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A B S T R A C T

Global burned are algorithms provide valuable information for climate modellers since fire disturbance is re-
sponsible of a significant part of the emissions and their related impact on humans. The aim of this work is to
explore how four different classification algorithms, widely used in remote sensing, such as Random Forest (RF),
Support Vector Machine (SVM), Neural Networks (NN) and a well-known decision tree algorithm (C5.0), for
classifying burned areas at global scale through a data mining methodology using 2008 MODIS data. A training
database consisting of burned and unburned pixels was created from 130 Landsat scenes. The resulting database
was highly unbalanced with the burned class representing less than one percent of the total. Therefore, the
ability of the algorithms to cope with this problem was evaluated.

Attribute selection was performed using three filters to remove potential noise and to reduce the di-
mensionality of the data: Random Forest, entropy-based filter, and logistic regression. Eight out of fifty-two
attributes were selected, most of them related to the temporal difference of the reflectance of the bands. Models
were trained using an 80% of the database following a ten-fold approach to reduce possible overfitting and to
select the optimum parameters.

Finally, the performance of the algorithms was evaluated over six different regions using official statistics
where they were available and benchmark burned area products, namely MCD45 (V5.1) and MCD64 (V6).
Compared to official statistics, the best agreement was obtained by MCD64 (OE=0.15, CE= 0.29) followed by
RF (OE=0.27, CE= 0.21). For the remaining three areas (Angola, Sudan and South Africa), RF (OE=0.47,
CE=0.45) yielded the best results when compared to the reference data. NN and SVM showed the worst
performance with omission and commission error reaching 0.81 and 0.17 respectively. SVM and NN showed
higher sensitivity to unbalanced datasets, as in the case of burned area, with a clear bias towards the majority
class. On the other hand, tree based algorithms are more robust to this issue given their own mechanisms to deal
with big and unbalanced databases.

1. Introduction

Wildland fires are one of the most important disturbances in the
Earth system, affecting the balance of greenhouse gases (van der Werf
et al., 2010), vegetation distribution and society (Goldammer et al.,
2008; Kloster et al., 2012; Schoennagel et al., 2009). Wildland fires are
considered an Essential Climate Variable (ECV) by the Global Climate
Observing System (GCOS) (2004); Hollmann et al., 2013) and has,
therefore, been selected by the European Spatial Agency (ESA) as one of
the ECV included in the Climate Change Initiative (CCI) program
(Hollmann et al., 2013).

Burned area (BA) detection is an active research topic which has
been studied over a variety of ecosystems. Many studies have shown the
ability of high resolution sensors to map burned areas at local scale

using high and medium resolution images (Dragozi et al., 2014; Mitri
and Gitas, 2013). Nevertheless, to analyze global vegetation dynamics
(Mouillot et al., 2014) or greenhouse gas emissions estimation
(Leeuwen et al., 2013), global coverage is needed. In this framework,
the most used products are those that use MODIS (Moderate-Resolution
Imaging Spectroradiometer) images, such as MCD45 (Roy et al., 2005)
or MCD64 (Giglio et al., 2013) products. In addition to these data, there
are others BA products developed by different European projects in the
last decade such as L3JRC (Tansey et al., 2008), Globcarbon (Plummer
et al., 2005) based on SPOT-VEGETATION, or the Fire_cci product
(Alonso-Canas and Chuvieco, 2015; Chuvieco et al., 2016) based on
MERIS (Medium-Spectral Resolution Imaging Spectrometer). Given the
high variety of the burning conditions (i.e. vegetation type, biomass
consumption, time prevalence), most of the global BA products relies in
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the use of regional thresholds to discern between burned and unburned
areas (Alonso-Canas and Chuvieco, 2015; Giglio et al., 2013; Plummer
et al., 2005; Tansey et al., 2008), but none of them has been yet de-
veloped using machine learning algorithms, particularly using a global
training dataset.

Data mining, defined as the computing process of discovering pat-
terns and relationship from large dataset through the use of machine
learning, statistics and database systems (Fayyad et al., 1996), has ex-
perienced an increase of popularity in the remote sensing field because
of its capability to extract patterns from apparently unstructured data.
For instance, it has been successfully applied to map natural disasters
(Barnes et al., 2007; Goswami et al., 2016; Traore et al., 2017), land
cover classification (DeFries and Chan, 2000; Zhou et al., 2013) or
change detection (Boulila et al., 2011; Hussain et al., 2013). It has also
been applied in fire applications such as forest fire prediction (Cheng
and Wang, 2008) or to map burned areas (Özbayoğlu and Bozer, 2012;
Quintano et al., 2011).

One of the advantages of train global models is that after the
training phase, the classification become fully automatic without the
need of further calibrations or regional adaptations (Ramo and
Chuvieco, 2017). However, the main difficulties of this approach are
the necessity of generating a training database that includes the great
variability of burned conditions, and the generation of balanced error
rate models that classify burned area without overfitting or bias to the
majority (or minority) class, obtaining similar error rates results among
different regions.

The main objective of this study was to compare the capacity of four
well-known machine learning algorithms, namely random forests (RF),
support vector machine (SVM), artificial neural networks (ANN) and
decision trees (C5.0), to map burned areas at global scale using a data
mining approach. The algorithms were applied over six different re-
gions (Australia, Angola, California, South Africa and Sudan) and the
results validated in two ways. First, the performance was evaluated by
leaving 20% of the training database for independent validation.
Second, comparing the BA information yielded by the algorithms with
existing official statistics (Australia, Canada and California), and two
well-known BA products namely, MCD64 and MCD45.

2. Materials and methods

The proposed methodology consisted of several steps involving the
training database compilation, attribute selection, algorithm training
and evaluation, image classification and perimeter comparison. The
flowchart of the applied methodology is presented in Fig. 1 to facilitate
its interpretation.

