
a
ll
a
b
il
it

y
In

st
a
ll
a
b
il
it

y

S
p

e
ll

C
h
e
ck

e
r

A
d
d

a
sp

e
ll
in

g
ch

e
ck

e
r

to
C

o
m

p
e
n
d
iu

m
w

it
h

th
e

a
b
il
it

y
to

sw
it

ch
o
n

a
n
d

o
ff

a
u
to

-s
p

e
ll

ch
e
ck

in
g
.

R
e
q
u
ir

e
m

e
n
ts

R
e
q
u
ir

e
m

e
n
ts

R
e
q
u
ir

e
m

e
n
ts

R
e
q
u
ir

e
m

e
n
ts

R
e
q
u
ir

e
m

e
n
ts

C
a
n

sm
a
ll

ic
o
n
s

a
ls

o
w

o
rk

w
it

h
im

-

a
g
e
s?

M
a
k
e

sm
a
ll

im
a
g
e
s?

R
ig

h
t

n
o
w

w
h
e
n

y
o
u

ch
o
o
se

sm
a
ll

ic
o
n
s,

it
sh

ri
n
k
s

th
e

n
o
rm

a
l

C
o
m

p
e
n
d
iu

m
ic

o
n
s

b
u
t

n
o
t

a
n
y

re
fe

re
n
c
e

n
o
d
e

im
a
g
e
s,

so
th

e
y

st
a
y

re
a
ll
y

b
ig

.
C

a
n

w
e

a
d
d

a
n

o
p
ti

o
n

to
sh

ri
n
k

th
o
se

p
ro

p
o
r-

ti
o
n
a
ll
y

a
s

w
e
ll
?

R
e
q
u
ir

e
m

e
n
ts

R
e
q
u
ir

e
m

e
n
ts

U
sa

b
il
it

y
R

e
q
u
ir

e
m

e
n
ts

O
th

e
r

T
e
x
t

fi
n
d
/
re

p
la

c
e

G
lo

b
a
l

se
a
rc

h
/
fi
n
d
/
re

p
la

c
e

fu
n
c
ti

o
n
a
li

ty
.

M
a
y
b

e
c
o
u
p
le

d
w

it
h

e
x
is

ti
n
g

se
a
rc

h
p
a
ra

m
e
te

rs
.

A
b
il
it

y
to

ch
a
n
g
e

te
x
t

in
fo

u
n
d

n
o
d
e
s

w
it

h
o
u
t

h
a
v
in

g
to

o
p

e
n

th
e

n
o
d
e
s,

e
d
it

th
e

la
b

e
l/

d
e
ta

il
,

e
tc

.

R
e
q
u
ir

e
m

e
n
ts

U
sa

b
il
it

y
U

sa
b
il
it

y
R

e
q
u
ir

e
m

e
n
ts

R
e
q
u
ir

e
m

e
n
ts

C
o
m
p
e
n
d
iu
m

d
a
t
a
se

t

N
S
S

a
u
to

c
o
n
f
d
o
e
s

n
o
t

in
c
lu

d
e

IR
IX

–
e
n
a
b
le

-c
ry

p
to

d
o
e
s

n
o
t

w
o
rk

o
n

IR
IX

a
s

se
c
u
ri

ty
/
n
ss

/
c
o
n
fi
-

g
u
re

.i
n

d
o
e
s

n
o
t

d
e
fi
n
e

X
P

U
N

IX
a
n
d

fr
ie

n
d
s

o
n

IR
IX

.

R
e
q
u
ir

e
m

e
n
ts

R
e
li
a
b
il
it

y
M

a
in

te
n
a
n
c
e

R
e
q
u
ir

e
m

e
n
ts

M
a
in

te
n
a
n
c
e

M
o
z
il
la

a
u
to

m
a
-

ti
c
a
ll
y

ch
e
ck

s
th

e

“
R

e
a
ss

ig
n

b
u
g

to
”

ra
d
io

b
u
tt

o
n

M
o
z
il
la

a
u
to

m
a
ti

c
a
ll
y

ch
e
ck

s
th

e
“
R

e
a
ss

in
g

b
u
g

to
”

ra
d
io

b
u
t-

to
n

in
B

u
g
z
il
la

c
a
u
si

n
g

u
n
in

te
n
ti

o
n
a
l

ch
a
n
g
e
s

to
b
u
g
s.

T
e
st

e
d

w
it

h
w

in
3
2

0
5
1
4
0
4

m
o
z
il
la

w
in

3
2

b
u
il
d

o
n

N
T

.
M

o
re

to
c
o
m

e
.

O
th

e
r

O
th

e
r

R
e
li
a
b
il
it

y
R

e
li
a
b
il
it

y
R

e
li
a
b
il
it

y

in
st

a
ll
a
ti

o
n

fa
il
e
d

w
it

h
e
rr

o
r

-2
1
4

d
u
e

to
e
m

p
ty

fl
a
sh

.x
p
i

se
e
n

o
n

m
a
c

c
o
m

m
e
rc

ia
l

b
u
il
d

2
0
0
1
-0

5
-0

9
-0

4
-t

ru
n
k
.

T
h
e

in
-

st
a
ll
e
rs

,
b

o
th

fu
ll

a
n
d

st
u
b
,

fa
il
e
d

w
it

h
a

-2
1
4

e
rr

o
r.

T
h
o
u
g
h

th
e

in
st

a
ll
a
ti

o
n

“
a
p
p

e
a
rs

”
c
o
m

p
le

te
,

w
h
e
n

la
u
n
ch

e
d
,

it
c
ra

sh
e
s

a
t

th
e

e
n
d

o
f

th
e

sp
la

sh
sc

re
e
n
.

I
w

a
s

a
b
le

to
u
se

th
e

n
o
n
-

in
st

a
ll
e
r

b
it

s
fo

r
sm

o
k
e
te

st
in

g

In
st

a
ll
a
b
il
it

y
In

st
a
ll
a
b
il

it
y

In
st

a
ll
a
b
il
it

y
In

st
a
ll
a
b
il
it

y
In

st
a
ll
a
b
il
it

y

C
re

a
te

C
h
il
d
L

is
t

in
n
sP

re
f.

c
p
p

n
e
e
d
s

to
b

e
fi
x
e
d
.

C
re

a
te

C
h
il
d
L

is
t

d
o
e
s

n
o
t

c
re

a
te

th
e

ch
il
d
L

is
t.

b
u
f

is
n
o
t

g
e
t-

ti
n
g

a
ss

ig
n
e
d

p
ro

p
e
rl

y
.

P
L

st
rn

c
p
y
(b

u
f,

(c
h
a
r*

)&
ch

il
d
A

rr
a
y
[i
],

P
R

M
IN

(5
1
2
,

P
L

st
rl

e
n
((

ch
a
r*

)&
ch

il
d
A

rr
a
y
[i
])

+
1
))

;
a
n
d

P
L

st
rc

a
t

is
fa

il
in

g
P

L
st

rc
a
t(

ch
il
d
L

is
t,

b
u
f)

;
I

h
a
v
e

a
p
a
tc

h

fo
r

th
is

.

O
th

e
r

M
a
in

te
n
a
n
c
e

M
a
in

te
n
a
n
c
e

R
e
li
a
b
il
it

y
M

a
in

te
n
a
n
c
e

M
o
z
il
l
a
d
a
t
a
se

t

10

a)

x1,...,xv +x1,...,xv ?

x1,...,xv +
x1,...,xv -

x1,...,xv -

x1,...,xv +

Learning

Classifier

Prediction

Learning

technique

b)

x1,...,xv +x1,...,xv ?

x1,...,xv

x1,...,xv

x1,...,xv

x1,...,xv

Learning

Classifier

Prediction

Learning

technique

?
?
?

?

