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Abstract—Many Pareto-based multi-objective evolutionary
algorithms require to rank the solutions of the population in each
iteration according to the dominance principle, what can become
a costly operation particularly in the case of dealing with many-
objective optimization problems. In this paper, we present a new
efficient algorithm for computing the non-dominated sorting
procedure, called Merge Non-Dominated Sorting (MNDS),
which has a best computational complexity of O(NlogN) and
a worst computational complexity of O(MN2), being N the
population size and M the number of objectives. Our approach
is based on the computation of the dominance set, i.e. for
each solution, the set of solutions that dominate it, by taking
advantage of the characteristics of the merge sort algorithm.
We compare MNDS against six well-known techniques that
can be considered as the state-of-the-art. The results indicate
that the MNDS algorithm outperforms the other techniques in
terms of number of comparisons as well as the total running time.

Index Terms— Multi-objective optimization, non-dominated
sorting, many objective problems, evolutionary algorithms.

I. INTRODUCTION

Evolutionary algorithms (EAs) have been success-
fully applied in the solution of multi-objective opti-
mization problems (MOPs) in the last two decades.
These approaches can be mainly classified into
Pareto-based, indicator-based and decomposition-
based EAs. Most of algorithms belonging to the
first group, which includes NSGA-II [1], SPEA2 [2]
and many others [3], typically require to rank the
population in the selection and replacement phases
according to the dominance principle [4].

The non-dominated ranking procedure can be
computationally significant in the total computing
time of a multi-objective evolutionary algorithm
(MOEA), particularly when dealing with many-
objective problems, and large populations.

In this paper, we present the Merge Non-
Dominated Sorting (MNDS) algorithm aimed at
efficiently performing the non-dominated ranking.
MNDS takes advantage of the characteristics of the
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merge sort algorithm to calculate the dominance
set, i.e. the set of solutions that dominate other
solution, for each solution. MNDS achieves a best
computational complexity of O(NlogN), while the
worst case is O(MN2), where N corresponds to the
population size and M is the number of objectives.
As it usually happens with these kinds of algo-
rithms, there is a time vs. memory trade-off. In our
algorithm the storage of the dominance set of each
solution allows a reduction of the computational
time.

The rest of the paper is organized as follows.
Section II briefly presents current works aiming to
reduce the computational cost of the non-dominated
sorting problem. Section III describes our proposal
in detail. Experimental work and results are pro-
vided in Section IV. Finally, Section V highlights
the conclusions and outlines future work.

II. BACKGROUND AND RELATED WORK

Non-dominated sorting is based on the concept
of Pareto-dominance between vectors (or solutions,
in the context of EAs). Let P be a population
of N solutions, {s1, . . . , sN} ∈ P , where each
solution contains a vector of M objectives to
minimize, (f1(si), . . . , fM(si)), ∀i ∈ {1, . . . , N}.
A solution si dominates a solution sj , denoted
by si � sj , if the vector of objectives of si is
partially less than the vector of objectives of sj ,
i.e., ∀m ∈ {1, . . . ,M}, fm(si) ≤ fm(sj) ∧ ∃m� ∈
{1, . . . ,M} s.t. fm�(si) < fm�(sj) (we assume
minimization without loss of generality). Given a
set of solutions, those solutions which are non-
dominated by any other are assigned rank 1. If these
solutions are removed, then those solutions which
are non-dominated by any other are assigned rank
2, and so on. Finding these ranks is called non-
dominated sorting. Kung et al. [5] were the first to
propose a method based on the divide-and-conquer
idea to find maximal elements of a set of vectors,
paving the way for further studies.
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TABLE I
COMPLEXITY OF NON-DOMINATED SORTING ALGORITHMS

REPRESENTATIVE OF THE STATE-OF-THE-ART.

Algorithm Complexity
Best Case Worst Case Space

FNDS [1] MN2 MN2 N2

Dominance Tree [6] MNlogN MN2 MN

Deductive Sort [7] MN
√
N MN2 N

Corner Sort [8] MN
√
N MN2 N

ENS-SS [9] MN
√
N MN2 1

ENS-BS [9] MNlogN MN2 1

ENS-NDT [10] MNlogN, if M > logN
MN2 NlogN

Nlog2N, rest of cases
M-Front [11] MN MN2 MN2

DDA-NS [12] MN2 MN2 N2

HNDS [13] MN
√
N MN2 N

BOS [3] MNlogN MN2 MN
MNDS NlogN MN2 N2

Reducing the complexity of non-dominated sort-
ing is a matter of active research. The original
implementation of NSGA (Non-dominated Sort-
ing Genetic Algorithm) [4] had a complexity of
O(MN3). A later version, in NSGA-II [1], the
Fast Non-dominated Sorting reduced the cost to
O(MN2). Table I shows both computational and
spatial costs of the most representative algorithms
for non-dominated sorting and how they compare
against the two variants of our current proposal
(MNDS).

We briefly summarize next the different strategies
used by each of these algorithms (they are fully
described in the provided references):

• Fast Non-dominated Sorting (FNDS) [1] com-
pares each solution with the rest of the solutions
of the population to obtain their dominance
relationship. While carrying out this compar-
ison, each solution stores those solutions that
it dominates in a list. Once the comparisons
are done, the lists of dominated solutions are
traversed to rank them.

• Dominance Tree [6] uses a divide-and-conquer
strategy to obtain the dominance relationships
among the population solutions. These relation-
ships are stored in a tree-like data structure
called dominance tree.

• Deductive Sort [7] iterates through the popula-
tion repeatedly, comparing the solutions one by
one. Non-dominated solutions are assigned to
the corresponding rank and eliminated from the
population.

