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Abstract—The design of a Compact Dual-band Equatorial
helix antenna using Computational Electromagnetic Methods
(CEM) together with multi-objective optimization algorithms is
presented. These antennas are used for Telemetry, Tracking,
and Control (TTC) of satellites from the terrain base station.
In order to optimize the parameters an antenna, a simulation-
optimization process is shown along a real case study. The
parameters of the antenna that fulfills the radiation patterns
needed for the communication are obtained using a simulation
tool called MONURBS together with two well-known multi-
objective algorithms: NSGA-II and SPEA-2. In this work, a
comparison with previous designs and the antenna prototype
are presented, showing that this approach can obtain multiple
valid solutions and accelerate the design process.
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I. INTRODUCTION

In this work, we present a case study about how applying

simulation-optimization, i.e., the application of simulation

together with a multi-objective algorithm can help to optimize

the design parameters of an antenna with very stringent

constrains. The objective is to obtain a compact dual-band

helical antenna for Telemetry, Tracking and Control (TTC)

of satellites. A TTC subsystem provides the communication

between a satellite and a ground station, as illustrated in Fig-

ure 1. The Telemetry system monitors the satellite retrieving

its health and status of other subsystems and sending data

to the station. The Tracking subsystem manages the satellite

position in its orbit while the Control subsystem allows us

to command the satellite, reconfiguring it if necessary. Within

a TTC system, the antenna is undoubtedly the most critical

part. The antenna must guarantee a proper operation within

the established parameters and due to its constraints, its design

can be extremely complex.

In our case study, the antenna needed to be able to operate

in the S-Band at 1.81 GHz and 2.55 GHz frequencies:

• Minimizing the cross-polarization level.

• Maximizing the gain for the Right Hand Circular Polar-

ization (RHCP).

In our case study, the parameters of the antenna that

fulfills the radiation patterns needed for the communication

are obtained using a simulation tool called MONURBS [1] to-

Fig. 1. TTC Communication System

gether with two well-known multi-objective algorithms: Non-

dominated Sorting Genetic Algorithm (NSGA-II) [2] and the

Strength Pareto Evolutionary Algorithm-2 (SPEA-2) [3].

In this work, a comparison with previous designs and the

antenna prototype are presented, showing that simulation-

optimization can obtain multiple valid solutions and accelerate

the design process.

II. PREVIOUS EXPERIENCE AND MOTIVATION

In a previous work, González et al [4] presented the design

of a compact dual-band helical antenna for TTC applications

in satellites. In [5] we proposed the use of NSGA-II to

reduce the cost of time and optimize the design of the helical

antenna. Here, we extend our proposal by applying the SPEA-

2 algorithm to obtain multiple valid solutions and to expedite

the process in future designs. The initial work was immersed in

a ESA project 20995/NL/ST/na, “S-Band Toroidal Antenna”,

where the main contractor was RYMSA1.

Although the geometric model is quite simple, it needed

to be parametrized according to rigorous requirements where

there are several objectives that the optimization process has to

deal with. In the previous work [4], the optimization process

was carried out applying the Gradient Descent (GD) algorithm

with a simulation tool called MONURBS to analyze and

obtain the radiation pattern of the antenna. This GD method

was used with a cost function that depended on the antenna

1http://www.tryo.es/



Fig. 2. Geometrical parameters of a helical antenna.

requirements. However, it resulted in a very complex problem

with a large number of maximums and minimums where the

application of the GD method was difficult and not appropriate

(it was more like a random sampler in the search space). A

huge number of simulations were needed to obtain a valid

solution that satisfied all the requirements simultaneously. It

was, therefore, an extremely CPU intensive task that needed a

very large time span (several months). As a consequence, we

started tackling this problem as a case study applying multi-

objective optimization techniques.

Although there is a large number of multi-objective algo-

rithms, we selected the two most popular and well known ones,

NSGA-II and SPEA-2, for our case study. Both algorithms are

by far the most popular and referenced in the multi-objective

literature.

III. PROBLEM DEFINITION

For the purpose of optimization, we can divide the problem

into two parts:

1) The problem parameters, which define the antenna geom-

etry.

2) The problem objectives, which define how good is the

antenna according to the specified requirements.