2.1. Burned Area perimeters

To create the training dataset, the burned area perimeters from the
Fire_cci project (http://www.esa-fire-cci.org/ last accessed April 2018)
were used. This dataset has been previously used to validate global BA
products (Padilla et al., 2015) such as MCD64 (Giglio et al., 2013),
MCD45 (Roy et al., 2005) or the Fire_cci product (Alonso-Canas and
Chuvieco, 2015). The Fire_cci validation dataset follows a global sta-
tistically designed sample (Padilla et al., 2014), thus the training sites
were selected using a stratified random sampling were the strata were
defined based on the proportion of burned area extracted from the
Global Fire Emissions Database (GFED) (Giglio et al., 2013) and the
Olson biomes reclassified in 7 categories based on their similarities and
fire behavior (e.g. deserts, Tundra and Mangroves were merged in one
class). Thus for each biome the proportion of burned area was com-
puted and those with ≥80% of the area burned were grouped into the
high burned area, and those with<80% into the low burned area class,
respectively. The Fire_cci validation dataset is composed of 130 Landsat
pairs from 2008 (see Fig. 2) covering 1.58 million of km2 from which
31,578 km2 correspond to burned area. Burned areas include: Rainfed

cropland (10.10%), mixed forest closed to open> 15% (10.63%),
broad-leaved deciduous open 15–40% (5.45%), need-leaved evergreen
closed to open> 15% (8.54%), shrubland (14.42%), grassland
(16.16%), sparse vegetation (tree, shrub, herbaceous cover> 15%),
and vegetation regularly flooded (5.13%).

2.2. MODIS data

The main source of information is the MCD43A4 (v6). This product
was developed using Terra and Aqua observations to correct for the
BRDF effect (Schaaf et al., 2002). The MCD43A4 has 500m spatial
resolution and includes the spectral information of seven different
bands, Red (B1), Near-infrared (NIR, B2), Blue (B3), Green (B4) and
three bands in the shortwave infrared region (SWIR, B5-B7). In addition
to these bands, several spectral indices were computed to enhance the
BA discrimination (Table 1).

2.3. Ancillary data

In addition to the information provided by the spectral bands and
indices, information coming from hotspots (HS) was included. Thermal
anomalies information has been extensively used for burned area de-
tection because it provides higher contrast between burned and un-
burned pixels in comparison with other wavelength regions (Alonso-
Canas and Chuvieco, 2015; Giglio et al., 2013). Hence, the MODIS
MCD14ML (Version 5.1) product, which provides daily global coverage
of hotspot with 1 km spatial resolution, was used. Using this data a
distance matrix between each pixel to the closest HS was performed and
included as an attribute.

Additionally, we included auxiliary data to adapt the model to re-
gional environmental conditions of burned areas. In this case, we used
the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010)
(Danielson and Gesch, 2011) from which the slope and aspect were
computed. This information is useful for BA classification since it is
related to the fire behaviour and the physical properties of the land.
Land cover (LC) information also provides valuable data for BA map-
ping as it allows for characterizing the fire signal before and after the
fire (Moreira et al., 2009) therefore, Land Cover CCI product was used.

Another important factor for BA mapping is related to the ecosystem
variation. The condition of burned and the carbon footprint prevalence
in the post-fire image is dependent on climate and vegetation type. In
order to characterize this factor, we used the Olson biomes (Olson et al.,
2001) which divide the world into 16 regions considering their geology,
climate, and evolutionary history. Finally, we included the continental
regions defined in the Global Fire Emission Database (GFED) that have
been developed taking into account how the fire behaves (Giglio et al.,
2013) and hence it can help to characterize the burned signal.

2.4. Training database

The database used for this study comprised the spectral and ancil-
lary information previously described for two categories, namely
burned and unburned pixels. Regarding the burned area, the database
also included information of the burned proportion of the pixel and the
date of the burned. The proportion of burned was extracted by over-
lapping the Landsat perimeters to the MODIS images. The HS was also
used to assign the day of burned to each perimeter from the closest HS.

Our approach to map burned area was also based on a multi-
temporal analysis, therefore, we extracted the MODIS reflectance va-
lues for each band from an image acquired prior to the fire (t1) and
another one after the fire (t2). For burned pixels, we constrained the
search of post-fire images to a period between 2 and 12 days after the
day of burned to avoid smoke plumes and clouds. Pixels with no valid
observations in this period were rejected from the database. On the
other hand, the search of pre-fire information was also constrained to a
period of 1 to 10 days. For non-burned pixels, the t1 was set to the

R. Ramo et al. Int J Appl  Earth Obs Geoinformation 73 (2018) 39–51

40

http://www.esa-fire-cci.org/


prefire Landsat acquisition whereas t2 was set to the median day be-
tween the pre and postfire Landsat images. We also included the 10
days threshold in the case there are not available good observations.

After pixel reflectance was extracted, the spectral indices and their
differences were calculated for t1 and t2. Subsequently the information
contained by the ancillary data (i.e. biome or elevation) was included
into the database. Finally, the distance, in meters, between each pixel to

the closest HS occurring between the pre- and post-fire images, were
included.

To carry out this process more than 15,000 MODIS images were
needed because a Landsat frame can be located in several MODIS tiles.
Likewise, it also needed to cover the whole Landsat time gap including
the 10 days threshold. In order to reduce the potential noise caused by
anomalies in the reflectance or changes produced by an incorrect day of

Fig. 1. Methodology flowchart.

Fig. 2. Distribution of training areas.
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burned, we introduced three different filters:

- All burned pixels that show an increase of NIR between t1 and t2
were removed from the database. Since there is a decay in the re-
flectance in this region short after the fire (Alonso-Canas and
Chuvieco, 2015), pixels showing NIRt2>NIRt1 were considered as
false detections and therefore, removed from the database.

- Unburned pixels having an HS in a 3,000m radius in the previous 90
days of the Landsat prefire image were removed to avoid possible
noise coming from previously burned pixels.