• Corner Sort [8] reduces the number of com-

parisons using two strategies: (i) as Deductive
Sort, it avoids comparing solutions marked as
dominated; the second strategy (ii) shows a
preference for comparing corner solutions when
determining the dominance between solutions.

• Efficient Non-dominated Sort (ENS) [9] cal-
culates the rank of each solution at a time.
To do so, it sorts the first objective using the
lexicographical comparison1. Then, it looks for
the rank of each solution using a sequential
search strategy (version ENS-SS) or a binary
search (version ENS-BS).

• M-Front [11] proposes to modify the typi-
cal MOEA’s structure to improve their per-
formance. In order to reduce the number of
comparisons among solutions, the M-Front al-
gorithm applies the geometric and algebraic
properties of the Pareto dominance to perform
interval queries using a nearest neighbor search.
M-Front defines a special data structure named
archive where all non-dominated individuals are
stored. Additionally, M-Front stores all solu-
tions in lists and uses a K-d tree for nearest
neighbor search.

• Hierarchical Non-Dominated Sorting
(HNDS) [13] minimizes the number of
comparisons of objectives by ordering the
population by the first objective and then by
comparing the first solution with the rest of
the solutions. These solutions are moved to an
auxiliary list if they are not dominated by the
first solution or a list of dominated solutions
otherwise. The first solution is assigned to
its corresponding rank and then the algorithm
iterates until all the solutions are assigned their
corresponding rank.

• Dominance Degree Approach for Non-
dominated Sorting (DDA-NS) [12] is based
on the concept of dominance degree matrix,
which is a N × N square matrix where
each column and row represents a solution
si : i ∈ {1, . . . , N} and the cells contains the
number of objectives in which each solution
si dominates other solution sj , ∀si �= sj with
si, sj ∈ P . Once the dominance degree matrix

1The lexicographical comparison between two solutions compares the value
of the objectives of both solutions starting from the first one. If the values
are the same, then the second objectives are considered. This is carried out
iteratively until the values are different or their objectives are exactly the
same.
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is obtained, DDA-NS traverses the matrix to
find the maximum values of each column, gets
their corresponding solution and assigns a rank
to it.

• Best Order Sort (BOS) [3] sorts the population
by each objective, resolving ties by means of
lexicographical comparison. For each objective
and solution si, it searches those solutions that
are not worse than si. These solutions are stored
in a set T associated with si. BOS will look at
T for the sj solution with the worst rank r. The
rank of si will be r + 1.

• Efficient Non-Dominated Sort with Non-
Dominated Tree (ENS-NDT) [10] extends
the ENS-BS [9] algorithm using a new data
structure, a variant of a bucket k-d tree, named
Non-Dominated Tree (NDTree). ENS-NDT is
similar to ENS-BS but in the binary search it
uses a NDTree instead of an array to store the
fronts, speeding up the domination checking.

We must note that there are also some ap-
proaches related to the efficient computation of
non-dominated sorting in steady-state multiobjective
evolutionary algorithms [14]. However, our focus
here is on the most general case of generational
algorithms such as the standard NSGA-II. Those
techniques should probably need to be adapted to
work properly in this context, so we have not
considered them in this work.

As we can observe in Table I, all algorithms have
a computational complexity, in the worst case of
O(MN2). The only algorithm that improves that
complexity is Kung et al. [5] algorithm, that reaches
a O(MNlogN) computational complexity but it
applies only to two objectives. Thus, the difference
among the rest of algorithms lies in the average case
and not in the worst case. In this sense, different
algorithms apply different strategies to reduce the
computational time.

Since to determine the dominance between two
solutions it is necessary to compare the values of
their objectives, a common quality indicator is the
number of comparisons performed by an algorithm.
For example, FNDS [1] compares all solutions
among them and stores the result of each compari-
son to obtain the rank of each solution. HNDS [13]
and ENS [9] [10] versions sort the population by the
first objective value and use different data structures
to differentiate a solution from the rest, and finally

TABLE II
EXAMPLE OF A POPULATION WITH THEIR DOMINANCE SETS AND RANK

Population Solution DS Rank
s1 = {34,30,41} s1.ds = {s5} 2
s2 = {33,34,30} s2.ds = ∅ 1
s3 = {32,32,31} s3.ds = ∅ 1
s4 = {31,34,34} s4.ds = ∅ 1
s5 = {34,30,40} s5.ds = ∅ 1
s6 = {36,33,32} s6.ds = {s3} 2
s7 = {35,31,43} s7.ds = {s1, s5} 3
s8 = {37,36,39} s8.ds = {s2,s3,s4,s6,s9} 3
s9 = {35,34,38} s9.ds = {s2,s3,s4} 2
s10 = {38,38,37} s10.ds = {s2,s3,s4,s6} 3
s11 = {39,37,31} s11.ds = {s2,s3} 2
s12 = {37,36,39} s12.ds = {s2,s3,s4,s6,s9} 3

assign it a rank. BOS [3] sorts the population by
each objective and assigns, to each solution s, M
sets where it stores those solutions that are not
worse than s in each objective. DDA-NS [12] sorts
the population by each objective, and store in their
dominance degree matrix the number of objectives
in which one solution dominates the rest.