A helix antenna is formed by one or more strips wrapped

helically. The geometrical model of a helix antenna is defined

by a truncated cone. The antenna has four rolled strip in the

form of a helix from the bottom circle to the topside circle.

The strips are short-circuited in the top of the antenna. Finally,

a post is set internally to the four strips to be mechanically

strong enough. Therefore, the antenna geometry can be defined

by four parameters (see Figure 2):

• Bottom radius (r).

• Top radius (R).

• Height (h).

• Number of turns of the helix (t).

The most important electromagnetic requirements were

stated as follows:

• Dual Band operation at 1.81 GHz and 2.55 GHz in the

S Band (two frequencies).

• Right hand circular polarization (RHCP), the main elec-

trical field that radiates the antenna.

Fig. 3. Gain Objective.

Fig. 4. Cross-polar Objective.

• Peak maximum gain greater than 2 dBi for the RCHP

polarization.

• Minimum gain of 0 dBi in the range coverage for the

RHCP polarization.

• Cross-polar polarization level had to be smaller than

−12 dB (difference between LHCP –Left Hand Circular

Polarization– and RHCP), this is difficult to obtain.

• The above specifications in an equatorial radiation pattern

had to be satisfied in the elevation angle with a range

between 70 and 110 degrees.

Figures 3 and 4 show these requirements graphically.The mask

has to be satisfied for radiation pattern in the desired directions

for the main (RHCP) as well as for the cross-polar components

(difference between LHCP-RHCP).

Additionally, the weight of the prototype had to be as small

as possible, therefore it was important to reduce the volume

of the antenna. The volume of the antenna can be calculated

using the truncated cone volume formula:

v =
1

3
· π · h · (R2 + r2 +R · r) (1)

Due to the difficulty of the problem we decided to take



out the volume requirement of the optimization process. The

problem objectives will be:

• Maximize the RHCP gain for 1.81 GHz frequency.

• Minimize the cross-polar polarization level for 1.81 GHz

frequency in the range between 70 and 110 degrees. In

this range, gain must be above 0 dBi.

• Maximize the RHCP gain for 2.55 GHz frequency.

• Minimize the cross-polar polarization level for 2.55 GHz

frequency in the range between 70 and 110 degrees. In

this range, gain must be above 0 dBi.

Once the optimization process ends, solutions that meet all

requirements are filtered and the volume of each solution is

computed.

Finally, joining problem parameters and problem objectives,

we define a problem solution or simply a solution s, as a tuple

of two vectors, s = (sp, so), where:

• sp defines the four geometric parameters, i.e:

sp = (sp1 , . . . , spm) : m = 4.
• so defines the four radiation objectives, i.e.:

so = (so1 , . . . , son) : n = 4.

IV. THEORETICAL BACKGROUND

A. Analysis of Antennas: Numerical Methods

Before manufacturing, the antenna must be designed and

optimized to satisfy the requirements that have been imposed

in section III. This is not an easy task, because the antenna

is not a canonical object and there is not a simple formula

that can be used to obtain the radiation parameters. Then it is

necessary to apply advanced numerical methods in computers

to obtain the behaviour of the antenna under test. These

numerical methods are known as Computational Electromag-

netics Methods (CEM)[6] and they are applied to a very

variety of complex problems: antennas, Radar Cross Section

(RCS), propagation, radomes, electromagnetic compatibility,

communications, etc.

When an electromagnetic signal impinges with an object or

is used to feed a structure like an antenna, then a current is in-

duced on it generating an electromagnetic field that is radiated

in all the space. This is known as the scattering phenomena.

This phenomena follows the Maxwell Equations[7] that relate

the time domain and spatial variation of the electric and mag-

netic field generated by the currents. To solve this equations,

several advanced numerical techniques were developed as can

be seen in figure 5.

Every technique has its own advantages and disadvantages,

but the question is what method use to solve this problem?

Mainly, this depends on the size of the object compared with

the frequency of operation. According to the main classifica-

tion of Figure 5, there are basically two:

• High Frequency methods (Asymptotic Methods), where

it is necessary that the object must be electrically large

compare with the frequency (about several wavelengths).

