
Contents lists available at ScienceDirect

Data in Brief

Data in Brief 18 (2018) 840–845
https://
2352-34
(http://c

DOI
⁎ Corr
E-m

inaki.in
journal homepage: www.elsevier.com/locate/dib
Data Article
Two datasets of defect reports labeled by a crowd
of annotators of unknown reliability

Jerónimo Hernández-González a,∗, Daniel Rodriguez c,
Iñaki Inza a, Rachel Harrison d, Jose A. Lozano a,b

a Department of Computer Science and Artificial Intelligence, University of the Basque Country UPV/EHU,
Donostia, Spain
b Basque Center for Applied Mathematics BCAM, Bilbao, Spain
c Department of Computer Science, University of Alcala, Madrid, Spain
d Department of Computing, Oxford Brookes University, Oxford, UK
a r t i c l e i n f o

Article history:
Received 4 November 2017
Received in revised form
7 November 2017
Accepted 23 March 2018
Available online 28 March 2018
doi.org/10.1016/j.dib.2018.03.109
09/& 2018 The Authors. Published by Else
reativecommons.org/licenses/by/4.0/).

of original article: https://doi.org/10.1016/j.
esponding author.
ail addresses: jeronimo.hernandez@ehu.eus
za@ehu.eus (I. Inza), rachel.harrison@brook
a b s t r a c t

Classifying software defects according to any defined taxonomy is
not straightforward. In order to be used for automatizing the
classification of software defects, two sets of defect reports were
collected from public issue tracking systems from two different
real domains. Due to the lack of a domain expert, the collected
defects were categorized by a set of annotators of unknown
reliability according to their impact from IBM's orthogonal defect
classification taxonomy. Both datasets are prepared to solve the
defect classification problem by means of techniques of the
learning from crowds paradigm (Hernández-González et al. [1]).

Two versions of both datasets are publicly shared. In the first
version, the raw data is given: the text description of defects
together with the category assigned by each annotator. In the
second version, the text of each defect has been transformed to a
descriptive vector using text-mining techniques.

& 2018 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
vier Inc. This is an open access article under the CC BY license

asoc.2017.10.047

(J. Hernández-González), daniel.rodriguezg@uah.es (D. Rodriguez),
es.ac.uk (R. Harrison), ja.lozano@ehu.eus (J.A. Lozano).

www.sciencedirect.com/science/journal/23523409
www.elsevier.com/locate/dib
https://doi.org/10.1016/j.dib.2018.03.109
https://doi.org/10.1016/j.dib.2018.03.109
https://doi.org/10.1016/j.dib.2018.03.109
http://dx.doi.org/10.1016/j.asoc.2017.10.047
http://dx.doi.org/10.1016/j.asoc.2017.10.047
http://dx.doi.org/10.1016/j.asoc.2017.10.047
mailto:jeronimo.hernandez@ehu.eus
mailto:daniel.rodriguezg@uah.es
mailto:inaki.inza@ehu.eus
mailto:rachel.harrison@brookes.ac.uk
mailto:ja.lozano@ehu.eus
https://doi.org/10.1016/j.dib.2018.03.109


J. Hernández-González et al. / Data in Brief 18 (2018) 840–845 841
Specifications Table
M
T

H

D
E

E

D

D

Subject area
 Computer Science
ore specific subject area
 Software Engineering; Machine Learning

ype of data
 Text fields and multiple annotations of a discrete class variable (defect

impact of IBM's orthogonal defect classification, ODC [2]).

ow data was acquired
 Gathered from public issue tracking systems for the defect descriptions.

Manual annotation of each defect by different labelers.

ata format
 Both raw and text-processed datasets.

xperimental factors
 In the second version of the datasets, standard natural language pro-

cessing techniques were used to extract a relevant set of variables from
the text fields and transform the original database into a dataset which
can be handled by machine learning techniques.
xperimental features
 A description of the datasets and the agreement between the labels of
the different annotators is provided.
ata source location
 http://compendium.open.ac.uk/bugzilla/
http://bugzilla.mozilla.org/
ata accessibility
 All the data is published together with this article.

elated research article
 The data in this paper was used in [1].
R

Value of the Data

� A large set of software defect reports is collected (and processed) from public repositories and
adapted for the task of defect classification.

