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Abstract

Parametric software effort estimation models consisting on a single mathematical relationship suffer from poor adjustment and
predictive characteristics in cases in which the historical database considered contains data coming from projects of a heterogeneous
nature. The segmentation of the input domain according to clusters obtained from the database of historical projects serves as a tool
for more realistic models that use several local estimation relationships. Nonetheless, it may be hypothesized that using clustering
algorithms without previous consideration of the influence of well-known project attributes misses the opportunity to obtain more
realistic segments. In this paper, we describe the results of an empirical study using the ISBSG-8 database and the EM clustering
algorithm that studies the influence of the consideration of two process-related attributes as drivers of the clustering process: the use
of engineering methodologies and the use of CASE tools. The results provide evidence that such consideration conditions signifi-
cantly the final model obtained, even though the resulting predictive quality is of a similar magnitude.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The Parametric Estimating Handbook (PEH) (PEI,
1999) defines parametric estimation as ‘‘a technique
employing one or more cost estimating relationships
(CERs) and associated mathematical relationships and
logic’’. These techniques are nowadays widely used to
measure and/or estimate the cost associated with soft-
ware development (Boehm et al., 2000a). CERs are
mathematical devices that obtain numerical estimates
from main cost drivers that are known to affect the effort
0164-1212/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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or time spent in development. According to the PEH,
these drivers are the controllable system design or plan-
ning characteristics that have a predominant effect on
system cost. Parametrics uses the few important param-
eters that have the most significant cost impact on the
software being estimated. Nonetheless, even though
the final CERs should use only the most significant
parameters, it is often also useful to consider other
parameters as a foundation for the logics of deriving
the mathematical relationships from empirical data.
The notion of ‘‘cost realism’’ as described in the PEH
clearly points out to this dimension of reasonable and
justified usage of data.

One important aspect of the process of deriving mod-
els from databases is that of the heterogeneity of data.
Heteroscedasticity (non-uniform variance) is known to
be a problem affecting data sets that combine data from
heterogeneous sources (Stensrud et al., 2002). When

mailto:jjcg@uah.es
mailto:msicilia@uah.es
mailto:msicilia@uah.es
mailto:miguel.garre@uah.es
mailto:d.rodriguez-garcia@rdg.ac.uk
mailto:d.rodriguez-garcia@rdg.ac.uk


2

354 J.J. Cuadrado-Gallego et al. / The Journal of Systems and Software 79 (2006) 353–361
using such databases, traditional application of curve
regression algorithms to derive a single mathematical
model results in poor adjustment to data and subse-
quent potential high deviations. This is due to the fact
that a single model can not capture the diversity of dis-
tribution of different segments of the database points.
As an illustrative example, the straightforward applica-
tion of a standard least squares regression algorithm
to the points used in the Reality tool of the ISBSG-8
database1 distribution results in measures of MMRE =
2.8 and PRED(0.3) = 23% (MMRE and PRED mea-
sures are discussed later in this paper), which are poor
figures of quality of adjustment.

The use of clustering techniques has been described as
a solution to provide more realism to parametric models
by decomposing the model in a number of sub-models,
one per segment, that are used to estimate points that
are near them (Garre et al., 2004). Related work in-
cludes the use of different clustering approaches to
several aspects of software management, including soft-
ware estimation, software quality and software metrics.
Concretely, Xu and Khoshgoftaar (2004) use the fuzzy
c-means algorithm for variable, the partitioning of the
data into a number of clusters based on experiences.
Pedrycz and Succi (2005) also use fuzzy c-means as a
tool to derive prototypes related to software code mea-
surements. Dick et al. (2004) use the same algorithm
for a similar setting in a knowledge discovery study.
Nonetheless, these approaches do not deal with the het-
erogeneity of the project databases they use. Lung et al.
(2004) have used the numerical taxonomy method for
the clustering of software components at several devel-
opment phases, but these analysis are driven by the
structure of the code, which is rarely available in public
historical software project databases. Oligny et al.
(2000) approach estimation studies by the partitioning
of the project database into ‘‘more homogeneous sub-
sets’’. This study can be considered as supporting evi-
dence for the segmentation approach described in this
paper, even though the partitioning of the data is carried
out without using a clustering algorithm. Preliminary
data for the use of clustering following the same consid-
erations is described in Garre et al. (2004).