This is an approximation of the Maxwell equations, and

in this cases the current is assumed to be local character,

that is, the current in one part of the structure it is

Fig. 5. Classification of numerical techniques.

independent of other part, there is not coupling between

structure parts. This is not the case, because at 2 GHz the

wavelength is 0.15 meters and the antenna size is close

to this value. The techniques than can be used in this

classification are Geometrical Optic (GO)[8] combined

with the Geometrical Theory of Diffraction (GTD)[9]

that are based on obtaining the Electrical Field of every

ray that impinges the structure; and the Physical Optic

(PO)[10] / Physical Theory of Diffraction (PTD)[11] that

are based on calculating the currents on the object to

obtain after the scattering field.

• Numerical Methods (Rigorous Methods), which does not

matter the size of the object compare with the frequency,

but they have the problem that when the frequency

increase, more computation resources (memory and CPU)

are needed. The main characteristic of the currents of the

object is they are strongly coupled with other parts of

the object. Mainly there are three techniques depending

of the kind of Maxwell Equations they are using: Moment

of Methods (MoM)[12] that solves the integral Maxwell

Equations; and Finite Elements (FEM)[13] and Finite

Difference Time Domain (FDTD)[14] that solves the

differential partial Maxwell equations. This techniques

can be applied to this case without any problem, and we

have chosen MoM because this is the technique that the

Electromagnetic Computing Group (GEC)[15] has been

working to solve electromagnetic problems for more than

20 years.

When the object has arbitrary shape, there is not analytic

solution as has been mentioned before. Then a numerical

technique must be applied to solve the problem. The MoM

technique has to be selected and it is going to be applied to

the analysis of the antenna. The process that is going to be

applied to the analysis of the antenna is shown in figure 6.

The geometrical model of the antenna is represented using

Non-Uniform Rational B-Splines[16] (see Figure 7), a kind of

parametric surfaces that are very common to model complex

objects with a little information that are able to represent

very accurately the real shape of the object, avoiding the use

of planar facets models that are not so good when curved

surfaces are presented. In this example of antenna, with only



Fig. 6. Analysis of the antenna using the MOM technique.

Fig. 7. Example of geometrical model of the antenna and a NURBS selected.

40 NURBS surface is enough to represent the geometry.

The Maxwell equation cannot be applied directly to the

geometrical model of the antenna, so a first step of discretiza-

tion of the geometry must be done. This is done using a

mesher[17], a code that preprocess and discretize the geometry

obtaining small pieces of the surfaces named elements. The

elements shall have a size lower than the wavelength, typically

an edge size between wavelength/8 or wavelength/10 to obtain

an accurate representation of the current. So, it can be seen

that when the object of the size is bigger or the frequency

is increased, more elements are needed and then more com-

Fig. 8. Example of discretization procedure.

Fig. 9. Mesh of the helix antenna.

putational resources would be necessary. The discretization

process is done according to the Paving Technique[17] that

is based on dividing the edges of the surfaces according

to the previous size and then fill the original surface with

quadrangular elements from the edges to the inner part of the

surface. Figure 8 shows an example of the Paving algorithm

apply to a plane surface where 289 elements have been

obtained.

The right image of the Figure 8 is the mesh of the surface

and it is very important that the mesh be continuous and

the elements have more or less the same size and not be an

irregular mesh. It is so important to have a good mesh as to

apply an accurate numerical technique to obtain good results.

Figure 9 shows the continuous mesh obtained with the mesher

when has been applied to the helix antenna.

When the elements have been obtained, it is necessary to

define the basis functions that will be model the current on

the element, the amplitude of this basis functions will be

the unknown current that will be necessary to calculate. The



Fig. 10. Definition of the subdomains or current elements.

unknowns or subdomains, will be defined by two elements

that share a common edge. This common edge will have the

maximum of the amplitude current and will be the part of the

geometry where the Maxwell equation will be applied to build

the System of Linear Equations. So, a basis function will be

defined as a conformed rooftop that model the current that

flows on the subdomain. The current starts from one edge of

the first element, reach the maximum on the common edges

of both elements and ends in the edge of the second element.

Figure 10 shows the definition of the basis function between 2

elements that share a common edge. Elements A and B defines

a current element where the J1 amplitude of the current is

unknown and the elements C and D defines another current

element where the amplitude J2 is the unknown. The J1 is a

current element according the X direction and J2 according Y.

In both elements can be seen the current is born in patch A

or C and the current dies in element B or C depending of the

subdomain considered.