The MNDS strategy is quite straightforward.
MNDS associates each solution to a total ordered set
named dominance set (s.ds in algorithms) contain-
ing the solutions that dominate it. More formally,
given a solution si ∈ P , its dominance set, si.ds
contains all solutions that dominate si, i.e., each
sj ∈ P such that sj � si. Table II shows a set
of solutions along their dominance set and rank.
For example, solution s10 is dominated by solutions
s2, s3, s4 and s6, therefore, s10 dominance set
is represented as s10.ds = {s2, s3, s4, s6}. Once
the dominance set of all solutions is computed,
their rank is obtained as follows. Those solutions
with an empty dominance set belong to the first
rank. The rank of a solution with one or more
elements in its dominance set will be calculated
adding one to the largest rank of the solutions that
compose the dominance set. Following our example,
solutions s2, s3, s4, and s5 are not dominated and
correspond to rank 1. The solution s6 is domi-
nated by s3, i.e., s6.ds = {3}, and as a result
belongs to the second rank. Finally, the rank of
s10 is Max(R(s2), R(s3), R(s4), R(s6)) + 1 = 3.
Figure 1 shows a 3D representation of the example
population in Table II. The three planes correspond
to the three ranks. The higher the plane the higher
the rank, and the lowest plane corresponds to the
first rank.

To obtain the dominance set of each solution,
MNDS sorts the population by each objective. The
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Fig. 1. 3D representation of the example population

order of the solutions corresponds to their domi-
nance relationship for that objective, i.e., the first
solution is not dominated, the second is dominated
by the first and so on. To do so, MNDS creates
the objective dominance set, (ods). Once the pop-
ulation has been sorted by an objective, the ods
is constructed traversing the ordered solutions and
adding a solution to ods in each iteration. Therefore,
we could define a function ods(solution, objective)
that returns the content of the ods considering the
position of a solution sorted for an objective. The
dominance set of a solution s will be s.ds =
ods(s, 1)∩ods(s, 2)∩ ...∩ods(s,M). Tables III, IV
and V show the results of sorting the population on
objectives 1, 2 and 3 respectively. Each table also
shows the objective dominance set (ods) and the
dominance set (s.ds) for each solution. It is worth
noting that solution s12 does not appear in Tables III,
IV and V as this solution is a duplicate of s8 and
MNDS removes duplicate solutions when sorting
objective 1. In this way, the size of the population
is reduced avoiding unnecessary operations. At the
end those duplicate solutions are added back to
the population with their rank (already calculated
for the similar solution kept in the population). It
can be observed that the dominance set in Table V
corresponds to the actual one shown in Table II.

This strategy has two important advantages: (i)
it minimizes the number of comparisons among

2In case of ties, and only for the first objective, the lexicographic ordering
is applied, as explained in the section III

3To equal values, merge sort keeps the order obtained from the previous
objective. This is explained in detain in Section III

TABLE III
EXAMPLE POPULATION SORTED BY OBJECTIVE 1

Population ods Solution DS
s4 = {31,34,34} ∅ ∅
s3 = {32,32,31} {s4} {s4}
s2 = {33,34,30} {s3,s4} {s3,s4}
s52 = {34,30,40} {s2,...,s4} {s2,...,s4}
s12 = {34,30,41} {s2,...,s5} {s2,...,s5}
s72 = {35,31,43} {s1,...,s5} {s1,...,s5}
s92 = {35,34,38} {s1,...,s5, s7} {s1,...,s5, s7}
s6 = {36,33,32} {s1,...,s5, s7, s9} {s1,...,s5, s7, s9}
s82 = {37,36,39} {s1,...,s7, s9} {s1,...,s7, s9}
s10 = {38,38,37} {s1,...,s9} {s1,...,s9}
s11 = {39,37,31} {s1,...,s10} {s1,...,s10}

TABLE IV
EXAMPLE POPULATION SORTED BY OBJECTIVE 2

Population ods Solution DS
s53 = {34,30,40} ∅ ∅
s13 = {34,30,41} {s5} {s5}
s7 = {35,31,43} {s1, s5} {s1, s5}
s3 = {32,32,31} {s1, s5, s7} ∅
s6 = {36,33,32} {s1, s3, s5, s7} {s1, s3, s5, s7}
s43 = {31,34,34} {s1, s3, s5,..,s7} ∅
s23 = {33,34,30} {s1, s3,..,s7} {s3, s4}
s93 = {35,34,38} {s1,..,s7} {s1,..,s5, s7}
s8 = {37,36,39} {s1,..,s7, s9} {s1,..,s7, s9}
s11 = {39,37,31} {s1,..,s9} {s1,..,s9}
s10 = {38,38,37} {s1,..,s9, s11} {s1,..,s9}

objective values of the solutions, and (ii) it performs
an early detection of non-dominance among the
solutions of the population. When the dominance
sets of all the solutions are empty, there is no
dominance and the algorithm ends. This property
is particularly advantageous when MNDS is used
within multi-objective evolutionary algorithms such
as NSGA, where the dominance among solutions
decreases as the number of generations of the algo-
rithm increases.

III. MERGE NON-DOMINATED SORTING

As already stated in the previous section, the
overall idea behind our proposal is to obtain the
dominance set of each solution in the population,

TABLE V
EXAMPLE POPULATION SORTED BY OBJECTIVE 3

Solution ods Solution DS
s2 = {33,34,30} ∅ ∅
s3 = {32,32,31} {s2} ∅
s11 = {39,37,31} {s2, s3} {s2, s3}
s6 = {36,33,32} {s2, s3, s11} {s3}
s4 = {31,34,34} {s2, s3, s6 s11} ∅
s10 = {38,38,37} {s2,..,s4, s6, s11} {s2,..,s4, s6}
s9 = {35,34,38} {s2,..,s4, s6, s10, s11} {s2,..,s4}
s8 = {37,36,39} {s2,..,s4, s6, s9,..,s11} {s2,..,s4, s6, s9}
s5 = {34,30,40} {s2,..,s4, s6, s8,..,s11} ∅
s1 = {34,30,41} {s2,..,s6, s8,..,s11} {s5}
s7 = {35,31,43} {s1,..,s6, s8,..,s11} {s1, s5}
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and then calculate their rank based on their corre-
sponding dominance set. To obtain the dominance
set for each solution si, it is necessary to sequen-
tially sort the population by each of the objectives.
The output obtained during the sorting of the m-th
objective is the input for objective m+ 1-th. A key
point of our approach is the treatment of ties. In the
case of the first objective, a lexicographical1 com-
parison is used to break ties. If there are ties for all
objective values, the second solution is considered a
duplicate. For the rest of objectives, ties are broken
using the output of the previous iteration, i.e., the
order obtained with the previous objective. This is
automatically done by the merge sort4 algorithm.