In spite of the scattered available evidence regarding
the practical usefulness of partitioning historical dat-
abases, the use of clustering techniques for the problem
described has to date the drawback of not being explica-
tive of the composition of the segments, i.e., the many
concrete factors regarding characteristics of the develop-
ment process and context are not considered as determi-
nants of the resulting segments. On the contrary, these
techniques apply a ‘‘blind’’ approach to characteristics
that may be considered as relevant a priori.
1 http://www.isbsg.org/.
In this paper, we explore an alternative technique in
which some parameters selected purposely are used a pri-
ori to drive the process of subsequent clustering. Con-
cretely, a case study using the ISBSG-8 database is
described, which evaluates the influence of the pre-con-
figuration of segments according to the two process-re-
lated parameters of using methodologies (METHO)
and using support tools (CASET). These factors are con-
sidered in classical public models of parametric estima-
tion to have an influence in the estimation process, e.g.,
the COCOMO 81 model considers them under the
‘‘modern programming practices’’ (MODP) and ‘‘use
of software tools’’ (TOOLS) attributes (Boehm, 1981).
Its update version COCOMO–II (Boehm et al., 2000b)
also considers software tools as a cost driver, even
though the rating levels have changed due to changes
in development technology (Boehm et al., 1995). In con-
trast, the definition of ‘‘modern programming practices’’
has even evolved into a broader ‘‘mature software engi-
neering practices’’ term exemplified by the Software
Engineering Institute Capability maturity Model (Paulk
et al., 1993) and comparable models such as ISO 9000-3
and SPICE. The cost estimation effects of this broader set
of practices are addressed in COCOMO 2.02 via the
‘‘process maturity’’ exponent driver.

Existing proprietary parametric models also take into
account these two factors. For example, SEER-SEM3

describes a feature to optimize the estimations called
‘‘development standard’’ which reflects the use a meth-
odology in module development, and it also uses a
parameter that takes into account the use of tools in
the development. Other extended proprietary model,
PRICE-S4 also consider these two factors in order to
correct the initial estimations. PRICE-S CPLX1 vari-
able captures the CASET parameter together with other
factors as personnel skills or familiarity of the personnel
with the product. PRICE-S also considers the use of sev-
eral process models as Waterfall, Spiral, Incremental
development and US DoD MIL-STD-2167a process,
as an implicit consideration of development methods.

The segmented parametric estimation model de-
scribed in this paper demonstrates that the partitioning
of the project database before the calibration process re-
sults in better predictive quality, in addition to constitut-
ing by itself an important step into increased cost
realism, since it considers the divergences in variance
as a characteristic of the model. In addition, the consid-
eration of specific well-known software attributes en-
hances the explicative properties of the segmented
model. These two elements are relevant as a complement
COCOMO 2.0 was the name of the COCOMO-II model before its
definitive release.

3 http://www.galorath.com.
4 http://www.pricesystems.com/.
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to existing calibration techniques for large and heteroge-
neous project databases.

The rest of this paper is structured as follows. Section
2 describes conditional parametric models for discrete
values. Then, the concrete evaluation of the technique
is reported in Section 3. Finally, Section 4 provides con-
clusions and further directions for research.
5 http://www.isbsg.org/.
2. Segmented cost-estimation relationships

A standard parametric model is obtained from the
entire project database using conventional curve regres-
sion techniques relating effort or schedule predictions to
a number of cost drivers ci 2 C. Expression (1) shows
one the most usual concrete models for the relationship
between size (expressed in function point estimates) and
total effort measured for example in total hours or effort
spent.

e ¼ a � fpb generally e ¼ f ðciÞ; C ¼ fcig ð1Þ
Segmented models replace the single-equation ap-

proach with a collection of mathematical models fj, each
of them associated to the definition of a segment si 2 S,
as expressed in (2).