Figure 11 shows all subdomains obtaining from the mesh of

the helix antenna. In this example there are 1929 subdomains

or current elements where the Maxwell equation will be

applied and a linear system of 1929 equations with 1929

unknowns must be solved to know the amplitude of the

currents and then to be able to calculate the scattering field to

obtain the radiation patterns.

The equation that must satisfy every subdomain of the

antenna must be the Electric Field Integral Equation (EFIE)[7],

[12] that has the following expression when the surfaces of the

geometry are Perfect Electrical Conductors (PEC):

n̂× �Eimp =

[
n̂× jωμ

4π

∫∫
S

�JS(�r
′)G(�r, �r′)dS′+

+
j

4πωε
∇
∫∫

S

∇′ ·
∫∫

S

�JS(�r
′)G(�r, �r′)dS′

] (2)

Where �Eimp is the impressed electrical field (electrical field

Fig. 11. Subdomains obtained from the mesh for the helix antenna.

that feed the antenna), n̂ is the normal vector on every surface

point, �JS(�r
′) is the current density defined in every subdomain

and G(�r, �r′) is the green function that gives an idea that how

a subdomain (�r′) couples with other subdomain (�r) . Each

subdomain couples with the other subdomains and this defines

a system of equations of this way.

[Z][I] = [V ] (3)

Where [Z] is the coupling matrix of N × N elements,

where every element is known, [I] the unknown amplitudes

of the currents, vector of N elements, and [V ] is the inde-

pendent term, a vector of N elements that it is known and

depends on the impressed electrical field. Then the amplitude

of the currents can be obtained solving the system with

direct methods, for instance inverting the matrix [Z] or with

iterative methods like Biconjugate Gradient Stabilized Method

(BICGSTAB)[18] or Generalized Minimal Residual Method

(GMRES)[19].

To feed the helix antenna, it is necessary to fix an impressed

voltage in every helix with a difference of phase of 90◦. So,

in this way the Right Hand Circular Polarization or Left Hand

Circular Polarization can be obtained. Figure 12 shows the

location of the impressed voltage between the bottom end of

every helix and the top lid of the cylinder. In the right of the

figure, the voltage values are assigned in this way.

When the system of equations have been solved, the currents

can be visualized as in Figure 13. Red colour shows where

the amplitude is maximum. These currents will scatter the

electrical and magnetical field of the antenna.

When the amplitudes of the currents are known, then all the

scattering fields of the antenna can be obtaining in every part

of the space, according to the following expression in far field

region[7]:

�Escatt(�r) = −jωμ

4π

e−jkr

r

∫∫
S

�JS(�r
′)e−jkr̂·�r′dS′ (4)



Fig. 12. Assign of the impressed voltage to every helix.

Fig. 13. Current distribution of the antenna.

Fig. 14. 3D Radiation Pattern of the antenna.

Figure 14 shows the 3D radiation pattern when can be

noticed the equatorial radiation pattern.

B. Multi-Objective Optimization Problems

Multi-objective Optimization Problems (MOOP) are those

that involve multiple and conflicting objective functions. In

general, there are multiple valid solutions that are defined

using the concept of Pareto-optimal Front. The Pareto-optimal

Front is the set of the best possible solutions for the problem.

In section III we defined the solution objectives so as a vector

of n objective values, i.e., so = (so1 , . . . , son). To obtain the

Pareto-optimal Front of a problem it is necessary to sort all

solutions according to their relationship of dominance. We say

that a solution s dominates a solution v, denoted as s � v
if the objective values of s are partially less (at least one

less and equal the rest) than the objectives values of v, i.e.,

∀i ∈ (1, . . . , n), soi ≤ voi ∧ ∃i ∈ (1, . . . , n) : soi < voi .
This definition considers that we are minimizing all objective

values. To maximize just change the less than operator by

greater than operator. Note that the relationship of order �
is partial and therefore there may be solutions that do not

dominate each other. A set of solutions that do not dominate

each other is said to belong to the same front. Those solutions

that are not dominated by any other, belong to the first front,

called Pareto-optimal Front. The solutions dominated by those

belonging to the first front, but which do not dominate each

other, form the second front. And so, successively, all the

solutions are grouped in different fronts. To illustrate the

previous concepts, let us provide an example with the problem

that concerns us. In our case, we have four objectives to

optimize, i.e., cross-polar polarization level (dB) and gain

RHCP (dBi) for 1.81 GHz and 2.55 GHz frequencies. Table I

shows the objective values of six solutions obtained from the

experimentation. Solutions 1 and 2 correspond to solutions



TABLE I
OBJECTIVE VALUES OF SIX SOLUTIONS.