We now formalise this approach and provide an
step-by-step example to illustrate our algorithm. In
a population P , where each solution contains a
vector of M objective values, the dominance set
of solutions si ∈ P can be obtained by sorting P
iteratively by each objective as follows:

• For the first objective (m = 1), the individuals
are sorted taking into account the objective
function value of the first objective. When there
are ties, a lexicographical order is used to rank
the individuals. Once the population is sorted
by the first objective, each solution keeps its
ordinal position in a variable si.index. The
index is used to identify each solution and to
create the dominance set in each algorithm. It
is worth noting that we do not need to create
ods for the first objective.5 Finally, duplicate
solutions are removed from the population.

• For the second objective (m = 2), individuals
are sorted by the objective function value of
the second objective. In case of a tie, both
solutions maintain the order obtained during
the sorting of the first objective. Next, the
dominance set of all solutions is initialised.
The dominance set of each solution, s.ds, is
composed of the indices contained in the set
ods(s, 2) whose values are lower than the solu-
tion index, s.index, i.e., s.ds = {u|u.index <
s.index and u ∈ ods(s, 2)}. Finally, dominance
between solutions is checked and when there
is no dominance, MNDS stops as all solutions

4Merge sort is a stable sorting algorithm, i.e., when it rearranges the
population and there is a tie between two solutions, the relative position of
both solutions in the population is maintained.

5For the first objective, the index of a solution s ∈ P corresponds with its
ordinal and therefore s.ds = {u|u.index < s.index and u ∈ P}.

TABLE VI
EXAMPLE POPULATION. SORTFIRSTOBJECTIVE()

Population Index
Algorithm steps: s4 = {31,34,34} 0
- Sort population by first s3 = {32,32,31} 1

objective s2 = {33,34,30} 2
- Remove duplicated solutions s5 = {34,30,40} 3
- Assign a solution index s1 = {34,30,41} 4

s7 = {35,31,43} 5
s9 = {35,34,38} 6
s6 = {36,33,32} 7
s8 = {37,36,39} 8
s12 = {37,36,39} duplicated
s10 = {38,38,37} 9
s11 = {39,37,31} 10

belong the first rank.
• For the remaining objectives (1 < m ≤ M ),

we sort the population (previously sorted by
objective m − 1) by each objective m. In case
of a tie, both solutions maintain the order from
the previous (m − 1 objective) sorting. The
dominance set of the i-th solution si, in this
order, is obtained by the ods(s,m) intersected
with the previous dominance set of si, i.e.,
si.ds = ods(si,m) ∩ si.ds. As before, dom-
inance is checked to decide whether to stop
MNDS (all solutions belong to the first rank).

After sorting by the last objective, the dominance
set of each solution, si.ds, contains all the indices of
the solutions that dominate si. The rank of a solution
si ∈ P will be the next rank to the highest rank
of all the solutions sj ∈ si.ds. In case that si.ds is
empty, si is assigned rank 1. Tables VI, VII and VIII
show the result of applying the previous steps to the
example population of Table II. It is worth noting
that when sorting by the first objective, the solutions
s1 and s5 have the same objective function value.
Due to merge sort being a stable sorting algorithm,
when comparing s1 and s5 lexicographically, we
obtain that s5 � s1 and the relationship between
s1 and s5 will be maintained in case of ties when
sorting by the next objectives. The treatment of
duplicated is illustrated with individual s12. In our
example, solution s12 is a duplicate of solution s8
and as a result, it is removed from the population
while carrying out the sorting but added back again
to the population after obtaining the ranking (due
to most MOEAs need to keep their population size
fixed).

A summary of the steps performed by MNDS
with the sample population is shown in Table IX.
The first two columns show the solutions sorted by
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TABLE VII
EXAMPLE POPULATION SORTSECONDOBJECTIVE()

Population Idx ods Sol. DS
Algorithm steps: s5 = {34,30,40} 3 ∅ ∅
- Sort population by s1 = {34,30,41} 4 {3} {3}

second objective s7 = {35,31,43} 5 {3,4} {3,4}
- For each solution: s3 = {32,32,31} 1 {3,..,5} ∅

- Compute s6 = {36,33,32} 7 {1,3,..,5} {1,3,..,5}
dominance set s4 = {31,34,34} 0 {1,3,..,5,7} ∅

- Check global s2 = {33,34,30} 2 {0,1,3,..,5,7} {0,1}
dominance s9 = {35,34,38} 6 {0,..,5,7} {0,...,5}

s8 = {37,36,39} 8 {0,..7} {0,...,7}
s11 = {39,37,31} 10 {0,..,8} {0,...,8}
s10 = {38,38,37} 9 {0,..,8,10} {0,...,8}

TABLE VIII
EXAMPLE POPULATION SORTRESTOFOBJECTIVES()

Population Idx ods Sol. DS
- For obj = 3 to 3: s2 = {33,34,30} 2 ∅ ∅

- Sort population s3 = {32,32,31} 1 {1,2} ∅
- For each sol.: s11 = {39,37,31} 10 {1,2,10} {1,2}