- Pixels burned less than 80% were removed from the analysis in
order to avoid mixed signals. Only those that are clearly burned
have been included because the classification of burned pixels with
mixed spectral signals is very difficult to implement at global scale.

The final database used in this work consisted of 48,464 burned and
6,293,106 unburned instances (pixels) with 52 attributes including the
MODIS bands (14 features), the auxiliary variables (7 features), the
spectral indices (21 features), and the difference between pre and post-
fire indices (10 features). In this frame, a dataset is considered un-
balanced when the distribution of the categories is not equal. In this
case burned class is highly unbalanced (< 1%) and it produce a bias
towards the majority class.

2.5. Attribute selection

Feature selection (FS) aims at reducing a dataset dimensionality by
removing irrelevant and redundant attributes while keeping important
ones. FS brings several benefits when applying data mining. First, it
reduces the risk of overfitting, i.e. lack of model generalization, since
models are generally simpler. Second, improves processing time al-
lowing us to explore a larger number of machine learning algorithms.
Finally, FS can avoid the collection or calculation of unnecessary at-
tributes for the models used.

The first method used was based on a RF (Breiman, 2001) approach.

RF is an iterative algorithm that creates a group of decision trees; the
final result of the classification is based on the results of the whole
group of trees. It has two parameters: N, which is the number of deci-
sion trees that contain the forest and M, the number of attributes used
to perform a decision tree. Although generally applied for classification
and regression problems, it can also be used for reducing the di-
mensionality of datasets. In particular, we used the Boruta im-
plementation of RF (Kursa et al., 2010). Boruta uses RF to estimate the
importance of each attribute taking into account that the low correla-
tion between trees is not completely true (Kursa et al., 2010). The
Boruta algorithm selects those attributes which have higher importance
than the median.

The second method used was based on a logistic regression, which
has been previously used to estimate the contribution of the ex-
planatory variables in fire occurrence models (Martinez-Fernandez
et al., 2013; Nieto et al., 2012), and to select attributes in a fire ignition
probability model (Jurdao et al., 2012). The algorithm train several
models making a different combination of attributes and evaluating
their performance using a cross-validation approach. The final selection
is provided by the model which shows less error rate.

The last method used for feature selection is the Entropy-based
filter. Entropy is defined as a measure of the level of impurity of an
attribute (Mitchell, 1997). The entropy-based filter is a ranking FS al-
gorithm where each attribute can be measured independently to de-
termine their usefulness for discriminating burned and unburned pixels.
The algorithm returns a ranking with a score of importance for each
attribute selecting those that have more importance than the median.

Our final attribute selection was based on merging the results of the
three methods applied. Thus, only those attributes that were selected by
all three approaches were kept for training the algorithms.

2.6. Machine learning algorithms

Burned area classification was based on four common machine
learning algorithms that have shown good performance in classifying

Table 1
Indices performed to training database elaboration.

Index Formula Parameters Reference BA application

NIR Diference = −NIR ρ ρDif NIRt NIRt1 2 ρNIRt1=Pre fire NIR band
ρNIRt2=Post fire NIR band

(Alonso-Canas and
Chuvieco, 2015)

(Alonso-Canas and Chuvieco, 2015;
Giglio et al., 2013)

Soil Adjusted Vegetation Index
(SAVI)

= +−
+ +

SAVI L(1 )ρNIR ρRed
ρNIR ρRed( L)

ρNIR=NIR band
ρRed=Red band
L was set to 0.5

(Huete, 1988) (Chuvieco et al., 2002; Garcia and
Chuvieco, 2004)

Global Environmental
Monitoring Index (GEMI)

= − − −
−

GEMI η η(1 0.25 ) ρRed
ρR

( 0.125)
1

= − + +
+ +

η ρNIR ρRed ρNIR ρRed
ρRed ρNIR

2( 2 2) 1.5 0.5
0.5

Same meaning than SAVI (Pinty and
Verstraete, 1992)

(Alonso-Canas and Chuvieco, 2015;
Smith et al., 2007)

Normalized Burn Ratio (NBR) = −
+

NBR ρNIR ρSWIR
ρNIR ρSWIR

ρNIR = NIR band
ρSWIR=SWIR band (band 7)

(Garcia and Caselles,
1991)

(Brewer et al., 2005; Loboda et al.,
2007; Mallinis and Koutsias, 2012;
Rogan and Franklin, 2001)

Normalized Difference Water
Index (NDWI)

= −
+

NDWI ρSWIR ρNIR
ρNIR ρSWIR

ρNIR = NIR band
ρSWIR=SWIR band (For MODIS band 5
and band 6)

(Gao, 1996) (Chuvieco et al., 2006; Stroppiana
et al., 2003)

Visible Atmospherically
Resistant Index (VARI)

= −
+ −

VARI ρGreen ρRed
ρGreen ρRed ρBlue

ρGreen=Green band
ρBlue= Blue band
ρRed= Red band

(Gitelson et al.,
2002)

(Schneider et al., 2008)

Enhanced Vegetation Index
(EVI)

= −
+ ∙ − ∙ +

EVI ρNIR ρRed
ρNIR ρRed ρBlue6 7.5 1

ρRed= Red band
ρNIR = NIR band
ρBlue = Blue band

(Huete et al., 2002) (Jin et al., 2012; Quintano et al., 2011;
Wittenberg et al., 2007)

Mid-Infrared Burnt Index
(MIRBI)

= ∙ − ∙ +MIRBI ρ S ρ10 9.8 2SWIR SWIR3 2 ρSWIR2= SWIR band (MODIS band 6)
ρSWIR3= SWIR band
(MODIS Band 7)

(Trigg and Flasse,
2001)

(Bastarrika et al., 2014; Smith et al.,
2007)

Shortwave Angle Slope Index
(SASI) = ⎡

⎣
⎤
⎦

− + −β cosSWIR
a b c

a b1
1 2 2 2

2 * *

= −Slope SWIR2 NIR
=SASI β Slope*SWIR1

a, b and c are the Euclidean distances
between NIR and SWIR (MODIS bands
5 and 6)

(Palacios-Orueta
et al., 2006)

Not yet tested on burned area.