Cross Polar Level (dB) Gain RHCP (dBi)
Solution 1.81 GHz 2.55 GHz 1.81 GHz 2.55 GHz Front

1 -19.13 -13.82 5.81 3.82 1
2 -12.87 -19.2 3.33 4.02 1
3 -9.2 -8.83 -1.7 -3.1 2
4 -5.9 -9.01 -5.2 -5.0 2
5 -1.3 -5.2 -8.2 -5.1 3
6 -3.9 -0.4 -5.3 -9.75 3
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Fig. 15. 4D representation of solutions obtained in the experimentation.

SPEA-2 5 and SPEA-2 6 shown in Table II. Last column of

the table shows the front to which each solution belongs. All

solutions in the first front belong to the Pareto-optimal Front.

Note that solutions in the same front do not dominate each

other, but they do dominate solutions in lower fronts. Solution

1, for example, dominates solution 2 for the 1.81 GHz values,

but is dominated for the 2.55 GHz values by solution 2.

Figure 15 shows a 4D chart (the fourth axis is the color range)

with values obtained from the experimentation (some of them

are shown in Table I). Solutions in the Pareto-optimal Front

(front 1) corresponds to the most top-left plane.

C. Meta-heuristics and Evolutionary Algorithms

Meta-heuristics are a family of approximate optimization

techniques for solving the computational problem. There

are multiple meta-heuristic techniques available for solving

MOOPs.

Evolutionary algorithms (EAs) are a set of algorithms

inspired in the biologic evolution. Algorithm 1 shows the

pseudo-code of a standard EA. At each generation (loop

iteration), an auxiliary population (with the same size as the

original one) is generated by iteratively applying the genetic

operators (crossover and mutation), then, both the current

and the auxiliary populations are merged into one single

new population. Worst individuals of the new population are

removed (i.e. the best solutions are selected), until the size of

the new population is reduced by half. For us, each individual

is a problem solution, so individual and solution are equivalent

concepts.

EAs are particularly desirable to solve MOOPs, primarily

because of their population-based nature. This enables them

to capture the dominance relations in the population as a way

to guide the search towards the Pareto-optimal Front.

EAs usually contain several parameters that need to be tuned

for each particular application at the same time considering:

1) Non-conflicting objectives, i.e., achieve a single optimal

solution satisfies all objectives simultaneously;

2) Competing objectives, i.e., cannot be optimized simulta-

neously.

In addition, since the EAs are stochastic optimization tech-

niques, different runs tend to produce different results. There-

fore, multiple runs of the same algorithm on a given problem

are needed to statistically describe their performance on that

problem. For a more detailed discussion of the application of

EAs in multi-objective optimization, the reader is referred to

Coello et al [20] and Deb et al [2]. Multi-objective EAs need

to fulfill two primary roles:

1) Guiding the search towards the Pareto-optimal Front set

to accomplish optimal or near-optimized solutions.

2) Maintaining a diverse population to achieve a well dis-

tributed non-dominated front, thereby fully exploring the

solution space.

.

Algorithm 1 Evolutionary Algorithm.

1: Create random initial population P
2: Evaluate population P
3: while Stopping criteria not reached do
4: Select population P
5: Create empty population Q
6: for Population size/2 times do
7: Select two parents from P
8: Perform crossover & Mutation
9: Insert children into Q

10: end for
11: Evaluate population Q
12: P ← Q
13: end while
14: return P

1) The Non-dominated Sorting Genetic Algorithm-II
(NSGA-II): This algorithm was developed by Deb et al [2] as

an extension of an earlier proposal by Srinivas and Deb [21].

The population individuals (solutions) are evaluated (i.e.

they are assigned fitness values) in relation to how close they

are to the Pareto-optimal Front and a crowding measure.