� Five labelers for each dataset give their annotations by means of the most convenient defect impact
from the ODC taxonomy [2], according to their subjective point of view.

� As no ground truth is available, the evaluation of classification models learnt from this type of data
is a challenge that has not been solved to date.

� The processing and extraction of meaningful information from the text fields that may boost the
performance of the learning algorithms may be improved.
1. Data

In software engineering, having available the classification of the reported defects is useful,
although this task is complex and time consuming. The datasets presented in this paper were pre-
pared to learn to automatize the classification of software defects by means of the paradigm of
(machine) learning from crowds. Thus, multiple annotators were asked to provide the most con-
venient category (label) for each defect report according to their subjective point of view. Note,
therefore, that the labels provided by the annotators may be wrong. To enhance generalization, two
datasets were prepared.

The first dataset is composed of reports collected from the issue tracking system (ITS) of the
Compendium project, a software tool for mapping information, ideas and arguments. An ITS is
typically used by software projects for reporting and tracking defects as well as proposing new
functionalities. An ITS organizes the information through tickets, which maintain data such as an
identifier, summary, description, opening/closing/modification dates, etc. The ITS used by the Com-
pendium project is implemented in Bugzilla (https://www.bugzilla.org/) and collects support issues,
feature requests and bug reports from the Compendium community. The collected dataset comprises
962 examples, all the entries available in the ITS in August 2014 (with the exception of some obvious
spam). Only informative fields are taken into account: severity, summary and description. Severity is a
3-value variable (Bug, Support or Feature), and both summary and description are text fields. Five
annotators with experience in computer science were asked to annotate the examples according to

http://compendium.open.ac.uk/bugzilla/
http://bugzilla.mozilla.org/
https://www.bugzilla.org/


J. Hernández-González et al. / Data in Brief 18 (2018) 840–845842
the 13-category ODC standard [2]. See Table 5 for a description of the different possible categories.
Only 9 out of the original 13 categories were used by the labelers in the dataset: Installability,
Integrity/Security, Migration, Reliability, Performance, Documentation, Requirements, Usability and
Capability. Table 1 shows the number of examples that each annotator assigned to each class label.
Although the number of examples assigned by the different annotators is almost the same for some
class labels (Installability, Performance and, to a lesser extent, Integrity/Security and Documentation),
there exists high variability in the majority of class labels. Moreover, a similar number of annotations
does not imply consensus. Table 2 shows the assignment of examples to labels based on the con-
sensus among annotators: each cell shows the number of examples assigned to a class label by a
certain number of annotators. The last row shows the number of examples in which the consensus
label is supported by a majority of annotators (three or more). This row provides an insight into the
lack of homogeneity in the distribution of class labels. It can be observed that Integrity/Security,
Migration, Performance and Documentation are minority classes.

The second dataset has been collected from the Mozilla project (http://www.mozilla.org/), a
popular open-source application which started back in the late 90 s with the Netscape browser.
Nowadays, it is a suite of tools that includes the Firefox browser and the Thunderbird e-mail client.
This second dataset, which contains 675 defects, was also labeled by 5 annotators. In this case, 10
different defect impacts appeared among the labels provided by the annotators: Installability,
Integrity/Security, Maintenance, Migration, Reliability, Performance, Documentation, Requirements,
Usability and Capability (the same 9 impacts annotated in the Compendium dataset and Main-
tenance). Note that there are 3 categories which were not used in any of the datasets: Serviceability,
Standards and Accessibility.
Table 2
In the Compendium dataset, the number of examples in which a subset of annotators agree on their given class label. The last
column shows the number of examples in which the majority of annotators agree on the assigned label.

Defect impact Number of annotators which agree on the impact of the defect

2 3 4 5 [3,5]

Installability 6 6 20 59 85
Integrity/Security 0 3 2 5 10
Migration 27 11 11 2 24
Reliability 26 32 39 1 72
Performance 2 1 3 9 13
Documentation 4 4 12 9 25
Requirements 61 66 100 37 203
Usability 40 69 129 96 294
Capability 10 48 10 2 60

Table 1
In the Compendium dataset, the number of examples assigned by each annotator to the different ODC defect impacts (class
labels).