Angle at NIR (ANIR)
= ⎡

⎣⎢
⎤
⎦⎥

+ −ANIR α( )SWIR
a b c

a b

2 2 2

2 * *

Same meaning as SASI (Khanna et al., 2007) Not yet tested on burned area.
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remotely sensed data. Machine learning algorithms do not make any
assumptions about the distribution of the data and they have shown
better performance in classifying remotely sensed data than traditional
parametric approaches (Deng et al., 2016; García et al., 2017; Naidoo
et al., 2012).

The first algorithm tested was a random forest (RF). This is one of
the most popular classifiers used in remote sensing nowadays (Belgiu
and Drăguţ, 2016). Since RF is an ensemble method, it is possible to
estimate the probability of a class based on the proportion of trees that
categorize a pixel into a class. Despite its popularity in remote sensing
studies, its use in forest fire applications has been limited to fire oc-
currence prediction (Oliveira et al., 2012) and fire regime character-
ization (Aldersley et al., 2011; Archibald et al., 2009) but its application
for burned area classification is limited (Ramo and Chuvieco, 2017).

The second method applied was a support vector machine (SVM),
which is a supervised machine learning algorithm developed by Vapnik
(2013) based on the statistical learning theory. It attempts to fit an
optimal separating hyperplane to the training samples in a multi-
dimensional feature space using the idea of structural risk minimiza-
tion. In this study, the kernel used was a radial basis function (RBF),
which has been widely applied in remote sensing applications (Garcia
et al., 2011; García et al., 2017; Waske and Benediktsson, 2007) and
also for burned area classification (Dragozi et al., 2014; Pereira et al.,
2017). The performance of SVM using a RBF is controlled by two
parameters, g and C. The parameter g determines the influence of a
single feature on the algorithm and C represents the penalty and con-
trols the trade-off between errors and model complexity.

The third method used was based on Artificial Neural Networks
(ANN) (Picton, 2000), which consist of a number of basic units or nodes
(neurons) distributed in different layers including an input, an output
and one or several hidden layers, which determine the architecture of
the ANN. The neurons in the input layer receive the attributes of the
instances and the neurons of the output layer the class to which each
pixel is assigned. The NN algorithm needs to specify two hyper-para-
meters: size and decay. Size is the number of units in the hidden layer
and is related to the number of connections between neurons, and
decay is the regularization parameter used to avoid over-fitting. ANNs
have been widely used for remote sensing applications but their use for
BA has been limited (Al-Rawi et al., 2001; Gómez and Martín, 2011).
The wide variety of uses of NN and the ability to handle large dataset
make this algorithm a good candidate for classifying burned area (Chu
and Guo, 2013; Petropoulos et al., 2010) at global scale.

The last algorithm applied was the C5.0 algorithm (Quinlan, 1993),
which uses the gain ratio criterion (Mitchell, 1997) to select the most
relevant attribute at every node of the tree during its construction
(winnow parameter). The other user-defined parameter is the trials,
which enables a boosting procedure where several trees are generated.
This classification approach let the model estimate the probability of
burned instead of a direct class assignation. The C 5.0 algorithm has
been widely applied for remote sensing applications (Igor Klein et al.,
2012; Lawrence and Moran, 2015) but has been barely applied for BA
detection.

2.7. Model training and algorithm validation

The performance of the different machine learning algorithms

proposed depends on the values of the different parameters required for
each method. In order to find the best combination of parameters to
ensure their highest performance and avoid overfitting issues, we
trained the algorithms following a k-fold cross validation (CV) ap-
proach. First, the dataset was divided into training (80%) and testing
(20%) groups following a stratified random sample, where the strata
were land cover and burned area. Parameter tuning was carried out
using the training data (80%), leaving out the rest of the data to vali-
date the models (covered in the next section). The k-fold approach
(Bengio and Grandvalet, 2004) implies dividing the training database
into k folds, 10 in our study, and use k-1 parts of the data to train the
model and use the left out part to evaluate it. After that, a new model is
trained permuting the test and the training data parts. Each trained
model is assessed using a standard parameter of accuracy allowing the
detection of possible overfitting in the case that the results between the
ten models calibrated from the cross-validation are significantly dif-
ferent. We used the Area Under the Curve (AUC) (López et al., 2014) to
assess the accuracy of the models for each parameter combination.

This process is repeated for each algorithm and parameter combi-
nation (Table 2) to find the one that better detects burned pixels.

Each parameter combination has an associated AUC, and the final
model will be the one with higher AUC value. The main advantage of
this approach is it can also be applied when the database is unbalanced
(López et al., 2014). Finally, we calibrated the model using the entire
training dataset with the best parameter combination, and their per-
formance was evaluated using confusion matrices based on the re-
maining 20% of the database that had not been used in the training
process. The confusion matrices allowed for the construction of a set of
statistics to assess the algorithms quality, namely omission and com-
mission errors and relative bias as an indicator of the error balance
(Padilla et al., 2015).

2.8. Global burned area mapping

We attempted to map burned areas globally for 2008. To do so, pairs
of MODIS images separated by a 3 days gap were selected. The first
image corresponding to the pre-fire situation corresponded to the DOY
(day of the year) 1 and the post-fire image to DOY 3. After deriving the
attributes selected by our FS approach, the 4 machine learning algo-
rithms were applied. Subsequently, the temporal window embracing
the pre- and post-fire images was rolled one day and the classification
algorithms were applied to the new dataset. This process was repeated
until the end of the year. When the process was over, all binary BA
images were merged in a yearly composite. A modal 3× 3 filter was
applied to give more spatial consistency removing boundary errors and
to avoid the characteristic salt and pepper effect of pixel-based classi-
fiers. This provides a smoother image while reducing omission and
commission errors (Makido et al., 2007; Yang and Liu, 2005).