Figure 1: Using a hypothetical binary domain ({−,+}), graphical comparison of (a) standard

supervised classification —each training example is provided with its real label— and (b) the

learning from crowds paradigm —real labels are unknown; the opinions of 3 annotators are

available for each example.

forms [36, 37]. Crowdsourcing is a way of addressing a problem collaboratively

and has become an important technique for dealing with software requirements,

design, development, testing and decision making. In machine learning, learn-

ing from crowds [8, 9] is a weakly supervised classification problem [38] where

the examples provided for model training are unreliably categorized by a set220

of annotators of questionable trustfulness and the ground truth is unavailable.

Although such labeling usually shows disagreements among annotators (see Fig-

ure 1 for a graphical representation), competitive classifiers can be learnt from

their combination. Snow et al. [39] measured the contribution of the non-expert

annotators: they suggest that the combination of four non-expert annotations225

matches the knowledge of a domain expert. Global behaviors, those owed to

the whole crowd, have been explored by Zhang et al. [11]. Other approaches try

to model instance difficulty [40] or bias [41]. However, estimating the reliability

of the individual annotators is the most common practice [8, 9, 40, 41]. Hence,

the contribution of each annotator is balanced based on their reliability in order230

to carry out an informed aggregation of information. In this work, we use a

learning from crowds approach to learn from the labelings of a set of novices

and, thus, overcome the lack of the real (expert) categorization of the training

set of defects.

Formally, the objective in standard supervised classification is to learn from235

11

a set of previous examples a classification model that anticipates the class label

(category) of new unclassified examples. A problem is described by a set of n

predictive variables (X1, . . . , Xn) and a class variable C. Each variable has a set

of possible values, with C specifically representing the set of values (class labels

or categories) that the class variable can take. Thus, the dataset provided for240

learning the classifier D = {(x1, c1), (x2, c2), . . . , (xN , cN)} is composed of N

examples, where each example is a (n + 1)-tuple (independent and identically

distributed sampled from some unknown underlying probability distribution)

that assigns a value xi
j to each predictive variable Xj and a label ci to the

class variable C. In this context, the provided class labels ci are considered245

completely reliable (ground truth). A classifier which maps examples (x) to

categories (c) is learnt such that, given a new example x∗, the classifier will

anticipate the corresponding category c∗.

In the learning from crowds paradigm, the real class labels of the examples

are unknown and only the subjective opinions of a set of t novice annotators are250

available. The information of supervision of each example xi is codified by a

t-tuple li, where lia ∈ C indicates the class label assessed by annotator La for xi.

Thus, the training dataset is D = {(x1, l1), (x2, l2), . . . , (xN , lN)}. Although

the annotations are known to be noisy (the provided label lia is not always the

real unknown label ci), assuming better-than-random annotators is a common255

practice in the related literature [8, 9]. The learning from crowds paradigm

overcomes the unavailability of the real labels by combining the provided multi-

ple annotations, li, in an informed way. Only the way in which the information

of supervision is provided differs from standard supervised classification; the

objective and other assumptions remain the same.260

3.3. Classification models

In this analysis, our ML technique learns Bayesian network models, which are

used as probabilistic classifiers, i.e., Bayesian Network Classifiers (BNC) [42].

This choice is motivated by the interpretability of these models: influences and

dependencies among variables can be deduced from the explicit probability re-265

12

C

X1 X3X2 X4

(a) Naive Bayes (NB)

C

X1 X3X2 X4

(b) Tree-augmented naive

Bayes (TAN)

C

X1 X3X2 X4

(c) 2-dependence Bayesian

network (KDB)

Figure 2: Examples of the structures of the Bayesian network classifiers used in this study.

Algorithm 1 Pseudocode of the structural learning procedure for TAN models.

procedure StructuralTAN(D) . D: training dataset

MIij ← I(Xi, Xj |C), ∀i, j : i 6= j . Conditional Mutual Information, using D

G← complete undirected graph with all the variables {Xi}ni=1.

Weight every edge Xi ←→ Xj with MIij

T ← Maximum weight spanning tree over G [43]

T ← Transform undirected edges to directed: Randomly select a variable Xi as

the root and direct all edges outward from it

T ← T+ Variable C + ∀i: edge C −→ Xi . Add naive Bayes structure

return T

end procedure

lationships. They can be graphically represented, enhancing model comprehen-

sibility and facilitating the interaction with domain experts. Moreover, BNC

have been successfully used to model many classification problems of different

domains. A Bayesian network, represented by a pair (G,θ), is a probabilistic

graphical model that encodes the conditional dependencies between a set of270

random variables V using a directed acyclic graph (DAG). The graph struc-

ture, G = (V ,R), codifies the arcs R (conditional dependencies) between nodes

V = (X1, . . . , Xn, C) (random variables), and θ is the set of parameters of the

conditional probability functions of each variable given its parents in the graph.

Specifically, three kinds of BNC where all the predictive variables are con-

ditioned to the class variable have been considered in this study: naive Bayes

classifier (NB) [44], tree augmented naive Bayes classifier (TAN) [45] and K-

13

Algorithm 2 Pseudocode of the structural learning procedure for KDB models.

procedure StructuralKDB(D,K) . D: training dataset; K: no. of parents

MIic ← I(Xi, C), ∀i . Mutual Information, using D

MIcij ← I(Xi, Xj |C), ∀i, j : i 6= j . Conditional Mutual Information, using D

T ← ∅ ; sNodes← {arg maxXi MIic} . Initialize graph

repeat

Select Xm = arg maxXi 6∈sNodesMIic

Select min(|sNodes|,K) variables {Xj} with the highest MIcmj

T ← T+ edges from the selected variables {Xj} to Xm

sNodes← sNodes+Xm

until All the variables Xi are included in sNodes

T ← T+ Variable C + an edge C −→ Xi, ∀i . Add naive Bayes structure

return T

end procedure

dependence Bayesian network classifier (KDB) [46]. Based on the assumption

of conditional independence between the predictive variables given the class

variable, the naive Bayes classifier presents the simplest network structure (see

Figure 2). The TAN and KDB classifiers are more complex in terms of network

structure and allow models to capture some conditional dependencies between

predictive variables. Both the model parameters and the graph of conditional

(in)dependencies of a BNC can be estimated from a set of examples. In the spe-

cific case of learning from certainly labeled examples, maximum likelihood esti-

mates of the model parameters can be obtained by means of frequency counts

[47]. Regarding the graph structure, in this paper the standard methods for

learning TAN [45] and KDB [46] structures have been implemented. Their

pseudocodes are given in Algorithms 1 and 2, respectively. NB does not require

structural learning as its structure is fixed. The general classification rule of

this type of BNC is defined as,

argmax
c

p(C = c)

n∏
j=1

p(Xj = xj |PAj = paj , C = c) (1)

where argmaxc f(c) is an operator that finds the value c which maximizes the275

14

expression f(c), paj is the vector of values assigned in the example x to the

predictive variables, PAj , which are parents of Xj in the structure G.

The lack of the ground truth labels prevents us from directly applying the

standard BNC learning techniques for complete data. Precisely, the use of learn-

ing from crowds techniques allows us to deal with this issue. In this paper, two280

state-of-the-art techniques of different nature are used to show the performance

of the crowd learning paradigm on two defect classification domains. On the

one hand, a pre-processing technique that, using the K-means clustering algo-

rithm, models labeling behaviors of the whole crowd is considered. Its result

is a completely labeled dataset in which standard techniques can be applied285

for learning a classification model. On the other hand, an EM-based technique

that models the individual behavior of each labeler is also applied. In this case,

model learning and ground truth estimation are iteratively alternated.

3.4. K-means based method

The method proposed by Zhang et al. [11], which only considers annota-290

tions {li}Ni=1 (the corresponding examples {xi}Ni=1 are disregarded), has been

implemented (see Algorithm 3 for its pseudocode). First of all, the annotated

labels are transformed into label counts disregarding the information about who

provided each label: the number of annotators who provided class label c for

example x is calculated for every example and label. These vectors of label295

counts are the examples provided to the K-means clustering algorithm, which

is set up with k equal to the number of categories, |C|. The vectors with the

highest label count for each label c are used as initial centroids. As usual, the

K-means algorithm assigns each example (vector of label counts) to a centroid.