Defect impact Annotator #1 Annotator #2 Annotator #3 Annotator #4 Annotator #5

Installability 92 82 86 87 87
Integrity/Security 6 14 10 12 9
Migration 91 20 89 21 25
Reliability 119 4 117 86 97
Performance 14 15 13 14 14
Documentation 29 36 19 28 25
Requirements 192 236 139 239 242
Usability 392 267 473 279 353
Capability 27 288 16 196 110

http://www.mozilla.org/


J. Hernández-González et al. / Data in Brief 18 (2018) 840–845 843
Table 3 shows the number of examples that each annotator assigned to each class label for both
datasets. In some cases, such as the Maintenance reports, the variability is extreme. In general, the
agreement among annotators is not as high as in the Compendium dataset, as can be observed in
Table 4. This new table shows the assignment of examples to labels based on the consensus among
annotators: each cell shows the number of examples assigned to a class label by a certain number of
annotators. The last row shows the number of examples in which the consensus label is supported by
a majority of annotators (three or more). The lack of homogeneity in the distribution of class labels is
obvious in this Mozilla dataset. It can be observed that Integrity/Security, Migration and Performance
are again minority classes.
2. Experimental design, materials, and methods

A sufficiently large set of defects was collected from the corresponding ITS. Only informative fields
were collected: summary, description and, in the case of the Compendium dataset, severity. Once the
reports were collected, some obvious spam reports were removed. The remaining defect reports (up
to 962 and 675 defects, respectively) were separately presented to the different annotators. Each of
them was asked to label all the reports of the given dataset. Note that no annotator had access to the
labels provided by any other labeler. Moreover, annotators of both datasets are not the same.

At the same time, the defects are originally described by the text reported by the user using two
text fields: summary and description. Standard natural language processing techniques have been
used to extract a relevant set of variables from the text fields and transform the original database into
Table 4
In the Mozilla dataset, the number of examples in which a subset of annotators agree on their given class label. The last column
shows the number of examples in which the majority of annotators agree on the assigned label.

Defect impact Number of annotators which agree on the impact of the defect

2 3 4 5 [3,5]

Installability 64 32 16 52 100
Integrity/Security 3 3 1 2 6
Maintenance 45 18 4 0 22
Migration 14 3 1 0 4
Reliability 64 62 40 52 154
Performance 0 1 4 2 7
Documentation 6 9 11 9 29
Requirements 29 21 15 1 37
Usability 21 13 8 0 21
Capability 15 13 1 0 14

Table 3
In the Mozilla dataset, the number of examples assigned by each annotator to the different ODC defect impacts (class labels).

Defect impact Annotator #1 Annotator #2 Annotator #3 Annotator #4 Annotator #5

Installability 158 108 73 115 158
Integrity/Security 15 4 16 6 11
Maintenance 2 140 184 36 62
Migration 1 34 22 1 30
Reliability 130 159 201 375 130
Performance 11 9 13 4 14
Documentation 12 41 47 20 40
Requirements 98 42 51 77 96
Usability 88 62 6 31 44
Capability 160 76 62 10 90



Table 5
ODC defect impact classification [2].

Defect impact Description

Installability The ability of the customer to prepare and place the software in position for use (not include
Usability).

Integrity/Security The protection of systems, programs, and data from inadvertent or malicious destruction, alteration,
or disclosure.

Maintenance The ease of applying preventive or corrective fixes to the software.
Serviceability The ability to diagnose failures easily and quickly, with minimal impact to the customer.
Migration The ease of upgrading to a current release, particularly in terms of the impact on existing customer

data and operations.
Reliability The ability of the software to consistently perform its intended function without unplanned inter-

ruption. Severe interruptions, such as ABEND and WAIT would always be considered reliability.
Performance The speed of the software as perceived by the customer and the customer's end users, in terms of

their ability to perform their tasks.
Documentation The degree to which the publication aids provided for understanding the structure and intended uses

of the software are correct and complete.
Requirements A customer expectation, with regard to capability, which was not known, understood, or prioritized

as a requirement for the current release.
Usability The degree to which the software and publication aids enable the product to be easily understood

and conveniently employed by its end user.
Standards The degree to which the software complies with established pertinent standards.
Accessibility Ensuring that successful access to information and use of information technology is provided to

people who have disabilities.
Capability The ability of the software to perform its intended functions, and satisfy known requirements, where

the customer is not impacted in any of the previous categories.