RF and C5.0 have the possibility of estimating the probability of the
class assigned to the pixel, i.e. the probability of burned. Since the
database was highly unbalanced, this allowed us to investigate the
minimum probability associated to each pixel to classify it as burned.
Thus, a sensitivity analysis was performed to test the effect of burned
probability of the pixel, from 10% to 90%, to commission, omission and
error balance.

2.9. Comparison with existing BA information

In addition to the validation metrics described above, the accuracy
of the models was evaluated by comparing the annual composites with
the official fire database of three different areas (Fig. 3). These areas are
representative samples of three different fire regimes, namely boreal,
tropical and temperate.

The tropical fire regime was represented by our Australian test site,
which covered 1,192,585 km2. The North Australian Fire Information
System (www.firenorth.org.au/nafi2/, last accessed April 2018)

Table 2
Parameter grid used for tuning each different classification algorithm.

Algorithm Parameter one Parameter two

Random Forest (12 models) N: 600, 1000, 1200 M: 2, 4, 6, 8
Support Vector Machine (6

models)
Sigma: 0.01, 0.1 C: 10, 50, 100

C5 (8 models) Winnow: True, False Trials: 20, 30, 50, 100
Neural Net (15 models) Size: 1, 3, 5, 10, 15 Decay: 0.1, 0.5, 1
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developed by the Darwin Center for bushfires research, which provides
burned area maps generated through multitemporal analysis of 250m
MODIS images using segmentation and visual interpretation, was used
as a reference.

The temperate fire regime was represented by our California site.
Burned perimeters were obtained from the Fire and Resource
Assessment Program (FRAP) webpage (www.frap.fire.ca.gov, last ac-
cessed April 2018), which makes available the fire perimeters of the
entire state of California (409,719 km2). These perimeters are produced
by several entities like CAL FIRE/FRAP, the USDA Forest Service,
Region 5 Remote Sensing Lab, the Bureau of Land Management, and the
National Park Service.

For the Boreal fire regime, a region of 926,167 km2 was selected
covering the provinces of Manitoba and Saskatchewan in the central
part of Canada. Burned perimeters were downloaded from the Canadian
Wildland Fire Information System (www.cwfis.cfs.nrcan.gc.ca/ha/
nfdb/, last accessed April 2018). This fire database has been pre-
viously used for fire regime characterization in different studies (Burton
et al., 2009; Parisien et al., 2006).

With regards Africa, it presents the highest fire incidence in terms of
number of fires and amount of burned area of the world (Giglio et al.,
2013). Therefore, it is very important to develop an algorithm that
performs well over this continent. Nevertheless, there is a lack of va-
lidation data to test the performance of the models in this region.
Hence, we compared the results of the classifications with the MCD64
product, which currently is the most used source of BA information by
climate and atmospheric modellers (Giglio et al., 2013). The models
were evaluated in three different areas of Africa with different fire re-
gimes and vegetation types. The first area corresponds to Angola
(MODIS tile h19v09), which represents tropical and Subtropical Moist
Broadleaf Forests with a very high fire frequency. The other two areas
are located in Sudan (h20v07) and South Africa (h20v11).

The total area covered by these six sites is 6,128,741 km2 and the
majority land cover for this areas are: sparse vegetation (29%), crop-
lands (15%), shrubland (14%), tree cover (13%), grassland (12%),
seasonality flooded areas (10%) and mixed cropland with natural ve-
getation (6%).

The annual burned area composites were compared using cross ta-
bulation analysis with the fire datasets. In addition, we extended this
analysis to the MCD64 (v6) and MCD45 (v5.1) products to compare the
performance of our algorithms with two standard burned area products

except for Africa, where MCD64 was used as a reference. Although this
comparison cannot be considered a proper validation exercise, it can
provide a first assessment of the methodology. Through the confusion
matrix generated in the cross-tabulation analysis, the omission, com-
mission and relative bias were obtained.

3. Results

3.1. Attribute selection

Fig. 4 shows the results of the three FS methods applied. The final
attribute selection is composed by 8 different features. Four of the se-
lected variables are based on the difference between the post and the
pre-fire signals; one corresponds to the pre-fire situation, one to the
post-fire scenario, one is based on distance to hotspots and one is a
categorical variable related to the fire behaviour, the GFED region.

RF and the entropy-based filter selected 30 and 27 attributes re-
spectively, whereas the logistic regression was more restrictive se-
lecting only 12 features out of 52 available. It can be seen that different
approaches result in different feature importance, therefore, by merging
the three approaches we reduce the influence of the FS method used
ensuring that only the most important variables are used.

3.2. Model training

The impact of the values of the parameters of each algorithm in the
accuracy of the models is shown in Fig. 5.

The NN algorithm was the most affected by the parameter variation,
although the change in AUC was approximately 6%, showing that the
model accuracy did not change much with the parameters. The number
of units in the hidden layer (size) had a positive impact on the accuracy
and a medium value of weight variation (decay) released a better error
rate. The final model had a size 15 (hidden units) and a decay of 0.5.

On the other hand, the C5.0 algorithm showed little influence of the
parameters on its accuracy. The best results were achieved when the
winnow parameter was set to false, and the trials to one hundred. The
RF models also show similar trends as C5.0. There was a negligible
variation in the AUC values between all models (less than 1%) showing
better results when the number of attributes (M parameter) was higher.
The number of trees did not manifest a significant effect on the accu-
racy. The final model was trained using 600 trees and six attributes as n

Fig. 3. Location of the test areas.
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and m parameters respectively.
For SVM, the width of the kernel (Sigma) had a larger influence on

the model performance than the penalty parameter, although in both
cases an increase in the parameters yielded a higher accuracy. Yet, the
total accuracy difference represented less than 5%. The final values of
the parameters were Sigma=0.01 and C=100.