As each centroid was generated for representing a class label, the ground truth300

estimation of this technique assumes that each example belongs to the class

label that is represented by its closest centroid.

This method outputs an estimation of the ground truth labels. That is, a

vector gs in which each element gsi ∈ C (with i = {1, . . . , N}) is a class label. In

this way, using this labeling together with the corresponding original predictive305

15

Algorithm 3 Pseudocode of the implemented K-means based approach.

procedure kmeansApproach(D) . D = {(x1, l1), (x2, l2), . . . , (xN , lN)}

R← new matrix(nRow:N , nCol:|C|+ 1)

for i ∈ {1, . . . , N} do

for c ∈ {1, . . . , |C|} do

Ric ← countsOfLabel(li, c) . No. annotators providing label c in li

end for

Ric+1 ←
∑|C|

i=2Ric −Ric−1

end for

iCentroids← {arg maxi∈1,...,N Ric}|C|c=1

gs← Kmeans(R, iCentroids, k = |C|) . Assign each example to a centroid

. Examples assigned to the centroid representing label c belong to label c

return D̂ = {(x1, gs1), (x2, gs2), . . . , (xN , gsN)}

end procedure

data, a complete dataset D̂ = {(x1, gs1), (x2, gs2), . . . , (xN , gsN)} can be built

and used to learn classification models by means of the techniques presented in

the previous section. Thus, ground truth inference and model learning are, in

this approach, two sequential but separate steps.

As aforementioned, the individual information about the annotators is dis-310

regarded. The individual labels and, therefore, the information about which

annotator provided each label, are not considered. This makes any attempt to

individually model the behavior (reliability) of the annotators impossible. On

the contrary, this approach looks for profiles of label counts. That is, for each

category, it approximates the mean counts of labels assigned by the annotators315

to examples of that category. The assumption that underlies this approach is

that the tendency to confuse categories, a.k.a. bias in this context, is somehow

global and can be modeled at crowd-level.

3.5. EM-based method

In contrast to the previously presented approach, the second technique,320

following a Dawid-Skene scheme [12], models individual annotators by means

16

Algorithm 4 Pseudocode of the implemented Structural EM method.

1: procedure StructuralEM(D,maxIt, ε) . D = {(x1, l1), (x2, l2), . . . , (xN , lN)}

. Stop conditions: max. no. iterations, maxIt / threshold, ε

2: W ← initialReliabilityWeights(D)

3: G0 ← initialStructure(D,W)

4: repeat . Increasing i = 1, 2, ...

5: θ0 ← estimateParameters(D,W,Gi−1)

6: repeat . Increasing j = 1, 2, ...

7: W ← reestimateReliabilityWeights(D,M ≡ (Gi−1,θj−1))

8: θj ← estimateParameters(D,W,Gi−1)

9: until (diff(θj ,θj−1) < ε) Or (j = maxIt) . Model parameter optim. loop

10: Gi ← improveStructure(D,W,Gi−1)

11: until (Gi = Gi−1) Or (i = maxIt) . Model structure optimization loop

12: return M ≡ (Gi,θj)

13: end procedure

of a set of reliability parameters that are subsequently used to calibrate the

contribution of the labels that they provide to ground truth estimation. An

Expectation-Maximization (EM) based method previously proposed for the

multi-dimensional learning from crowds problem [9] has been adapted to this325

unidimensional but multi-class classification task. The EM strategy [48] allows

us to combine the estimation of a set of weights that model the reliability of each

annotator and the learning of the model using the labels provided by the set of

novices. In our method, the Expectation step estimates the reliability weights

of the annotators and, in the Maximization step, the model parameters are re-330

estimated such that the likelihood is maximized given the data and the weights

estimated in the Expectation step. Iteratively, both steps are repeated. Under

general conditions, the iterative increase of the likelihood has been proved to

converge to a stationary value (local maximum) [49].

When TAN or KDB classifiers are learnt, an outer loop to the traditional335

EM procedure allows us to combine model parameter estimation and struc-

tural learning (see Algorithm 4). This extension of EM, known as Structural

17

EM [50], iteratively improves an initially-proposed structure (see Algorithms 1

and 2). At each iteration, the structural improvement is carried out by means

of a one-step local search which looks for the structure that maximizes the340

complete-data minimal description length (MDL) score. The neighborhood is

composed of all the structures (in the same space as the original one) that can

be obtained by removing one conditional dependency between two predictive

variables and adding another dependency between a different pair of predictive

variables. When no structure overcomes the current one in terms of MDL, the345

algorithm stops.

For this study, two types of reliability weights, which codify the trustwor-

thiness of each annotator, have been considered. On the one hand, a reliability

weight per class label and annotator is used. These per-label weights (wa
c , for

all a ∈ {1, . . . , t}) codify the reliability of each annotator La when they provide350

examples of a specific class label c. On the other hand, the confusion-matrix

weights (W a
cc′ , for all a ∈ {1, . . . , t} and c, c′ ∈ {1, . . . , |C|}) codify, for each an-

notator, both the reliability of an annotator when they predict a class label and

the probability of label c′ being the real label when the annotator provides c.

Firstly, the initial set of reliability weights is estimated by comparing the anno-355

tations of each labeler with those of the rest of the annotators. Next, a model

is learnt using a counting procedure for model parameter estimation which has

been adapted to consider the multiple (weighted) labelings. A detailed descrip-

tion of the adapted procedure is presented in the next subsection. Once a model

is available, in the Expectation step of the EM strategy, the annotator reliability360

weights can be re-estimated assuming that the ground truth is the output of

the predictive model. Reliability weight estimation procedures, both initial and

model-based assessments, are explained in detail in Section 3.5.2. A numeri-

cal example of the calculation involved in this process is available as additional

material in the web page associated to this paper2.365

2http://www.sc.ehu.es/ccwbayes/members/jeronimo/odc/

18

http://www.sc.ehu.es/ccwbayes/members/jeronimo/odc/

3.5.1. Estimation of model parameters

The standard parameter estimation procedure has been adapted to collect

frequency counts from multiple noisy annotations per example, using the an-

notator reliability weights in order to carry out an informed aggregation of the

different contributions. Similar to Hernández-González et al. [9], the parameter

estimation procedure to collect frequency counts integrating the multiple and

weighted labels can be expressed as follows:

N(u) =
∑

(xi,li)∈D

|C|∑
c=1

I[xi
J1

= u1, . . . , x
i
Jk

= uk] · F li

uk+1 (2)

where I[condition] is a function that returns 1 if condition is true and 0 oth-

erwise, u = (u1, . . . , uk, uk+1) is an instantiation of the random vector U =

(XJ1
, . . . , XJk

, C), a sub-vector of the original V = (X, C) with {J1, . . . , Jk} ⊆

{1, . . . , n}. Finally, F
l
c is the reliability of assigning label c jointly taking into

account the opinion of the annotators l and their reliability weights. With∑|C|
c=1 F

l
c = 1, it is calculated differently depending on the type of annotator

reliability weights. On the one hand, using the per-label weights (wa
c), it is

calculated as,

F
l
c =

∑t
a=1 I[la = c] · wa

c∑|C|
c′=1

∑t
a=1 I[la = c′] · wa

c′

(3)

On the other hand, F
l
c is calculated using the confusion-matrix reliability

weights (W a
cc′) as follows,

F
l
c =

∑t
a=1 I[c ∈ l] ·W a

lac∑|C|
c′=1

∑t
a=1 I[c′ ∈ l] ·W a

lac′

(4)

3.5.2. Estimation of reliability weights for the annotators

A simple estimation of the reliability weights of the annotators (line 2 in

Alg. 4), which only uses the available multiple labelings, is obtained by means

of the consensus criterion [9]. In the case of per-label weights, the consensus

weight of an annotator La in class label c is,

wa
c = iRelWeilabel(D) =

1

Φ

N∑
i=1

I[lia = c]
1

t− 1

∑
a′ 6=a

I[lia′ = c] (5)