- Compute s6 = {36,33,32} 7 {1,2,10} {1}
dominance set s4 = {31,34,34} 0 {1,2,7,10} ∅

- Check global s10 = {38,38,37} 9 {0,..,2,7,10} {0,..,2,7}
dominance s9 = {35,34,38} 6 {0,..2,7,9,10} {0,..,2}

s8 = {37,36,39} 8 {0,..2,6,7,9,10} {0,..,2,6,7}
s5 = {34,30,40} 3 {0,..2,6,..,10} ∅
s1 = {34,30,41} 4 {0,..3,6,..,10} {3}
s7 = {35,31,43} 5 {0,..4,6,..,10} {3,4}

the first objective and their associated index. The
next four columns show the value of each solution
dominance set after sorting by objectives 2 and 3.
The last two columns show the index and rank
of each solution respectively. To further describe
the example and following the steps previously
described, the dominance set of solution s7, for
example, is obtained as follows:

• Objective 1: The population is sorted (from
lowest to highest) using this first objective.
After sorting the population, a index is assigned
to each solution. In our example, s7 appears
ordered in the fifth position, s7.index = 5. This
means that all solutions with an index value less
than 5 dominate s7 in the first objective. These
solutions are s4.index = 0, s3.index = 1,

TABLE IX
SUMMARY EXAMPLE

Order obj. 1→ Order obj. 2→ Order obj. 3→ Rank
Index Index Sol. DS Index Sol. DS Index Rank

s4 0 3 ∅ 2 ∅ 2 1
s3 1 4 {3} 1 ∅ 1 1
s2 2 5 {3,4} 10 {1,2} 10 2
s5 3 1 ∅ 7 {1} 7 2
s1 4 7 {1,3,..,5} 0 ∅ 0 1
s7 5 0 ∅ 9 {0,..,2,7} 9 3
s9 6 2 {0,1} 6 {0,..,2} 6 2
s6 7 6 {0,...,5} 8 {0,..2,6,7} 8 3
s8 8 8 {0,...,7} 3 ∅ 3 1
s10 9 10 {0,...,8} 4 {3} 4 2
s11 10 9 {0,...,8} 5 {3,4} 5 3

s2.index = 2, s5.index = 3 and s1.index = 4.
• Objective 2: After sorting the population by

objective 2, solutions with indices 3 and 4
dominate s7, as a result, the dominance set of
s7 is initializated as s7.ds = {3, 4}

• Objective 3: After sorting the population by
objective 3, solution s7 is dominated by the
rest of the solutions. Therefore, s7.ds = s7.ds∩
ods(s7, 3) = {3, 4}∩{0, .., 4, 6, .., 10} = {3, 4}.

Finally, the ranks of the solutions are obtained
based on the dominance sets and duplicates are
inserted again with their corresponding rank. In our
example, solution s7 is dominated by solutions with
indices 3 and 4, which are s5 and s1, respectively.
The rank of s7 = Max{R(s5), R(s1)} + 1 =
Max{1, 2}+ 1 = 3.

A. Formalization of the MNDS Algorithm

As it can be observed in Algorithm 1, MNDS
receives the population to sort as the only parameter.
The process followed by MNDS can be divided into
the following four phases:
1) Sort the population by the first objective and

assign the solution ordinal to the index variable
(s.index = ord(s)). Ties are broken using
lexicographical comparison and the duplicated
solutions are moved to a list of duplicates
solutions (Algorithm 1, line 2). This list is
composed of tuples (duplicate solution, original
solution). Note that although this requires more
memory than just keeping the original solution
with a list of duplicates, our solution is faster
because it avoids searching through such list.
The rank of duplicate solutions is assigned at
the end of the Algorithm 1 (line 6).

2) Sort the population by the second objective and
initialize the dominance set of each solution. If
there is an iteration where all the dominance
sets are empty, there is no dominance and
MNDS ends since all solutions belong to the
first rank.

3) Iteratively sort the population by the rest of the
objectives 2 < m ≤ M . In case that in any
iteration all the dominance sets are empty, i.e.
there is no dominance, MNDS ends since all
solutions belong to the first rank.

4) Calculate the rank of each solution.
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Lines 2, 3 and 4 in Algorithm 1 correspond to
the first three phases respectively. These phases are
in turn further described in Algorithms 2, 3 and 4,
respectively. The calculation of the ranking of each
solution (phase 4) corresponds to lines 5 and 6.

Algorithm 1 Merge Non-Dominated Sorting(P )
Input: population P
Output: ranking for each solution R

1: R ← ∅
2: duplicates ← SortFirstObjective(P )
3: if SortSecondObjective(P ) then
4: if SortRestOfObjectives(P ) then
5: R ← GetRanking(P )
6: Update the rank of each duplicates solution with

the rank of its original solution
7: end if
8: end if
9: return R

Algorithms 2, 3 and 4 sort the population P by the
objective O using Algorithm 6, MergeSort(P,O).
As previously stated, this algorithm is based on the
merge sort algorithm. When sorting by the first ob-
jective (O = 1), in case of ties, the lexicographical
comparison is applied (see Algorithm 6 line 2).

The method SortF irstObjective(P ) shown in
Algorithm 2 implements the sorting by the first
objective (phase 1). Line 3 sorts the population P
by its first objective using the lexicographic rule in
case of ties. Next, the loop (from lines 7 to 16)
calculates the index of each solution (lines 8, 10)
and moves the duplicate solutions (see lines 12, 13)
to the duplicates list.