3.3. Algorithm evaluation

Table 3 shows the omission, commission and relative bias computed
based on the remaining 20% of the training dataset that was used to
carry out a cross-tabulation:

The best accuracy was obtained by the C5.0 algorithm followed by
SVM and NNs. RF showed the highest commission error and the lowest

Fig. 4. Attribute selection results represented in a Venn-diagram. The intersection of the three circles represents the common variables selected by the three methods.

Fig. 5. Variation in AUC in the parameter selection between Neural Net (Top-left), C5 (Top-right), RF (Down-left) and SVM (Down-right).
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omission. In other words, whereas SVM, C5 and NN did not detect
approximately a 30% of the burned area, RF had many false positives.

3.4. Comparison with existing BA information

The comparison of the outputs of each machine learning algorithm
with the official fire database is presented in Table 4. For RF and C5.0
the best results extracted from the sensibility analysis of the probability
of burned are shown.

Taking into account the three areas globally, the best results were
obtained by C5. This model showed a good tradeoff between commis-
sion and omission, with better error rates than MCD45 and comparable
to the MCD64 product. In the same line, RF also reached comparable
results with C5.0 and MCD64. Despite RF presented higher commission,
it showed a better balance between commission and omission errors.
NN and SVM showed the worse performance with errors reaching 90%
in the case of SVM.

The results of the sensitivity analysis of the probability of burned
pixels on RF and C5.0 is also presented in Fig. 6.

For RF, the probability of burned threshold that minimizes the error
rates is 40%. This threshold is the same for the three regions, except for
California where 30% obtained slightly better results. Nevertheless, the
40% threshold still yielded better results than the MCD45 product. On
the other hand, the sensitivity analysis performed for C5.0 did not re-
veal a clear trend showing a large variation over the range of prob-
ability values used.

Table 5 shows the results obtained by comparing the outputs of our
algorithms as well as the MDC45 to the MDC64 per region, globally and
for Africa.

The results reveal that the MCD45 obtained the closest agreement
with the MCD64 product, followed by RF, whereas very poor results
were achieved by NN and SVM. Among the analyzed models, RF shows
the best balance between errors. Similar trends were observed focusing

on the African test sites. SVM and NN presented very high omission
errors reaching hundred percent in some areas like Sudan. Regarding
the sensitivity analysis of the burned probability threshold, results are
presented in Fig. 7. The analysis reveals that RF presents a stable a
cutoff probability around 30–40% for all sites. On the other hand the
cut-off probability threshold for C5.0 varies widely, obtaining better
results for lower probabilities.

4. Discussion

4.1. Feature selection

Feature selection is an important part of data mining methodology
reducing the dimensionality of the data and removing the possible noise
of some of the attributes. Merging the results of the three FS methods
used, eight attributes were finally selected. Two of them, the hot spot
distance and the NIR difference, are the most important ones followed
by two widely used burned area indices like NBR and MIRBI. Similarly,
the NDWI5 also showed to be important for BA discrimination. The
indices selected showed that those based on SWIR spectral region
provides the best discrimination capability for classifying burned areas,
which agrees with previous studies (Giglio et al., 2013; Roy et al.,
2005). The only qualitative factor common to the three filter is the
GFED regions, which facilitates the regional adaptation of the algorithm
to the different burned conditions.

The RF filter gave more importance to qualitative factors (land
cover, GFED regions, and biomes) and it did not discard any of them.
This algorithm also gave more importance to factors indirectly related
to fires, like the elevation, slope, and aspect. This information is useful
to discard fires where the probability of burned is very low, like non-
combustible areas or very high places. This is because of how RF al-
gorithm makes the feature selection evaluating at the same time a
group of attributes, making the process biased to those features that are
indirectly related with burned (Strobl et al., 2007).

The entropy-based filter gave more importance to attributes related
to the reflectance, like the individual bands or the vegetation and
burned indices. In this case, the filter analyzes the contribution of each
attribute individually, and hence none indirectly related variables, like
elevation, are considered important. On the other hand, qualitative
variables like land cover have been selected by this filter because there
are some classes where fire events are improbable (lakes, dessert, etc.).

Logistic regression provides a fast method to select attributes in an

Table 3
Validation results.

Algorithm Commission Omission Rel. Bias

Random Forest 0.56 0.11 1.01
SVM 0.17 0.36 −0.23
C5.0 0.18 0.32 −0.17
Neural Net 0.21 0.39 −0.23

Table 4
Relative bias, Omission and commission errors for Canada, California, and Australia. For C5.0 and RF the best results of the sensitivity analysis of the probability of
burned were provided.

Total C5.0 RF NN SVM MCD45 MCD64

Commission 0.24 0.27 0.15 0.71 0.11 0.15
Omission 0.24 0.21 0.59 0.90 0.40 0.29
Relative Bias 0.00 0.08 −0.52 −0.64 −0.32 −0.16

California C5.0 (prob= 10%) RF (prob= 30%) NN SVM MCD45 MCD64

Commission 0.11 0.38 1 0 0.32 0.13
Omission 0.71 0.24 1 0.98 0.67 0.34
Relative Bias −0.68 0.22 −0.99 −0.98 −0.52 −0.24

Canada C5.0 (prob= 30%) RF (prob= 40%) NN SVM MCD45 MCD64

Commission 0.27 0.30 0.16 0.13 0.21 0.25
Omission 0.28 0.32 0.49 0.99 0.63 0.33
Relative Bias −0.01 −0.03 −0.40 −0.99 −0.53 −0.11

Australia C5.0 (prob= 20%) RF (prob= 40%) NN SVM MCD45 MCD64

Commission 0.24 0.27 0.15 0.72 0.11 0.15
Omission 0.23 0.20 0.59 0.89 0.39 0.29
Relative Bias 0.01 0.09 −0.52 −0.62 −0.31 −0.17
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iterative model, where the variables are rejected or included based on
the accuracy of a set of models trained using a cross-validation ap-
proach. Logistic regression was the most restrictive method, selecting
12 variables from the initial 52, including the GFED regions, four
multitemporal variables and the distance matrix of the active fires. This
filter showed the same trend as entropy, which selects attributes di-
rectly related to fire signal, rejecting those associated with the topo-
graphy or other environmental factors.