19

with normalization factor Φ =
∑N

i=1 I[lia = c]. In the case of confusion-matrix

weights, the consensus weight of an annotator La for confusing label c′ with c

is,

W a
cc′ = iRelWeimatrix(D) =

1

Φ

N∑
i=1

I[lia = c]
1

t− 1

∑
a′ 6=a

I[lia′ = c′] (6)

Once a model fit M is available, the re-estimation of the reliability weights

of the annotators [9] (line 7 in Alg. 4) can be carried out using two different

strategies: (1) an accuracy-based strategy (Acc), where the class label ĉ pre-

dicted (according to Eq. 1) by the model M for each example is used as ground

truth, and (2) a probability-based strategy (Prob), which uses the probability

given by the model M to the labels assigned by each annotator to calculate their

reliability weights. In the case of using per-label weights (wa
c), both estimation

techniques can be formulated as,

wa
c = reRelWeiacclabel(D,M) =

1

Φ

N∑
i=1

I[lia = c] · I[ĉi = c] (7)

wa
c = reRelWeiproblabel(D,M) =

1

Φ

N∑
i=1

I[lia = c] · pM(c|xi) (8)

with normalization factor Φ =
∑N

i=1 I[lia = c]. And, in the case of using the

confusion-matrix reliability weights (W a
cc′), both estimation procedures are,

W a
cc′ = reRelWeiaccmatrix(D,M) =

1

Φ

N∑
i=1

I[lia = c] · I[ĉi = c′] (9)

W a
cc′ = reRelWeiprobmatrix(D,M) =

1

Φ

N∑
i=1

I[lia = c] · pM(c′|xi) (10)

where Φ is in both cases a normalization constant such that
∑|C|

c′=1 W
a
cc′ = 1.

As the EM strategy proposes a hill climbing approach for the problem of

model parameter estimation, a procedure that updates the annotator reliability370

weights relying exclusively on the learnt model could be detrimental. If our

EM procedure iteratively converges to a harmful classifier that only predicts a

subset of labels, the estimated reliability weights can differ considerably from

the real reliability values. In order to avoid this undesirable deviation, our

20

Table 4: Relation of the different configurations used in the experiments and their equations.

Acc Prob Acc+Cons Prob+Cons

Per-label Eq. 7 Eq. 8 (Eq. 7+Eq. 5)/2 (Eq. 8+Eq. 5)/2

Confusion-matrix Eq. 9 Eq. 10 (Eq. 9+Eq. 6)/2 (Eq. 10+Eq. 6)/2

method allows us to use the consensus weights (Eq. 5 or Eq. 6, as appropriate)375

throughout the iterations of the EM process as a correction term (cons). Thus,

in this case the annotator reliability weights are re-estimated using the average

value of the consensus weights and the model-estimated weights.

4. Experimental work

4.1. Experimental settings380

Different experiments have been carried out using both the K-means based

and the EM-based learning techniques to learn three types of Bayesian network

classifiers (NB, TAN and 2DB) from both datasets. In the case of the EM-

based technique, all the possible configurations have been tested for its three

adjustable features: the type of reliability weights (per-label and confusion-385

matrix) of the annotators, the weight estimation procedure (Prob and Acc)

and the use, or not, of consensus weight correction (cons). In order to assess

the size of the improvement achieved with the implementation of the crowd

learning paradigm, the majority voting (MV) strategy is used as a baseline.

This simple strategy completes the dataset by labeling each example with the390

label most voted among the set of novices and, in this way, learns as in a

standard supervised classification problem. Figure 3 graphically compares the

progression of the different learning algorithms and their use of the training

crowd-labeled data.

All these experiments were carried out using our own implementation of395

the different learning algorithms and evaluation strategies. Written in Java, we

take advantage of current implementations in Weka [51] and employ several data

21

X1,X2,...,Xn L1 L2 Lt

Pre-process

MV

Kmeans

X1, X2,..., Xn ĉ

Model learning

NB

TAN

KDB

standard

techniques

NB

TAN

KDB

standard

techniques

EM
+

different
configurations

NB

TAN

KDB

per-label
prob

NB

TAN

KDB

matrix
acc

Figure 3: Graphical description of the learning process, where different techniques have been

used to learn a set of BNCs from a dataset labeled by a crowd.

management features. In this way, note that defects are originally described by

the text reported by the user using two text fields: summary and description.

In a pre-processing stage, standard natural language processing techniques have400

been used to extract a relevant set of variables from the text fields and transform

the original database into a dataset which can be handled by ML techniques.

Specifically, the popular StringToWordVector filter implemented in Weka [51]

was used. Stop-words were removed based on Rainbow [52], text was converted

to lowercase; the iterated version of the Lovins stemmer [53] was applied as405

well as an alphabetic tokenizer where tokens are formed only using contiguous

alphabetic sequences. For each word a numeric variable is created which, for

each defect, takes as value the Term Frequency-Inverse Document Frequency

(TF-IDF) ratio. Without a ground truth to compare with, the number of se-

lected attributes was set to 100. Finally, each numeric variable was transformed410

into a binary variable using a step function which takes a positive value only

if the original numeric value is larger than zero. Similarly, both parameters of

the EM-based technique have been set to their default values [9]: a threshold

indicating parametric convergence (set to 0.1%) and the maximum number of

iterations (fixed to 200). The use of default parameters allows us to focus this415

work on the benefits of the learning from crowds approach. Note that there is

22

Classifier

X1 , X2 , ... , Xn L1 L2 Lt...

Eval1

ĉ

X1 , X2 , ... , Xn L1 L2 Lt...
T
R

A
IN

IN
G

 D
A
T
A

T
E
S

T
 D

A
T
A

Model learning Prediction
Evalt

Eval2

Eval=(1/t)Σa Evala

.
.
.

Figure 4: Graphical description of the evaluation strategy. The final performance is the mean

value after comparing each annotation with the predicted labels.

room for performance improvement via this pre-processing step.

Model evaluation is not straightforward in the learning from crowds paradigm.

The lack of a ground truth (certain labeling) makes the use of standard evalua-

tion techniques impossible. Given the relatively recent emergence of the learning420

from crowds paradigm, the model evaluation in this scenario is still a field to be

explored. In this paper, the evaluation strategy followed is based on the same

idea that confers its characteristic robustness on the majority voting: the com-

bination of multiple independent assessments [9, 39]. That is, the mean value

of the performance metric calculated using the labels of one annotator at a time425

as ground truth is considered. In practice, all the experiments in this section

are evaluated as follows (see Fig. 4): (1) after model learning, the performance

of the model is estimated using the annotations of each labeler, one at a time,

as ground truth, and (2) the mean value of all the estimates is the final perfor-

mance value. All the experimental results are obtained with a 10× 5-fold cross430

validation procedure [54].

4.2. Results

In order to provide a complete overview of the performance of the learnt clas-

sifiers, results in terms of A-mean (Table 6), F1-mean (Table 7) and accuracy

23

Table 5: Definition of the evaluation metrics based on a confusion matrix V , where Vcĉ is

the number of examples predicted by the learnt classifier as class ĉ when their real class is c.

Recallc Vcc/
∑|C|

c′=1
Vc′c Min-Recall minc∈{1,...,|C|}Recallc

Precisionc Vcc/
∑|C|

c′=1
Vcc′ Max-Recall maxc∈{1,...,|C|}Recallc

F1-mean 1
|C|

∑|C|
c=1

2·Recallc·Precisionc
(Recallc+Precisionc)

A-mean 1
|C|

∑|C|
c=1 Recallc

Accuracy 1
|C|

∑|C|
c=1 Vcc

(Table 8) are presented. See Table 5 for a description of the evaluation metrics435

used in this paper. In tables 6 to 8, the MV strategy, the K-means based tech-

nique and the eight different configurations (all the possible combinations of the

three features, see Table 4) of the EM-based technique are displayed in columns;

each row shows the experiments using a specific BNC in one of the datasets.