The NSGA-II algorithm also considers the sparsity (density)

of the individuals belonging to the same rank using a crowding

measure (the Manhattan distance among individuals), with

the idea of promoting diversity within the fronts (the larger

the sparsity, the better). In addition, the NSGA-II includes

elitism in order to maintain the best solutions from the Pareto-
optimal Front found. The rank of each individual is based

on the level of non-domination. Therefore, each solution has



two attributes: (i) non-domination rank (front to which the

solution belongs) and (ii) crowding distance. In other words,

between two solutions with differing non-domination ranks,

the solution with the lower rank is preferred. Otherwise, if both

solutions belong to the same front, then the solution that is

located in a less crowded region is preferred. The pseudo-code

of NSGA-II is shown in Algorithm 2. Note that lines 2 and 6

are calls to the simulator to evaluate the solution parameters.

NSGA-II sends the parameters of the solution to the simulator

and the simulator returns the objective values for that solution.

2) The Strength Pareto Evolutionary Algorithm-2 (SPEA-
2): This algorithm was proposed by Zitzler et al [3]. In this

algorithm, the strength of an individual is defined in terms

of the number of solutions it dominates in the population. A

fitness value is assigned to every individual, and it is defined

as the sum of its strength raw fitness and a density estimation.

The algorithm evolves the population through the iterative

application of the variation operators on the solutions. All

generated non-dominated solutions are stored in an external

archive. After every iteration, all non-dominated solutions

(from both the population and the archive) are copied into

a new generation population. If its size is larger than the

population size, the algorithm applies a truncation operator

to discard solutions. It is based on the distances to the k-

th nearest neighbors (a crowding measure), so that those

solutions having the largest distances to the other solutions

(i.e., the most isolated ones) are selected. Algorithm 3 presents

a pseudo-code of SPEA-2. Note that lines 4 and 5 are calls

to the simulator to evaluate each solution parameters. SPEA-2

sends the parameters of the solution to the simulator and the

simulator returns the objective values for that solution.

V. DESIGNING THE ANTENNA

In order to obtain the radiation patterns of the antenna

shown in Figure 2, it is necessary to use a simulation computer

program that with the input of the four parameters of the

antenna, then does:

1) Builds the geometrical model of the antenna.

2) Discretize the model according the wavelength.

3) Simulates the antenna to obtain the radiation patterns for

both frequencies in order to be processed by the multi-

objective algorithms.

Figure 17 shows the block diagram of the electromagnetic

simulation stage.

The geometrical model is built using a software that given

the previously stated parameters can create a geometrical

file in AutoCAD DXF (Drawing Interchange Format) [22]

with the surfaces that define the antenna. This file must

be previously processed to be simulated with a mesher that

discretize the antenna parameters as input to the simulator

that calculates the radiation pattern using a simulation software

called MONURBS [1].

This simulation software is being developed by the Elec-

tromagnetic Computing Group at the University of Alcalá,

and it is included in as part of an electromagnetic suite,

Fig. 16. Electromagnetic suite newFASANT

newFASANT [23]. This suite can be used in many appli-

cations like electromagnetic field analysis of any complex

3D structures such as reflectors, horns, microstrip passive

devices, periodical structures, antenna on board, etc. Also, the

RCS of complex platforms with arbitrary materials and the

compatibility between different devices mounted on the same

platform. Figure 16 shows the User Interface of the code with

all the modules that can be used for several electromagnetic

applications.

From this suite, the MONURBS and mesher code has been

extracted and used as a black box to implement the procedure

of Figure 17. The MONURBS code is based on the Moment

Method Technique (MoM) that is a full-wave solution. When

the object to be analyzed is large, this technique is both

CPU and memory consuming and cannot be applied if the

resources of the machine are not high. To overcome this,

several techniques have been implemented to speed up the sim-

ulation whilst using less memory: (i) Fast Multipole Multilevel

Method (MLFLMM) [12], [24] and (ii) the Characteristics

Basis Function Method (CBFM) [25], [26]. Also, the Message

Passing Interface (MPI) and OpenMP paradigms have also

been implemented to solve the problem using less CPU time

with multiprocessor machines [27].

A. Looking for the optimal parameters

In this work, we used the implementation of NSGA-II and

SPEA-2 provided in the jMetal2 framework [28] for multi-

objective optimization together with a simulation software of

antenna radiation, MONURBS, as previously described.