J. Hernández-González et al. / Data in Brief 18 (2018) 840–845844
a dataset which can be handled by ML techniques. Specifically, the popular StringToWordVector filter
implemented in Weka [3] was used. Stop-words were removed based on Rainbow [4], text was
converted to lowercase; the iterated version of the Lovins stemmer [5] was applied as well as an
alphabetic tokenizer, where tokens are formed only using contiguous alphabetic sequences. For each
word a numeric variable is created which, for each defect, takes as value the Term Frequency-Inverse
Document Frequency (TF-IDF) ratio. Finally, the lack of a ground truth prevented us from using fea-
ture selection techniques to filter out uninformative descriptors. The maximum number of selected
attributes was just set to 100.
Acknowledgments

This work has been partially supported by the Basque Government (IT609-13, Elkartek BID3A), the
Spanish Ministry of Economy and Competitiveness (TIN2016-78365-R) and the University-Society
Project 15/19 (Basque Government and University of the Basque Country UPV/EHU). Jose A. Lozano is
also supported by BERC Program 2014–2017 (Basque Government) and Severo Ochoa Program SEV-
2013-0323 (Spanish Ministry of Economy and Competitiveness). Daniel Rodriguez carried out this
work while visiting Oxford Brookes University. He is partly supported by projects BadgePeople
TIN2016–76956-C3-3-R. We would like to thank Varsha Veerappa and the anonymous annotators for
their help with data collection.
Transparency document. Supporting information

Supplementary data associated with this article can be found in the online version at https://doi.
org/10.1016/j.dib.2018.03.109.

https://doi.org/10.1016/j.dib.2018.03.109
https://doi.org/10.1016/j.dib.2018.03.109


J. Hernández-González et al. / Data in Brief 18 (2018) 840–845 845
Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at https://doi.
org/10.1016/j.dib.2018.03.109.
References

[1] J. Hernández-González, D. Rodriguez, I. Inza, R. Harrison, J.A. Lozano, Learning to classify software defects from crowds: a
novel approach, Appl. Soft. Comput. 62 (2018) 579–591 [ASOC4542].

[2] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus, B. Ray, M.-Y. Wong, Orthogonal defect classification-a concept for
in-process measurements, IEEE Trans. Softw. Eng. 18 (11) (1992) 943–956.

[3] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The WEKA data mining software: an update, SIGKDD
Explor 11 (1) (2009) 10–18.

[4] A.K. McCallum, Bow: A toolkit for statistical language modeling, text retrieval, classification and clustering, 〈http://www.cs.
cmu.edu/�mccallum/bow〉, 1996.

[5] J.B. Lovins, Development of a stemming algorithm, Mech. Trans. Comput. Ling. 11 (1968) 22–31.

https://doi.org/10.1016/j.dib.2018.03.109
https://doi.org/10.1016/j.dib.2018.03.109
http://refhub.elsevier.com/S2352-3409(18)30322-6/sbref1
http://refhub.elsevier.com/S2352-3409(18)30322-6/sbref1
http://refhub.elsevier.com/S2352-3409(18)30322-6/sbref1
http://refhub.elsevier.com/S2352-3409(18)30322-6/sbref2
http://refhub.elsevier.com/S2352-3409(18)30322-6/sbref2
http://refhub.elsevier.com/S2352-3409(18)30322-6/sbref2
http://refhub.elsevier.com/S2352-3409(18)30322-6/sbref3
http://refhub.elsevier.com/S2352-3409(18)30322-6/sbref3
http://refhub.elsevier.com/S2352-3409(18)30322-6/sbref3
http://www.cs.cmu.edu/~mccallum/bow
http://www.cs.cmu.edu/~mccallum/bow
http://www.cs.cmu.edu/~mccallum/bow
http://refhub.elsevier.com/S2352-3409(18)30322-6/sbref4
http://refhub.elsevier.com/S2352-3409(18)30322-6/sbref4

	Two datasets of defect reports labeled by a crowd of annotators of unknown reliability
	Data
	Experimental design, materials, and methods
	Acknowledgments
	Supporting information
	Supporting information
	References