The best configuration for each BNC and dataset (by row) is highlighted in440

bold. In (multi-class) classification, analyzing the performance of a classifier

depends on the preferences of the final user. Accuracy is a global measure that

evaluates the performance of a classifier independently of the number of class

labels. Classifiers which completely disregard one or more class labels can show

competitive accuracy values if their performance in examples of the rest of the445

categories is outstanding. It is, therefore, a good option for users interested

in classifiers which show high global performance. However, if the final user is

interested in classifiers which perform well in all the class labels, A-mean [55],

the mean of the recall values, or F1 [56] are more suitable metrics. To illustrate

this trade-off between local and global performance, Figure 5 shows the mini-450

mum and maximum recall values obtained by the different classifiers in any of

the class labels. These values provide an insight into the performance of the

classifiers across class labels: large differences among minimum and maximum

values usually correspond to large accuracy values and low differences to large

A-mean and F1-mean values.455

The simplest solution, a standard supervised classification approach that

uses the most-voted labels (MV) as ground truth, gives a baseline whose ro-

24

Table 6: Results in terms of A-mean of the BNC classifiers learnt from both datasets —rows—

using a K-means based technique [11] and a EM-based technique with different configurations

(Table 4) —columns. Majority Voting (MV) is used as a baseline strategy.

BNC MV Kmeans EM
Per-label Confusion-matrix

Prob Prob+Cons Acc Acc+Cons Prob Prob+Cons Acc Acc+Cons

C
o
m

p
e
n
d
iu

m NB 0.455 0.593 0.480 0.474 0.479 0.475 0.491 0.492 0.488 0.492

TAN 0.433 0.603 0.436 0.440 0.436 0.442 0.456 0.458 0.454 0.460

2DB 0.404 0.572 0.400 0.408 0.402 0.413 0.424 0.425 0.417 0.415

M
o
z
il
la

NB 0.454 0.475 0.459 0.462 0.453 0.463 0.479 0.477 0.480 0.479

TAN 0.502 0.490 0.491 0.523 0.496 0.519 0.529 0.528 0.521 0.529

2DB 0.480 0.475 0.496 0.496 0.498 0.494 0.508 0.508 0.513 0.498

bust behavior has already been analyzed [9]. In these experiments, MV is a

solid strategy which gives a competitive baseline; it is able to occasionally beat

the performance of some configurations of the applied techniques. However,460

both applied crowd learning techniques consistently outperform the basic MV

strategy. In the Compendium domain, the results of the k-means based tech-

nique overcome those of MV in terms of all the metrics. However, mainly with

the TAN and KDB classifiers, the MV strategy beats the k-means approach in

the Mozilla domain. Regarding the EM-based approach, configurations with465

confusion-matrix weights always outperform MV in terms of A-mean, where

the differences are up to 4 percentage points. Nevertheless, configurations using

per-label weights consistently beat MV accuracy values, with differences which

are close to 3 percentage points.

The results reveal a clear behavior: the K-means based technique outper-470

forms the rest of the approaches in the Compendium dataset, whereas in the

Mozilla dataset the best performing approach is the EM-based technique. It is

observed in terms of all the measured metrics. In the bar graphs corresponding

to the Compendium dataset in Figure 5, the difference between the K-means

approach and the rest of techniques is especially noticeable: it shows the best475

results in terms of both maximum and minimum recall. Apart from the itera-

25

Table 7: Results in terms of mean F1 of the BNC classifiers learnt from both datasets —rows—

using a K-means based technique [11] and a EM-based technique with different configurations

(Table 4) —columns. Majority Voting (MV) is used as a baseline strategy.

BNC MV Kmeans EM
Per-label Confusion-matrix

Prob Prob+Cons Acc Acc+Cons Prob Prob+Cons Acc Acc+Cons

C
o
m

p
e
n
d
iu

m NB 0.407 0.572 0.393 0.398 0.387 0.393 0.408 0.409 0.408 0.407

TAN 0.393 0.589 0.374 0.387 0.372 0.382 0.399 0.400 0.400 0.402

2DB 0.381 0.562 0.345 0.364 0.352 0.367 0.389 0.386 0.387 0.381

M
o
z
il
la

NB 0.394 0.376 0.405 0.402 0.404 0.403 0.407 0.405 0.401 0.405

TAN 0.449 0.408 0.432 0.454 0.437 0.452 0.462 0.463 0.452 0.462

2DB 0.439 0.395 0.429 0.442 0.430 0.440 0.447 0.446 0.444 0.439

tive nature of the EM strategy (the K-means approach works as a pre-process

that produces an estimate of the ground truth), the main difference between

both approaches is the behavior that they aim to model. Whereas the K-means

based technique can only model biases shown by the whole crowd (annotators480

usually confuse labels c and c′), the EM-based approach can model individual

biases (annotator a tends to confuse labels c and c′). This is the most feasible

explanation for the different behaviors of both methods in both domains. In

Table 1 it can be observed that annotations for the Compendium domain are

similar for all the labelers. The main divergence relates categories Usability and485

Other (when the former is observed more frequently by an annotator, the latter

is not annotated as often, and vice versa). However, in the case of the Mozilla

domain, different behaviors can be observed among annotators; from annotator

L2, who provides balanced annotations, to annotators L1 and L5, who seem to

label similarly both overpopulating the Other category. In this last dataset and490

according to the experimental results, modeling annotators individually is prob-

ably an adequate decision. With the Compendium dataset, the global modeling

carried out by the K-means approach seems to be more appropriate.

Regarding the EM-based approach and its different configurations, although

the differences are slight, the Prob procedure mostly outperforms Acc according495

26

Table 8: Results in terms of accuracy of the BNC classifiers learnt from both datasets —rows—

using a K-means based technique [11] and a EM-based technique with different configurations

(Table 4) —columns. Majority Voting (MV) is used as a baseline strategy.

BNC MV Kmeans EM
Per-label Confusion-matrix

Prob Prob+Cons Acc Acc+Cons Prob Prob+Cons Acc Acc+Cons

C
o
m

p
e
n
d
iu

m NB 0.474 0.554 0.482 0.478 0.480 0.480 0.454 0.456 0.453 0.452

TAN 0.465 0.565 0.471 0.474 0.468 0.475 0.441 0.441 0.442 0.443

2DB 0.459 0.535 0.461 0.465 0.467 0.468 0.437 0.435 0.437 0.428

M
o
z
il
la

NB 0.456 0.423 0.463 0.462 0.462 0.463 0.448 0.446 0.425 0.439

TAN 0.526 0.449 0.535 0.532 0.539 0.535 0.505 0.501 0.479 0.495

2DB 0.518 0.431 0.541 0.537 0.543 0.536 0.485 0.483 0.477 0.472

to A-mean and F1 metrics (tables 6 and 7, respectively). Note that the per-

formance of a classifier in all the class labels contributes to the computation of

these metrics. Similarly, the use of confusion-matrix reliability weights seems

more suitable if one of these metrics has to be optimized. The trend is clearly

noticeable in the experimental results: configurations using per-label reliabil-500

ity weights always outperform configurations using confusion-matrix weights in

terms of global accuracy (Table 8), and configurations using confusion-matrix

weights always stand out in terms of A-mean or F1 metrics. On the one hand,

it can be observed in Figure 5 that configurations with per-label weights often

show minimum recall values near to 0. This behavior is associated with classi-505

fiers which concentrate their performance in a subset of class labels; usually, in

the most populated categories. Performing robustly in highly populated class

labels can lead to competitive global performance (e.g., in terms of accuracy)

even when results in sparsely populated categories are poor. On the other hand,

high A-mean or F1 values are associated with high minimum recall values. As510

these metrics balance the performance on all the class labels, high values can

only be obtained when the performance is competitive on each label. More-

over, the use of consensus correction affects the results mainly when per-label

weights are used. To sum up, per-label weights promote classifiers with com-

27

MV Kmeans L:P L:P+C L:A L:A+C M:P M:P+C M:A M:A+C

Minimum
Maximum

Min/Max recall values (NB/Compendium)

R
e

c
a
ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

MV Kmeans L:P L:P+C L:A L:A+C M:P M:P+C M:A M:A+C

Minimum
Maximum

Min/Max recall values (TAN/Compendium)