The combination of the three FS methods made the selection of the
attributes finally used more objective than ranking methods, for which
the cutoff threshold usually is user-defined, thus improving the classi-
fication results (Uncu and Türkşen, 2007). Moreover, merging the three
methods reduced any potential bias a single method can introduce in
the feature selection. This approach is relatively novel in remote sen-
sing and can be especially interesting to apply to high dimensional data
such as hyperspectral images.

4.2. Model training

The training dataset was composed of 6.3 million of pixels which

makes it considerably larger than most of the databases used in pre-
vious studies in this field (Gómez and Martín, 2011; Özbayoğlu and
Bozer, 2012; Pelletier et al., 2016). This resulted in higher computa-
tional cost for training the models. In addition, only 0.76% of the in-
stances represented burned areas, i.e. our database was highly un-
balanced. This is an important problem because most of the machine
learning algorithms assume that the clases are equal distributed, spe-
cially when the majority class highly exceeded in number to the min-
ority. Our results showed that RF has a better ability to deal with un-
balanced datasets. This is very important for BA mapping globally since
BA is a rare event compared to unburned area. Some authors proposed
to use disproportionate sampling approach databases to compensate for
the shortcomings of random sampling for validating rare events by
increasing the proportion of samples collected within the rare class,
thus oversampling areas known to be experiencing high rates of fire
events via domain knowledge (Farquad and Bose, 2012).

To find the best parameter combination a 10-fold CV approach was
used because it results in lower variance than a single hold-out set es-
timator, which can be very important if the amount of data available is
highly unbalanced as in our case (López et al., 2014). The 10-fold CV

Fig. 6. Sensibility analysis of the probability of burned.

Table 5
Relative bias, Omission and commission errors for African test sites. First lines show the error rates performed by the sum of the 6 confusion matrices. For C5.0 and RF
the best results of probability analysis were used.

Global C5 RF NN SVM MCD45

Commission 0.44 0.42 0.05 0.17 0.28
Omission 0.51 0.43 0.75 0.81 0.43
Relative Bias −0.13 −0.01 1.72 1.70 −0.21

Africa C5 RF NN SVM MCD45

Commission 0.49 0.43 0.01 0.07 0.11
Omission 0.57 0.40 0.78 0.79 0.40
Relative Bias −0.16 0.05 2.12 2.12 −0.32

Angola C5 (prob= 10%) RF (prob= 30%) NN SVM MCD45

Commission 0.54 0.52 0.06 0.05 0.30
Omission 0.49 0.56 0.96 0.96 0.41
Relative Bias 0.10 −0.08 −0.96 −0.96 −0.15

South Africa C5 (prob= 20%) RF (prob= 40%) NN SVM MCD45

Commission 0.41 0.46 0.13 0.03 0.30
Omission 0.45 0.33 0.87 0.94 0.58
Relative Bias −0.07 0.23 −0.85 −0.94 −0.40

Sudan C5 (prob= 10%) RF (prob= 30%) NN SVM MCD45

Commission 0.08 0.37 0.00 0.04 0.34
Omission 0.89 0.31 1.00 0.97 0.34
Relative Bias −0.88 0.10 −1.00 −0.97 0.01
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validation reduces this variance by averaging over ten different parti-
tions, making the performance estimation less sensitive to the splitting
of the data, allowing having a reasonable idea of the model accuracy
while avoiding overfitting.

In this study, we trained 41 different models using a 10-CV (410
models in total) to test the sensitivity of each classification algorithm to
their parameters. In general, all of them showed low variation (1–6%)
with respect to the AUC measure, indicating that for BA classification
problems the algorithms were robust to the variation of the parameters.
RF showed the least sensitivity to the parameters with a variation in the
AUC less than 1%. RF reached almost the same results using only an M
value equals to two, i.e. the data partition for classifying burned areas
only needed two variables for each tree. This means that the simplest
model can obtain comparable results to more complex models. The
same trend is observed with the C5.0 algorithm, this effect is related to
how boosting decision trees partition the space, making them low
sensitive to parameter variations.

The AUC variations due to the change in NN parameters is relatively
small (6%), therefore it is desirable to obtain models without a high
number of connections among neurons and medium values of decay to
avoid overfitting (De Villiers and Barnard, 1993; Karsoliya, 2012). SVM
showed little influence of the parameters in the results but it was
greatly affected by the size of the training database, resulting in the
most computationally expensive of the algorithms. One of the most
important issues in training an SVM model is the computation of the
distance between all training points, which makes the computational
cost very high in comparison with the rest of the algorithms. Thus,
whereas the training of RF and C5 took less than 5 h, it took 18 h for the
NN and 5 days for the SVM. Training time of NN and particularly SVM
could be significantly reduced by performing an instance selection in
addition to the FS (Liu and Motoda, 2013).

4.3. Model evaluation

The first evaluation of the models over the remaining 20% of the
training dataset revealed very promising results, with omission and
commission errors less than 20% and 35%, respectively. Nevertheless,
these error rates increased significantly when the results of the classi-
fication were compared with the reference datasets. Thus, the SVM
model showed very low agreement with the official fire databases or
with MCD64. The best results were obtained in Australia where the
omission and commission errors reached 89% and 72%, respectively.
For the remaining five areas the results show that the model had
omission values close to hundred percent. The low generalization
ability of the SVM can be related to the sample size used for training
(Chen and Lin, 2006). A significant reduction of the database driven by
an instance selection can aid to enhance the accuracy of the model
(Waske et al., 2010) reducing at the same time the computational cost.
The performance of SVM is also affected by other factors like the bal-
ance of the training dataset (Eitrich and Lang, 2006; Farquad and Bose,

2012). An unbalanced dataset results in a hyperplane that tends to
classify the majority class which is less important than the burned class.
To solve this problem instance selection methods like undersampling or
oversampling (Farquad and Bose, 2012) could reduce the unbalance of
the database improving the estimation of the minority class. Reducing
the size of the database by applying instance selection would also make
more feasible the estimation of the probability of burned (Tao et al.,
2005) instead of the use of a hard classification, which can help to
reduce the high omission error (Ramo and Chuvieco, 2017) observed in
SVM.