2https://github.com/jMetal/



Fig. 17. Electromagnetic simulation stage block diagram.

As jMetal is being developed in JavaTM the communication

is also handled using the JavaTM runtime API to simulate the

antenna radiation using the antenna parameters generated by

the multi-objective algorithms. Therefore, to perform the data

exchange between jMetal and MONURBS, it was necessary

to implement a specific method, called AntennaSimulation(P )
(Algorithm 4) to perform the population evaluation. The calls

are carried out in lines 2 and 6 in the NSGA-II (Algorithm 2),

and lines 4 and 5 in the SPEA-2 (Algorithm 3). Figure 18

illustrates the communication between jMetal and MONURBS

implemented in the Algorithm 4.

Algorithm 2 NSGA-II Algorithm [2].

1: P ← makeInitalRandomPopulation()
2: P ←antennaSimulator(P ) � Call to evaluate P
3: t ← 0
4: while t ≤ max generations do
5: Q ← makeNewPopulation(P )
6: Q ←antennaSimulator(Q) � Call to evaluate Q
7: R ← P ∪Q � Combine parents and offsprings
8: F ← fastNonDominatedSort(R) � Calculate Fronts
9: P ← ∅ ∧ i ← 1

10: while |P |+ |Fi| ≤ N do
11: P ← P ∪ Fi � Add ith rank to population
12: i ← i+ 1
13: end while
14: if |P | �= N then
15: crowdingDistance(Fi) � Calc. crowding measure in Fi

16: P ← P ∪ bestCrowdingSolutions(Fi, |P | −N)
17: end if
18: t ← t+ 1
19: end while
20: F ← fastNonDominatedSort(R)
21: return F1 � Return first front; i.e.,Pareto-optimal Front

VI. RESULTS

In this section, we show solutions found by both (i) using

MONURBS (as standalone tool using its built-in Gradient De-
scent optimizer) and (ii) combining MONURBS and jMetal.

Algorithm 3 SPEA-2 Algorithm [3].

1: P0 ← makeInitalRandomPopulation()
2: Q0 ← ∅ � Initial empty archive of size M
3: while t ≤ max generations do
4: Pt ← antennaSimulator(Pt) � Call to evaluate Pt

5: Qt ← antennaSimulator(Qt) � Call to evaluate Qt

6: Qt+1 ← copyNonDominatedSolutions(Pt, Qt)
7: if |Qt+1| > M then � Qt+1 exceeds archive size
8: Qt+1 ← truncate(Qt+1)
9: else if |Qt+1| < M then � Fills with dominated solutions

10: Qt+1 ← copyDominatedSolutions(Pt, Qt,M−|Qt+1|)
11: end if
12: Pt+1 ← selectPopulation(Qt+1) � Mating selection
13: Pt+1 ← variationOperators(Pt+1) � Apply recombination

and mutation
14: t ← t+ 1
15: end while
16: F ← copyNonDominatedSolutions(Q)
17: return F � Return the Pareto-optimal Front

Algorithm 4 antennaSimulator(P )

1: for each solution s in population P do
2: if s does not violates problem constraints then
3: Invoke MONURBS process with s parameters (sp vector)
4: Wait until MONURBS process finalizes
5: Parse MONURBS return
6: Update s evaluation values (so vector)
7: end if
8: end for
9: return P

The computer and software used to carry out the experimen-

tation were:

• Windows Server 2016 Standard, 64 bits.

• Java version: 1.8.0-121, 64 bits.

• 8 Quad-Core AMD OpteronTMProcessor 8356 2.29 GHz.

• 256 GB of RAM memory.

The configuration of the problem ranges, i.e., the antenna

parameters was:

• Number of turns: [0.2, 3]

• Bottom radius: [0.1 cm, 50 cm]

• Top radius: [0.1 cm, 50 cm]

• Height: [0.1 cm, 50 cm]

Also, the configuration of NSGA-II and SPEA-2 was as

follows:

Fig. 18. Antenna Parameters Optimization.



Fig. 19. Geometrical model of the solution with a lower volume (SPEA-2
5).