R
e

c
a
ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

MV Kmeans L:P L:P+C L:A L:A+C M:P M:P+C M:A M:A+C

Minimum
Maximum

Min/Max recall values (KDB/Compendium)

R
e

c
a
ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

MV Kmeans L:P L:P+C L:A L:A+C M:P M:P+C M:A M:A+C

Minimum
Maximum

Min/Max recall values (NB/Mozilla)

R
e
c
a
ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

MV Kmeans L:P L:P+C L:A L:A+C M:P M:P+C M:A M:A+C

Minimum
Maximum

Min/Max recall values (TAN/Mozilla)

R
e

c
a
ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

MV Kmeans L:P L:P+C L:A L:A+C M:P M:P+C M:A M:A+C

Minimum
Maximum

Min/Max recall values (KDB/Mozilla)

R
e

c
a
ll

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 5: Graphical representation of minimum and maximum recall values obtained by

the BNC classifiers —columns— learnt from both datasets —rows. Similar to tables 6 to 8,

results are displayed in each subfigure for majority voting (first pair of bars), K-means based

technique [11] (second pair), and different configurations of the EM-based technique (Table 4).

petitive global performance, whereas confusion-matrix weights are appropriate515

whenever the objective is an averaged competitiveness across class labels (defect

types, in our case).

Another interesting trend is the different performance of the three types of

BNCs when they are learnt with the different techniques. Inarguably, the best

performance is shown by TAN classifiers, always associated to the best learning520

technique, the K-means approach in the Compendium dataset and the EM-

based technique for Mozilla. This means that probabilistic relationships among

predictive variables have been correctly modeled. When the MV strategy and

the EM-based approach learn from the Compendium dataset, the best results

are associated with the experiments that infer NB classifiers. That is, when525

the circumstances are not favorable, NB still performs reasonably well, showing

its robustness. In the same way, the high maximum-recall values of the NB

classifiers in the Compendium dataset (Figure 5) are noteworthy. Learnt 2DB

28

classifiers show a competitive behavior in the Mozilla dataset, but not to the

same extent as in the Compendium domain. This also emphasizes the different530

nature of both domains. Allowing the learning techniques to introduce extra

relationships among predictive variables does not boost the performance of the

classifiers. Thus, either no such relationships are present on the Compendium

data or learnt models overfit the training data.

4.3. Discussion535

Two crowd learning techniques have been applied to the task of defect classi-

fication. The EM-based technique, an adaptation to this unidimensional multi-

class problem of our proposal for multi-dimensional problems [9], stands out in

the Mozilla domain. The second approach, a K-means based technique [11],

outperforms the rest of methods in the Compendium domain. In spite of the540

high variability observed in the annotations (see Table 3), the experimental

results show that learning to classify defects without the ground truth, only

using the labelings provided by novices, is possible. Therefore, the proposed

crowd learning paradigm is a robust choice for solving the defect classification

problem. This opens an interesting path for reducing the reliance on expert545

knowledge for future software engineering classification tasks. Indeed, the per-

formance improvement regarding the majority voting strategy shows the value

of modeling the behavior of the novices, either globally —the contribution of

the whole crowd— or individually —the annotations of each labeler.

The use of a ML approach in practice will result in a classification model550

that, given a new defect, predicts its category (in this case, ODC Defect Im-

pact). Following the predictions of any classifier involves a partial risk, as an

irreducible error may exist even when the best possible model is learnt. The

existence of this irreducible error, known as Bayes error rate [57], is inherent to

the problem and should always be taken into account. In our case, an estimation555

of the probability of error can be obtained for the learnt models: the summation

over the probabilities of all the label assignments which do not maximize Equa-

tion 1 for any possible defect description. The cost of this estimation increases

29

dramatically with the size of the descriptor vector (n). Although an implemen-

tation of the proposed approach is liable to classification error, the amount of560

mistakes can be minimized with training data and rates of confidence on the

classification can be obtained.

Theoretical studies [58, 9] and other previous real applications [39, 59] sug-

gest that the classifiers learnt by means of the crowd learning approach are com-

petitive with the standard supervised classification whenever enough training565

data is provided. In our specific task one can expect that defects will continue

being reported; i.e., more data will be available. However, in order to avoid

overloading annotators, their effort can be focused on labeling the most useful

examples. As not all the types of defects are equally difficult to classify (see

Fig. 5), further developments should ideally select the defects which need to570

be annotated by the novices to boost the learning process: those which are not

accurately classified by the classifier. Similarly, Table 3 shows reports where the

agreement is unanimous. The number of annotators who are asked to annotate

each defect report could be optimized to further reduce the cost of the labeling

process. The estimated reliability weights could be taken into account to select,575

individually for each defect, the annotators to be questioned. Although it is

a common practice to assume that annotators are novices, nothing prevents a

domain expert from participating. The presented EM-based technique is able

to identify experts and promote their annotations. Once identified, an effective

procedure would firstly ask experts for their opinion. This selective learning580

process can be achieved by means of active learning [60], a strategy that allows

the classifier to be used in production and improved in parallel. Its application

to the learning from crowds paradigm has already been studied [59]. The ac-

tive learning extension for the proposed paradigm would cover all the needs of

an automatic defect classification procedure implemented in a real system and585

would allow the classifier to be continuously improved at the same time.

Finally, an issue tracking system will have to be ultimately adapted to in-

clude the developments required for the participation of the community, which

is necessary to put the proposed approach into production. The study, develop-

30

ment and implementation of the ideas discussed in this paper is a step forward590

towards the use of the presented approach in real world systems.

4.4. Threats to Validity

Concerning external validity, an obvious threat is the representativeness of

the studied systems, Compendium and Mozilla. Software systems usually have

specific features such as the application domain, development environment and595

number of people. Different systems usually differ in the distribution of types

of defects and, therefore, machine learning techniques need to adjust to the

specific environment of each problem. Moreover, in the presented applications

five annotators participated in the labeling processes. The results show that,

in spite of the high levels of noise reported in Table 1, their contributions are600

informative and can be used to learn classification models. However, a larger

number of annotators is expected to enhance the performance of the different

methods, particularly that of the MV strategy [9, 39]. Although a more exten-

sive study would certainly be more conclusive, two systems have been analyzed

in the present study to foster representativeness. According to the results pre-605

sented in the previous section, both domains are different enough to observe

particular behaviors and diversity of performance among the used techniques.

Concerning construct validity, the quality in the issue tracking system makes

it hard to easily classify defect data manually. We do not address other prob-

lems faced in the defect repositories such as defect duplicates. Apart from the610

summary and the description of defects, more data which could be extracted

from Bugzilla repositories might be helpful. Other preprocessing decisions could

have been chosen or optimized: e.g., removal of outliers or text field (natural

language) processing. In order to focus the present study on the enhancement

associated to the application of the learning from crowds paradigm, standard615

NLP procedures and default values have been used. The optimization of these

procedures for the defect classification task would likely report improved per-

formance. Moreover, and following the same reason, i.e., to focus the discussion

on the usefulness of the class information provided by the multiple annota-

31

tors, the original databases were transformed to 4-class classification problems.620

This decision could have had an impact on the results. However, dealing with

the original databases would have required specific techniques to deal with the

multi-class imbalance classification problem and their inclusion might obscure

the interpretability of the results. Moreover, the techniques that we would have

required for such an approach are not available in the state-of-the-art as the625

problem has not been addressed yet in the machine learning community. The

original databases are publicly available in the web page associated to this paper

to guarantee replicability.

Internal validity is concerned with whether the automated classifications

have arisen as a result of chance or not. In the case of 4 balanced class labels,630

the probability of randomly assigning the right label to an example is 1/4 = 0.25.

Assuming a random assignment of labels according to the distribution of labels

estimated for the studied domains —based on the last column of Table 2—, the

probability of being right is approximately 0.298 = (0.122+0.292+0.412+0.182)

for the Compendium system and 0.312 = (0.242 + 0.052 + 0.372 + 0.342) for635

Mozilla. Both domains have similar probability of randomly selecting the real

label. Taking this and the results of the previous section into account, it can be

concluded that the automated classifications are not a product of chance. How-

ever, the performance of the learnt classifier is different in both datasets. That

may be a product of the discriminant ability of the texts describing the defects640

and the NLP procedures applied to them. That is, the predictive variables have

to be informative for this task to succeed.