Algorithm 2 SortFirstObjective(P )
Input: population P
Output: population P , duplicate solutions duplicates

1: ods ← ∅ � Dominance set for this objective. ods is
implemented with a bitset

2: duplicates ← ∅
3: MergeSort(P, 1)
4: u ← P [1] � auxiliary solution u
5: ordinal ← 1
6: u.index ← ordinal
7: for s : P do � si ∈ P, ∀i ∈ {2, . . . , |P |}
8: ordinal ← ordinal + 1
9: if s �= u then

10: s.index ← ordinal
11: else
12: duplicates ← duplicates ∪ s
13: P ← P − s
14: end if
15: u ← s
16: end for
17: return P, duplicates

The method SortSecondObjective(P ) shown in
Algorithm 3 implements the sorting by the second
objective (phase 2). The loop (from lines 6 to 8)
initialize the solution dominance set (s.ds) with
solutions in ods with an index lower than s.index.
Note that, at each iteration i, the dominance set ods
contains the solutions that dominate the si solution
for this objective.

Algorithm 3 SortSecondObjective(P )
Input: population P
Output: population P , hasDominance Boolean with whether

there is dominance
1: ods ← ∅ � Dominance set for this objective.
2: hasDominance ← false
3: MergeSort(P, 2)
4: for s : P do
5: s.ds ← ∅
6: if subSet(ods, 1, s.index− 1) �= ∅ then
7: top ← Min(s.index− 1, ods.max)
8: s.ds ← ods.subSet(ods.min, top)
9: hasDominance ← true

10: end if
11: ods ← ods ∪ s.index
12: end for
13: return P, hasDominance

The method SortRestOfObjectives(P ) shown
in Algorithm 4 implements the third phase. The first
loop iterates through all objectives except the first
two. The calculation of the dominance sets is carried
out by the internal loop (lines 7 to 13), which also
evaluates if there is dominance among the solutions
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(line 10). When there is no further dominance, the
method ends.

Algorithm 4 SortRestOfObjectives(P )
Input: population P
Output: population P , hasDominance Boolean with whether

there is dominance
1: hasDominance ← true
2: Obj ← 3
3: while Obj ≤ M ∧ hasDominance do
4: if MergeSort(P,Obj) then
5: hasDominance ← false
6: ods ← ∅ � Dominance set for this objective
7: for s : P do
8: s.ds ← s.ds ∩ ods
9: ods ← ods ∪ s.index

10: if s.ds �= ∅ then
11: hasDominance ← true
12: end if
13: end for
14: end if
15: Obj ← Obj + 1
16: end while
17: return P, hasDominance

The last phase, the calculation of the popu-
lation ranking, is implemented by the method
GetRanking(P ). In this method, the variable
maxRank always contains the highest rank value
of all evaluated solutions. Note that the rank of a
solution s is always in the range [1,maxRank+1].
The internal loop (lines 6 to 16) traverses the
dominance set s.ds, obtaining the rank (iR[i], line 7)
of each solution in the current dominance set. If that
value is greater than current rank, the rank value
is increased to iR[i] + 1 (line 8). Likewise, if the
value of the rank variable is greater than maxRank
(line 10), the rank value is assigned to maxRank
and the search ends. Note that all dominance sets
contain indices to solutions and the rank iR[] is
calculated taking into account these indices. The
ranking of all solutions is stored in R in line 13.

B. Implementation considerations

We make use of bitsets to deal with sets opera-
tions. The motivation behind using bitsets to repre-
sent sets is their capability of maintaining the set
sorted to facilitate the insertion of elements with a
complexity of O(1) while in other implementations,
such as lists, their cost is O(logN). It is worth
noting that we use sorted sets to speed up the
intersection operation between sets. Furthermore,

Algorithm 5 GetRanking(P )
Input: Population P
Output: Population Ranking R

1: R ← ∅
2: iR ← ∅ � Ranking considering solution indices
3: maxRank ← 0
4: for s : P do
5: rank ← 0 � Ranking of population solutions
6: for i : s.ds do � for each solution index i in s.ds
7: if iR[i] ≥ rank then
8: rank = iR[i] + 1
9: end if

10: if rank > maxRank then
11: maxRank ← rank
12: iR[i] ← rank
13: R[s] ← rank
14: break
15: end if
16: end for
17: end for
18: return R

Algorithm 6 MergeSort(P,O)
Input: population P , objective O
Output: population P sorted by objective O,

isSorted Boolean with whether input P is already ordered
1: if O = 1 then
2: isSorted ← Sort P by objective O. In case of ties,

apply lexicographical order for objectives O + 1 to M
3: else
4: isSorted ← Sort P by objective O.
5: end if
6: return P , isSorted

our implementation of bitsets considers the range
of the values in the set [min,max], the intersection
between two sets a and b is only applied within the
range [Max(a.min, b.min),Min(a.max, b.max)].
Therefore, the intersection in Algorithm 4, line 8
will not be calculated if the solutions in ods do not
dominate the solution s.

C. Computational and Spatial Complexity

MNDS is based on the merge sort algorithm (see
Algorithm 6) which has a best and worst computa-
tional complexity of O(NlogN). The computational
complexity of MNDS (Algorithm 1), in the worst
case scenario, is the sum of the complexities of the
methods shown in Algorithms 2, 4 and 5, which are
calculated as follows:

• Algorithm 2: The worst case belongs to the
sorting which has a complexity of O(NlogN).
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• Algorithm 3: Sorting by objective 2 has a
complexity O(NlogN). The loop initializes the
dominance set (s.ds) of all solutions, so its
complexity is O(N). Each s.ds is initializated
with the indices of those solutions in ods whose
index is less than s.index. The worst case
occurs when the first solution dominates the
second, the second to the third and so on.
In that case, the complexity is O(N), so the
complexity of Algorithm 3, in the worst case,
is O(N2). The best case occurs when there is no
dominance between solutions, or each solution
is dominated only by another. In that case, the
initialization of every s.ds is O(1), and the best
case of Algorithm 3 is O(NlogN).