The results obtained by the NN model are slightly better than SVM,
improving the error rates in Australia and Canada. For the rest of the
areas, the error rates were very high, with omission errors close to
100%. The lack of generalization of the model can be explained by the
unbalance of the dataset which resulted in a complex model with a very
high number of units in the hidden layers. The unbalance of the training
dataset has the same effect as for SVM in the classification, favoring the
majority class (unburned), thus increasing the omission errors. Despite
two strategies were used to avoid overfitting of the NN, namely the 10-
fold cross-validation and the search of optimum parameters, they were
not enough to avoid the problems of using an unbalanced database.
Recent developments in the field of NNs, particularly the use of newer
algorithms like convolutional NN, which is more robust to overfitting
(Cheng et al., 2016), could improve our results.

The algorithms based on decision trees showed a different trend to
NN and SVM. These algorithms present the following advantages: the
option to estimate the probability of burned, the easy parameterization
of these models, the possibility to extract the rules that compose the
trees, the ability to cope with the unbalanced, and finally, they can deal
with big training database. Thus, the C5.0 algorithm showed a good
agreement with the official fire database, providing error rates com-
parable with the MCD64 and MCD45 products. For the test sites located
in Africa, the results were also acceptable, obtaining a better balance
between omission and commission errors than the MCD45 product,
although the commission error was slightly higher. The main problem
in the application of this model at global scale is the variability of the
probability threshold of burned areas. Figs. 6 and 7 illustrate that the
cutoff probability varied between 10–30%, but it did not provide a clear
trend to apply at global. A different threshold should be used depending
on the biome or region to reduce the error rates. The C5.0 algorithm
showed better performance using an unbalanced dataset than SVM and
NN but furthermore, it is also possible to apply a cost matrix to take into
account the misclassification of the minority class, making it more ro-
bust to the unbalance of the training database (Ling and Sheng, 2008).

RF showed the same trend as C5.0 although with some advantages.
The probability of burned distribution has a clear convergence point
around the 30–40% (see Figs. 6 and 7), therefore it is not necessary a
regional adaptation of the threshold. Setting the threshold to 40% the
global commission error decreased only by 2% (0.40) and the omission
increased by 2% (0.45). This small variation in the accuracy implies

Fig. 7. Sensibility analysis of the probability of burned in Africa.
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that only areas with low fire occurrence are affected by the threshold.
RF has its own mechanisms to deal with unbalanced datasets, such

as the stratification of the training in the tree process creation setting
the amount of burned and unburned pixels used to induce the tree. This
stratification produces a better representation of the minority class in
the forest. Furthermore, it is possible to train random forest using
weights to avoid the misclassifications of the minority class. This flex-
ibility of RF along with the easy interpretation of their parameters
makes this algorithm more suited to classify burned area at global scale.

Despite of our efforts to prevent some non-desirable effects such as
the lack of generalization, some difficulties still remained. One of the
most important factors is the training database. Regardless of the great
amount of data and the wide spectrum of burned conditions sampled,
the impact of unbalanced datasets on the SVM and NN algorithms
limited their performance. Procedures such as oversampling in the
minority class can help to reduce the bias towards the majority class
(C5.0, SVM, NN); nevertheless, each algorithm have their own re-
quirements that have to be considered. Thus, SVM works better if the
amount of training data is not big and balanced (Garcia et al., 2011;
García et al., 2017), in this case undersampling is also a good choice
whereas NN performs better if the number of instances in the training
database is high (Maggiori et al., 2017). On the other hand, tree based
algorithms are less affected by this issue and yield error rates com-
parable to those of the MCD45 and MCD64 products. Further efforts
need to be done to explore how the training database affects to the
performance of each algorithm.

5. Conclusions

This paper evaluated the ability of RF, C5.0, SVM and NN to map
burned area in different ecosystems, continents and fire regime condi-
tions, following a data mining approach, which included attribute and
parameter selection. Attribute selection was based on merging three
different methods, which ensured the importance of the attributes se-
lected avoiding any possible bias of the method used. The most im-
portant attributes were related to the reflectance of burned surfaces like
the temporal difference of burned area or vegetation indices (MIRBI,
NBR, GEMI), given the contrast between burned and unburned areas.
Another important factor is related to the detection of active fires that
acts as a core to reduce the range of search of the burned pixels. The
GFED regions, which are related to the fire behaviour, were also im-
portant to map burned areas globally since it enabled accounting for
regional differences in fire behavior.

A critical aspect in the performance of the algorithms was the un-
balance of the training database since burned area is a rare event re-
presenting less than 1% of the data. The application of standard pro-
cedures to avoid overfitting such as k-fold cross validation could not
avoid the overfitting of all the machine learning methods used. NN and
SVM were more affected than C5.0 or RF by the unbalanced database
used resulting in complex structures and models that had low gen-
eralization ability. Tree-based algorithms showed better performance
given their mechanism to deal with large and unbalanced databases as
well as their ability to provide the probability of burned. The prob-
abilities extracted from RF were more consistent across regions al-
lowing using a single threshold at global scale. Among the algorithms
tested, RF offered the best performance yielding comparable estimates
to the MCD64 product in some regions, while for others offered higher
commission error rate but with better error balance.

In this context, the development of data mining and machine
learning methodologies are very challenging to improve the traditional
approaches used for burned area detection. Further research will
evaluate the influence of the training dataset over the different machine
learning algorithms to compensate the effect of unbalanced training
data and overfitting issues.
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