5. Conclusions and future work

In this paper, the proposal of automatization of the defect classification

problem without the supervision of an expert, only relying on multiple partially645

reliable annotators, has been presented and tested in two real systems, Com-

pendium and Mozilla. Two state-of-the-art methodologies, one based on the

EM strategy and another one based on the K-means clustering algorithm, have

32

been applied to learn Bayesian network classifiers from reported defects.

Both techniques and the different tested configurations show their competi-650

tive behavior in both domains. Whereas the K-means based technique models

the crowd of annotators as a whole, the EM-based technique tries to individu-

ally model the different annotators of the crowd. Their performance is different

through both studied domains. However, both crowd learning techniques sys-

tematically outperform a basic approach based on standard classification which655

uses the most-voted labels, encouraging the study of advanced techniques to

combine the multiple contributions. Although further research is required, this

study supports the use of a learning from crowds approach to defect classifica-

tion when expert knowledge is not available.

For future work, dealing with the original 13-category problem would require660

us to model the studied systems as multi-class imbalance problems. Specific ma-

chine learning techniques, such as SMOTEBoost [61], have already been pro-

posed to deal with this type of classification problem. However, their adaptation

to the learning from crowds paradigm is not straightforward and would require

further research. Specifically, we would like to study the effect of a set of skewed665

annotators on the learning process of a domain where the types of the reported

defects are also unbalanced [62]. Regarding the evaluation of models learned

from crowds without ground truth, it would be interesting to explore how the

reliability weights estimated by, for example, the EM-based technique during

the learning phase can be used to constrain the contribution of the different670

partial scores in the calculation of the final metric score (see Figure 4).

Acknowledgments

This work has been partially supported by the Basque Government (IT609-

13, Elkartek BID3A), the Spanish Ministry of Economy and Competitiveness

(TIN2016-78365-R) and the University-Society Project 15/19 (Basque Govern-675

ment and University of the Basque Country UPV/EHU). Jose A. Lozano is

also supported by BERC program 2014-2017 (Basque Government) and Severo

33

Ochoa Program SEV-2013-0323 (Spanish Ministry of Economy and Competi-

tiveness). Daniel Rodriguez carried out this work while visiting Oxford Brookes

University. He is partly supported by projects BadgePeople TIN2016-76956-C3-680

3-R. We would like to thank Varsha Veerappa for her help with data collection.

[1] B. Boehm, V. R. Basili, Software defect reduction top 10 list, in: B. Boehm,

H. D. Rombach, M. V. Zelkowitz (Eds.), Foundations of empirical software

engineering: the legacy of Victor R. Basili, Springer, 2005, pp. 426–431.

[2] A. Endres, An analysis of errors and their causes in system programs, in:685

Proc. Int. Conf. Reliable Software, ACM, New York, NY, USA, 1975, pp.

327–336.

[3] R. B. Grady, Practical Software Metrics for Project Management and Pro-

cess Improvement, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[4] S. Wagner, Defect classification and defect types revisited, in: Proc. 2008690

Workshop on Defects in Large Software Systems, DEFECTS’08, ACM,

New York, NY, USA, 2008, pp. 39–40.

[5] D. N. Card, Learning from our mistakes with defect causal analysis, IEEE

Software 15 (1) (1998) 56–63.

[6] F. Thung, D. Lo, L. Jiang, Automatic defect categorization, in: Proc. 19th695

Working Conf. Reverse Engineering, 2012, pp. 205–214. doi:10.1109/

WCRE.2012.30.

[7] G. Lugosi, Learning with an unreliable teacher, Pattern Recognit. 25 (1)

(1992) 79–87.

[8] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni,700

L. Moy, Learning from crowds, J. Mach. Learn. Res. 11 (2010) 1297–1322.

[9] J. Hernández-González, I. Inza, J. A. Lozano, Multidimensional learning

from crowds: Usefulness and application of expertise detection, Int. J. In-

tell. Syst. 30 (3) (2015) 326–354.

34

http://dx.doi.org/10.1109/WCRE.2012.30
http://dx.doi.org/10.1109/WCRE.2012.30
http://dx.doi.org/10.1109/WCRE.2012.30

[10] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus, B. Ray,705

M.-Y. Wong, Orthogonal defect classification-a concept for in-process mea-

surements, IEEE Trans. Softw. Eng. 18 (11) (1992) 943–956.

[11] J. Zhang, V. S. Sheng, J. Wu, X. Wu, Multi-class ground truth inference

in crowdsourcing with clustering, IEEE Trans. Knowl. Data Eng. 28 (4)

(2016) 1080–1085.710

[12] A. P. Dawid, A. M. Skene, Maximum likelihood estimation of observer

error-rates using the EM algorithm, J. R. Stat. Soc. Ser. C-Appl. Stat.

28 (1) (1979) 20–28.

[13] IEEE, IEEE Std 1044-1993. IEEE Standard Classification for Software

Anomalies (1993).715

[14] C. B. Seaman, F. Shull, M. Regardie, D. Elbert, R. L. Feldmann, Y. Guo,

S. Godfrey, Defect categorization: Making use of a decade of widely varying

historical data, in: Proc. 2nd ACM-IEEE Int. Symp. Empirical Software

Engineering and Measurement, ESEM’08, ACM, New York, NY, USA,

2008, pp. 149–157.720

[15] B. Freimut, C. Denger, M. Ketterer, An industrial case study of imple-

menting and validating defect classification for process improvement and

quality management, in: Proc. 11th IEEE Int. Symp. on Software Metrics

(METRICS’05), 2005, pp. 10–19.

[16] T. Nakamura, L. Hochstein, V. R. Basili, Identifying domain-specific defect725

classes using inspections and change history, in: Proc. 2006 ACM/IEEE

Int. Symp. Empirical Software Engineering (ISESE’06), ACM, New York,

NY, USA, 2006, pp. 346–355.

[17] J. Duraes, H. Madeira, Definition of software fault emulation operators: a

field data study, in: Proc. Int. Conf. Dependable Systems and Networks,730

2003, pp. 105–114.

35

[18] D. Falessi, G. Cantone, Exploring feasibility of software defects orthogonal

classification, in: Proc Int. Conf. Software and Data Technologies, Springer

Berlin Heidelberg, 2006, pp. 136–152.

[19] M. Butcher, H. Munro, T. Kratshmer, Improving software testing via ODC:735

Three case studies, IBM Syst. J. 41 (1) (2002) 31–44.

[20] M. Soylemez, A. Tarhan, Using process enactment data analysis to support

orthogonal defect classification for software process improvement, in: Proc.

Joint Conf. 23rd Int. Workshop on Software Measurement and 8th Int.

Conf. Software Process and Product Measurement (IWSM-MENSURA),740

2013, pp. 120–125.

[21] N. Bridge, C. Miller, Orthogonal defect classification using defect data to

improve software development, Softw. Qual. J. 3 (1998) 1997–8.

[22] R. Mays, C. Jones, G. Holloway, D. Studinski, Experiences with defect

prevention, IBM Syst. J. 29 (1) (1990) 4–32.745

[23] N. Schneidewind, H.-M. Hoffmann, An experiment in software error data

collection and analysis, IEEE Trans. Softw. Eng. 5 (3) (1979) 276–286.

[24] T. J. Ostrand, E. J. Weyuker, Collecting and categorizing software error

data in an industrial environment, J. Syst. Softw. 4 (4) (1984) 289–300.

[25] V. R. Basili, B. T. Perricone, Software errors and complexity: An empirical750

investigation, Commun. ACM 27 (1) (1984) 42–52.