• Algorithm 4: The inner loop calculates the dom-
inance of all solutions in P (O(N)), which com-
putes the intersection s.ds∩ods (O(N)) so this
loop has a worst complexity of (O(N2)). The
external loop sorts (O(NlogN)) the population
P for each objective except the first two, i.e.,
objectives 3 to M . Therefore, the complexity for
this algorithm is O((M−2)(NlogN+N2)). The
best case occurs when there is no dominance be-
tween solutions, or each solution is dominated
only by another. In that case, the calculation
of the intersection s.ds ∩ ods has a complexity
(O(1)) and the best case of Algorithm 4 is
O(NlogN). Please, note that Algorithm 4 also
performs the early detection of non-dominance,
in order to minimize the calculations as much
as possible.

• Algorithm 5 is composed of two nested
loops, so its worst computational complexity is
O(N2). The best case of computational com-
plexity occurs, once again, when each solution
is dominated by another solution. In that case,
the complexity is O(N).

Therefore, the worst complexity of MNDS is the
sum of O(NlogN), O(N2), O((M − 2)(NlogN +
N2)), and O(N2) which equals to O(MN2). The
best case happens when there is no dominance
among the solutions. In this case, at the end of
the Algorithm 3 all the dominance sets of the
solutions are empty. In this case MNDS ends and
its complexity is O(NlogN).

It is important to emphasize a difference between
our proposal and the state-of-the-art algorithms. In
our case, when the number of fronts decreases the

algorithm tends to approximate to the behaviour of
the best case. The spatial complexity is determined
by the size of the dominance sets of each solution
(|si.ds| = |P |) which corresponds to O(N2).

IV. EXPERIMENTAL WORK

A. Implementation details

To validate the performance of MNDS6, we com-
pare the computational time of MNDS with six
state-of-the-art algorithms: BOS [3], HNDS [13],
ENS-SS [9], ENS-BS [9], ENS-NDT [10] and
DDA-NS [12]. To do so, we use the BOS imple-
mentation provided by the authors7. For the ENS-
SS and ENS-BS algorithms, the implementations
provided by Buzdalov8 were used with minimal
modifications. ENS-NDT was implemented in Java
from the C# source code provided by the authors.
In addition, we implemented the HNDS and DDA-
NS algorithms from scratch. In addition to computa-
tional time, in some experiments we also count the
number of comparisons of objective function values,
as it has been done in similar studies. We have to
point out that most of the computing time in MNDS
is not invested in comparing the objective function
values of the solutions, so a good performance of
our algorithm is expected.

The implementation of all the algorithms was
done in Java without using multithreading nor spe-
cific CPU/GPU features as SIMD9 or similar.

B. Experimental settings

In order to compare the algorithms previously
discussed, four types of experiments were carried
out:
1) Varying the number of objectives for a fixed

number of solutions, using the BOS dataset7.
2) Varying the population size for a fixed number

of objectives, using again the BOS dataset.
3) Varying the number of objectives for a fixed

population size, using datasets generated by
NSGA-II. In this case, we have additionally
obtained the number of comparisons made by
each algorithm.

6MNDS is integrated into the jMetal framework: https://github.
com/jMetal/jMetal

7https://github.com/Proteek/Best-Order-Sort
8https://github.com/mbuzdalov/

non-dominated-sorting
9Single Instruction, Multiple Data.
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4) Executing the algorithms within the NSGA-
II algorithm. To do so, we have replaced the
original FNDS algorithm in NSGA-II for each
of the evaluated algorithms.

The original BOS dataset contains 10,000 solu-
tions with up to 10 objectives; we extended it to 20
objectives, generating the new values randomly.

In experiment 1), the algorithms were executed
varying the number of objectives between 3 and 20,
with population sizes of 500, 1,000, 5,000. In exper-
iment 2), the size of the population ranged between
500 and 10,000 with an increase of 1,000 for 5, 10,
15 and 20 objectives. For experiment 3), the NSGA-
II [1] implementation from jMetal [15] was used to
generate 16 datasets obtained after 500 generations
for the DTLZ1 [16], DTLZ2 [16], WFG1 [17] and
WFG2 [17] problems with 5, 10, 15 and 20 objec-
tives. The population size used was 1000 solutions.
All the algorithms were executed 5,000 times under
the same conditions using the execution time as
performance measure. The final execution time was
calculated averaging those 5,00010 executions. It is
worth noting that the NSGA-II was used with the
same problems and applying the same configuration
as the one defined in the paper describing BOS. In
this way, when comparing MNDS against BOS, we
are also comparing MNDS, indirectly, with the other
algorithms that were also compared with the BOS
algorithm, i.e., fast non-dominated sorting, deduc-
tive sort, corner sort and divide-and-conquer sort.
Finally, in experiment 4, NSGA-II was configured
to run for 2,000 generations with a population size
of 1,000 solutions. The crossover operator used was
the simulated binary crossover, with a distribution
index value of 20 and a crossing probability of 90%.
As a mutation operator we used the polynomial
mutation. All the executions used the same random-
seed, and therefore, with the same initial population.
The DTLZ and WFG algorithms were configured
for 5 objectives.

The computer and software versions used have the
following features:

• Debian GNU/Linux 9.0. 64 bits architecture.
• 4 x Intel R� CoreTM i5 CPU M-460. 2.53GHz.
• 8GB of RAM Memory.
• Java version: 1.8.0-121, 64 bits.

10This number of executions mitigates possible differences in runtime
values due to the behavior of the just-in-time compiler and the garbage
collector of Java.