• Population size: 50

• Maximum number of algorithm iterations: 5,000

• Crossover operator: Simulated binary crossover

– Crossover probability: 90%

– Crossover distribution index: 20

• Mutation operator: Polynomial mutation

– Mutation distribution index: 20

– Mutation probability: 25%

The results are shown in Table II. The first column shows

the solutions found by each algorithm. Four next columns

show the parameters defined by each solution and the last

column shows the volume of the antenna. All results where

rounded to three decimals. As it can be observed, all solutions

found are very close to each other, specially those obtained

by NSGA-II where some of them are practically equivalent.

The first row shows the result obtained with the MONURBS

Gradient Descent in order to compare such results with the

ones obtained by the NSGA-II and SPEA-2 algorithms in

the next rows. Figures 20 to 27 show the objective values

graphically. It can be observed that all solutions met the

constraints defined for this problem. The results obtained by

SPEA-2 are better dispersed than those obtained by NSGA-

II. Please, note that the best solution obtained by SPEA-2

reduces the volume of the solution obtained using Gradient

Descent by 35%. Figure 19 shows the geometrical model of

this solution. With this new approach, the CPU time to obtain a

suitable solution has been reduced considerably. The solution

obtained with Gradient Descent took several months, while

using NSGA-II or SPEA-2 have taken three weeks. In a future

work, we will need to apply other multi-objective algorithms

and techniques to explore if there are other parameters that

are significantly different.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a simulation-optimization ap-

proach to the design of helical antennas. This is a very complex

problem, with several restrictions that must be met in two fre-

quencies and, additionally, compacting the antenna dimensions

Fig. 20. 1.81 GHz cross-polar objective results using NSGA-II.

Fig. 21. 1.81 GHz gain objective results using NSGA-II.

Fig. 22. 2.55 GHz cross-polar objective results using NSGA-II.



TABLE II
PARAMETERS OF BEST SOLUTIONS FOUND BY USING JMETAL AND MONURBS.

Algorithm Turns Bottom radius (cm) Top radius (cm) Height (cm) Volume (cm3)

Gradient Descent 0.831 1.945 1.022 13.8 98.49

NSGA-II 1 0.787 2.458 1.001 13.732 136.672

NSGA-II 2 0.787 2.339 1.02 13.732 127.915

NSGA-II 3 0.787 2.458 1.001 13.732 136.672

NSGA-II 4 0.791 2.458 1.001 14.505 144.346

NSGA-II 5 0.777 1.929 1.145 14.072 106.676

NSGA-II 6 0.787 2.339 1.02 13.732 127.915

NSGA-II 7 0.777 1.929 1.145 14.072 106.676

SPEA-2 1 0.859 2.409 0.701 14.433 120.677

SPEA-2 2 1.119 2.168 0.734 16.898 120.837

SPEA-2 3 0.782 2.385 0.709 14.859 122.676

SPEA-2 4 0.801 2.494 0.748 14.697 133.022

SPEA-2 5 0.84 1.032 0.753 13.593 34.281
SPEA-2 6 0.637 1.092 0.72 13.275 34.701

SPEA-2 7 0.637 1.344 0.704 13.145 44.739

Fig. 23. 2.55 GHz gain objective results using NSGA-II.

Fig. 24. 1.81 GHz cross-polar objective results using SPEA-2.

Fig. 25. 1.81 GHz gain objective results using SPEA-2.

Fig. 26. 2.55 GHz cross-polar objective results using SPEA-2.



Fig. 27. 2.55 GHz gain objective results using SPEA-2.

as possible. To address the problem, we used two well known

multi-objective algorithms and still state of the art algorithms,

NSGA-II and SPEA-2, that were capable of improving the

time and effort needed to find valid solutions (antenna shape

and dimensions) when compared with finding solutions using

the Gradient Descent as a searching technique together a

simulator tool. The use of multi-objective algorithms reduced

the time-cost of algorithm execution when compared with

a previous approach using the Gradient Descent. Also, the

simulation-optimization approach allow us to obtain multiple

correct solutions that provide some flexibility and can help to

choose the final design of the antenna. Having more solutions,

with different dimensions but all optimal from the radiation

point of view, offers more possibilities for the manufacturing

not only for the antenna but the rest of elements that are

coupled closely to it.

Future works include the use other multi-objective

algorithms capable of handling the constrains to compare and

adapt them to the difficulty of this problem. We will also

explore many-objective algorithms as we are handling five

objectives in this work.
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