[26] R. A. Demillo, A. P. Mathur, A grammar based fault classification scheme

and its application to the classification of the errors of TEX, Tech. rep.,

Software Engineering Research Center and Department of Computer Sci-

ences, Purdue University, W. Lafayette, IN 47907 (November 1995).755

[27] T. Hall, D. Bowes, S. Counsell, L. Moonen, A. Yamashita, Software fault

characteristics: A synthesis of the literature, http://bura.brunel.ac.uk/

handle/2438/11013 (2015).

36

http://bura.brunel.ac.uk/handle/2438/11013
http://bura.brunel.ac.uk/handle/2438/11013
http://bura.brunel.ac.uk/handle/2438/11013

[28] M. Leszak, D. E. Perry, D. Stoll, Classification and evaluation of defects in

a project retrospective, J. Syst. Softw. 61 (3) (2002) 173–187.760

[29] L. Buglione, A. Abran, Introducing root-cause analysis and orthogonal de-

fect classification at lower CMMI maturity levels, in: Proc. Int. Conf. Soft-

ware Process and Product Measurement (Mensura’06), 2006, pp. 29–40.

[30] K. Herzig, S. Just, A. Zeller, It’s not a bug, it’s a feature: How mis-

classification impacts bug prediction, in: Proc. 2013 Int. Conf. Software765

Engineering, 2013, pp. 392–401.

[31] P. Runeson, M. Alexandersson, O. Nyholm, Detection of duplicate defect

reports using natural language processing, in: 29th Int. Conf. Software

Engineering (ICSE), 2007, pp. 499–510.

[32] N. Jalbert, W. Weimer, Automated duplicate detection for bug tracking770

systems, in: Proc. 2008 IEEE Int. Conf. Dependable Systems and Networks

With FTCS and DCC (DSN), 2008, pp. 52–61. doi:10.1109/DSN.2008.

4630070.

[33] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, Y.-G. Guéhéneuc, Is it

a bug or an enhancement?: A text-based approach to classify change re-775

quests, in: Proc. 2008 Conf. Center for Advanced Studies on Collaborative

Research: Meeting of Minds, ACM, New York, NY, USA, 2008, pp. 23:304–

23:318.

[34] Y. Zhou, Y. Tong, R. Gu, H. Gall, Combining text mining and data mining

for bug report classification, J. Softw.: Evol. Process 28 (3) (2016) 150–176.780

[35] L. Huang, V. Ng, I. Persing, M. Chen, Z. Li, R. Geng, J. Tian, AutoODC:

Automated generation of orthogonal defect classifications, Automat. Softw.

Eng. 22 (1) (2015) 3–46.

[36] J. Howe, The rise of crowdsourcing, Wired Mag. 15 (6) (2006) 1–4.

37

http://dx.doi.org/10.1109/DSN.2008.4630070
http://dx.doi.org/10.1109/DSN.2008.4630070
http://dx.doi.org/10.1109/DSN.2008.4630070

[37] K. Mao, L. Capra, M. Harman, Y. Jia, A survey of the use of crowdsourcing785

in software engineering, Tech. Rep. RN/15/01, Department of Computer

Science, University College London (2015).

[38] J. Hernández-González, I. Inza, J. A. Lozano, Weak supervision and other

non-standard classification problems: A taxonomy, Pattern Recognit. Lett.

69 (2016) 49–55.790

[39] R. Snow, B. O. Connor, D. Jurafsky, A. Y. Ng, D. Labs, C. St, Cheap

and fast - but is it good? evaluating non-expert annotations for natural

language tasks, in: Proc. Conf. Empirical Methods in Natural Language

Processing, Vol. 254, 2008, pp. 254–263.

[40] J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, J. R. Movellan, Whose vote795

should count more: Optimal integration of labels from labelers of unknown

expertise, in: Proc. Advances in Neural Information Processing Systems 22

(NIPS), 2009, pp. 2035–2043.

[41] P. Welinder, S. Branson, S. Belongie, P. Perona, The multidimensional

wisdom of crowds, in: Proc. Advances in Neural Information Processing800

Systems 23 (NIPS), 2010, pp. 2424–2432.

[42] C. Bielza, P. Larrañaga, Discrete Bayesian network classifiers: a survey,

ACM Comput. Surv. 47 (1) (2014) 5.

[43] C. K. Chow, C. N. Liu, Approximating discrete probability distributions

with dependence trees, IEEE Trans. Inf. Theory 14 (3) (1968) 462–467.805

[44] D. J. Hand, K. Yu, Idiot’s bayes—not so stupid after all?, Int. Stat. Rev.

69 (3) (2001) 385–398.

[45] N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers,

Mach. Learn. 29 (2–3) (1997) 131–163.

[46] M. Sahami, Learning limited dependence Bayesian classifiers, in: Proc. 2nd810

Int. Conf. Knowledge Discovery and Data Mining, 1996, pp. 335–338.

38

[47] D. Heckerman, A tutorial on learning with bayesian networks, Tech. Rep.

MSR-TR-95-06, Learning in Graphical Models (1995).

[48] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from in-

complete data via the EM algorithm, J. R. Stat. Soc. Ser. B-Stat. Methodol.815

39 (1) (1977) 1–38.

[49] G. J. McLachlan, T. Krishnan, The EM Algorithm and Extensions (Wiley

Series in Probability and Statistics), Wiley-Interscience, 1997.

[50] N. Friedman, Learning belief networks in the presence of missing values

and hidden variables, in: Proc. 14th Int. Conf. Machine Learning, 1997,820

pp. 125–133.

[51] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten,

The WEKA data mining software: an update, SIGKDD Explor. 11 (1)

(2009) 10–18.

[52] A. K. McCallum, Bow: A toolkit for statistical language modeling, text825

retrieval, classification and clustering, http://www.cs.cmu.edu/ mccal-

lum/bow (1996).

[53] J. B. Lovins, Development of a stemming algorithm, Mech. Trans. Comput.

Ling. 11 (1968) 22–31.

[54] J. D. Rodŕıguez, A. Perez, J. A. Lozano, Sensitivity analysis of k-fold cross830

validation in prediction error estimation, IEEE Trans. Pattern Anal. Mach.

Intell. 32 (3) (2010) 569–575.

[55] A. Menon, H. Narasimhan, S. Agarwal, S. Chawla, On the statistical con-

sistency of algorithms for binary classification under class imbalance, in:

Proc. 30th Int. Conf. Machine Learning, 2013, pp. 603–611.835

[56] H. He, E. Garcia, et al., Learning from imbalanced data, IEEE Trans.

Knowl. Data Eng. 21 (9) (2009) 1263–1284.

39

[57] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning,

2nd Edition, Springer Series in Statistics, 2009.

[58] A. Papoulis, S. U. Pillai, Probability, Random Variables, and Stochastic840

Processes, 4th Edition, McGraw-Hill Education, 2002.

[59] V. S. Sheng, F. Provost, P. G. Ipeirotis, Get another label? improving data

quality and data mining using multiple, noisy labelers, in: Proc. 14th ACM

SIGKDD Int. Conf. Knowledge Discovery and Data Mining, ACM, 2008,

pp. 614–622. doi:10.1145/1401890.1401965.845

[60] D. Cohn, L. Atlas, R. Ladner, Improving generalization with active learn-

ing, Mach. Learn. 15 (2) (1994) 201–221.

[61] N. V. Chawla, A. Lazarevic, L. O. Hall, K. W. Bowyer, Smoteboost: Im-

proving prediction of the minority class in boosting, in: Proc. 7th Euro-

pean Conf. Principles and Practice of Knowledge Discovery in Databases,850

Springer, 2003, pp. 107–119.

[62] J. Zhang, X. Wu, V. S. Sheng, Imbalanced multiple noisy labeling, IEEE

Trans. Knowl. Data Eng. 27 (2) (2015) 489–503.

40

http://dx.doi.org/10.1145/1401890.1401965

	Introduction
	Background
	Related Work

	Materials and Methods
	Datasets
	Learning from crowds
	Classification models
	K-means based method
	EM-based method
	Estimation of model parameters
	Estimation of reliability weights for the annotators

	Experimental work
	Experimental settings
	Results
	Discussion
	Threats to Validity

	Conclusions and future work
	Acknowledgments