C. Results

The execution times obtained in the experiments,
by all the algorithms, but DDA-NS, are shown in
Figures 2, 3, 4 and 5. We have excluded DDA-
NS from the figures due to the large differences
in performance with the rest of the algorithms. The
MNDS algorithm was designed to work efficiently
with large population sizes as well as with a large
number of objectives. As a result, the algorithm
maintains a very high performance even if we
increase the number of objectives or the size of
the population. With few objectives (≤ 5) and/or
a small number of solutions, the behavior of the
compared techniques is similar, except for HNDS
and DDA-NS which perform worse than the rest.
However, it can be observed in the figures that (i)
as the number of objectives increases or the size of
the population increases, the rest of the algorithms
suffer a performance degradation; (ii) only BOS and
ENS-NDT algorithms present a performance close
to MNDS when using the BOS dataset.

The computing times obtained with the datasets
generated by NSGA-II in experiment 3, indicate
that the differences with the other algorithms are
noticeable. The results of experiment 3 can be
observed in Figure 4. As stated in Section III-C,
MNDS tends to approximate to the behaviour of the
best case when the number of fronts decreases. Such
behaviour can be observed in Figure 5 where MNDS
outperforms the rest of the algorithms when they are
running within NSGA-II. We have to note that in
this experiment we are reporting the execution time
of each NSGA-II iteration as performance measure;
we made 10 independent runs but the differences
in the running times were negligible (the standard
deviations were very small) to be observed in the
graphs, so we decided to plot a single value.

The number of comparisons made by each algo-
rithm in experiment 3) is shown in Table X, where
we can observe that MNDS requires a number of
comparisons that is at least one order of magni-
tude lower than the best of the other algorithms
compared. This result confirms the expectations we
claimed in Section IV-A

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new
and efficient algorithm for computing the non-
dominated sorting called Merge Non-Dominated
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Fig. 2. Experiment 1. Results with a fixed number of solutions, and increasing the number of objectives, using the BOS dataset.
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Fig. 3. Experiment 2. Results with a fixed number of objectives, and increasing the number of solutions, using the BOS dataset.
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Fig. 4. Experiment 3. Results with the Dataset Generated by NSGA-II with a population of 1,000 solutions after 500 generations
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Fig. 5. Experiment 4. Results executing the algorithms within NSGA-II for 2,000 generations with a population of 1,000 solutions.
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TABLE X
EXPERIMENT 3. NUMBER OF COMPARISONS MADE BY THE ALGORITHMS

WITH THE DATASET GENERATED BY NSGA-II WITH A POPULATION OF
1,000 SOLUTIONS AFTER 500 GENERATIONS.

Obj BOS ENS-SS ENS-BS ENS-NDT HNDS DDA-NS MNDS

D
T

L
Z

1 5 5.37e+08 2.40e+06 2.40e+06 4.20e+08 1.97e+06 5.79e+07 6.84e+04
10 5.08e+08 3.83e+06 3.83e+06 1.68e+09 2.68e+06 1.20e+08 1.34e+05
15 7.10e+08 2.40e+06 2.40e+06 6.53e+08 1.97e+06 5.83e+07 6.88e+04
20 6.13e+08 6.78e+06 6.78e+06 2.34e+09 4.15e+06 2.41e+08 2.66e+05

D
T

L
Z

2 5 6.65e+08 2.50e+06 2.50e+06 6.65e+08 2.01e+06 5.96e+07 6.75e+04
10 5.31e+08 3.70e+06 3.70e+06 9.71e+08 2.61e+06 1.21e+08 1.34e+05
15 4.88e+08 4.26e+06 4.26e+06 1.35e+09 2.89e+06 1.81e+08 2.00e+05
20 5.31e+08 5.39e+06 5.39e+06 2.10e+09 3.46e+06 2.41e+08 2.67e+05

W
FG

1 5 5.05e+08 2.26e+06 2.26e+06 7.60e+08 1.94e+06 5.46e+07 7.04e+04
10 3.56e+08 2.86e+06 2.86e+06 6.87e+08 2.19e+06 1.18e+08 1.35e+05
15 3.50e+08 3.39e+06 3.39e+06 6.51e+08 2.46e+06 1.77e+08 2.02e+05
20 3.75e+08 2.88e+06 2.88e+06 5.30e+08 2.20e+06 2.38e+08 2.57e+05

W
FG

2 5 4.97e+08 2.12e+06 2.12e+06 3.21e+08 1.82e+06 6.00e+07 6.82e+04
10 7.45e+08 3.80e+06 3.80e+06 1.50e+09 2.66e+06 1.20e+08 1.35e+05
15 9.20e+08 5.48e+06 5.48e+06 2.77e+09 3.50e+06 1.80e+08 2.01e+05
20 1.18e+09 9.07e+06 9.07e+06 5.28e+09 5.30e+06 2.40e+08 2.54e+05

Sorting (MNDS) based on the merge sort algorithm.
The experimental work showed that MNDS strongly
outperforms the current state of the art algorithms in
terms of running time and number of comparisons
carried out.

As future work we plan to enhance our approach
in several ways. Particularly, we think that the algo-
rithm used to calculate the ranking of each solution
from the domination sets could be improved by the
use of different search methods and data structures.
For example, we could use the Timsort algorithm
instead of merge sort, and the sequential search used
in finding the ranking of each solution could be
replaced by a binary search or a k-d tree. We will
also explore issues such as that the performance
of the MOEAs using MNDS will increase as the
number of non-dominated solutions also increases.
This circumstance occurs in all MOEA algorithms,
i.e., as the generations advance, the number of non-
dominated solutions also increases. Finally, we will
also consider to adapt our algorithm to be used in
steady-steady evolutionary algorithms.
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