e ¼ fjðciÞ; j ¼ cðciÞ with segmentðfjÞ ¼ sj ð2Þ
Segment definitions may be expressed in different

ways, depending on the clustering technique used with
the project database. The mapping function c(ci) is
responsible for selecting the function for each particular
project being estimated, and it proceeds by finding out
the segment (cluster) that best characterizes the project
under consideration. The use of this model was demon-
strated in Garre et al. (2004), using the EM clustering
algorithm with the ISBSG-8 database without any previ-
ous explicit breakdown of the data. Our hypothesis in
this paper is that this ‘‘blind’’ approach could be im-
proved by a prior decomposition of the historical data-
base of projects according to a set of parameters that are
known or believed to affect the effort spent. This kind of
procedures (we well call them ‘‘tailored (conditional)
segmented models’’ from here on) serves the objective
of assessing the actual influence of the selected parame-
ters in the model, and they may eventually lead to clus-
ters that better reflect the database characteristics, i.e.,
they are a tool to improve the ‘‘cost realism’’ of the
models.

A set P of parameters are selected as factors deter-
mining the derivation and use of the parametric model.
In this paper we only consider variables with discrete,
nominal values, but the approach could be extended to
discretized numerical attributes as well.

P ¼ fp1; . . . ; png; pi 62 C; typeðpiÞ ¼ ðvi
1; . . . ; vi

ki
Þ
ð3Þ
Then, the clustering process is applied to partitions of
the original project database obtained from the possible
combination of discrete values for all the elements in P,
i.e., any of the elements in the cartesian product
p1 · � � �pn. Obviously, the number of parameters and la-
bels considered should be kept small to make the proce-
dure viable. In practice, the parameters considered
would require a previous assessment of relevance and
of their relevance to produce significant partitionings.
3. Evaluation

The parameters selected for the case study are the uti-
lization of CASE tools (CASET) and the application of
a methodology (METHO) in the project, which are fac-
tors considered in existing estimation models (Boehm,
1981). For example, Baik et al. (2002) estimates the
influence of CASE tool usage in final effort of 1.5 in
productivity.

The ISBSG-8 project database was used for the
empirical study. A correlation analysis of these two vari-
ables with regards to effort and size measured in func-
tion points yield values below ±0.1, so that there is no
evidence of strong dependency. The correlation coeffi-
cient CASET-METHO is positive 0.12, which can not
be interpreted as a strong dependency either.

It should be noted that the model used here could also
be used with other existing defined parametric models.
For example, if the COCOMO-II model was selected,
the clustering phase should take place before the calibra-
tion process is carried out. Moreover, the calibration
should be carried out for each of the clusters obtained,
and the analysis of influence of cost drivers could be used
to discard or include some of them in the final model.

The study reported here attempts to gather evidence
about the influence of well-known process or project
attributes in the creation of segmented software estima-
tion models. The empirical method proceeds by carrying
out two variants of the clustering process. On the one
hand, all the projects in the database were used as input
to a one-step ‘‘blind’’ clustering process corresponding
to expression (2), without considering any process or
project attribute. On the other hand, the same process
was applied to selected subsets of data (‘‘tailored’’) cor-
responding to the pairs of label values of variables
METHO and CASET, as expressed in (3). The rest of
this section reports the results and discussion.

3.1. Data preparation

The entire ISBSG-8 database5 containing informa-
tion about 2028 projects was used as the project

http://www.isbsg.org/


Table 1
Characteristics of the model for the entire database (without
clustering)
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database. The database contained information about
size, effort and many other project characteristics. The
first cleaning step was that of removing the projects with
null or invalid numerical values for the fields effort
(‘‘Summary Work Effort’’ in ISBSG-8) and size (‘‘Func-
tion Points’’). Then, the projects with ‘‘recording meth-
od’’ for total effort other than ‘‘staff hours’’ were
removed. The rationale for this is that the other methods
for recording were considered to be subject to subjectiv-
ity. For example, ‘‘productive time’’ is a rather difficult
magnitude to assess in a organizational context.

Since size measurements were considered the main
driver of project effort, the database was further cleaned
for homogeneity in such aspect. Concretely, the projects
that used other size estimating method (‘‘Derived count
approach’’) than IFPUG, NESMA, Albretch or Dreger
were removed, since they represented smaller portions of
the database. The differences between IFPUG and
NESMA methods are considered to have a negligible
impact on the results of function point counts (NESMA,
1996). Counts based on Albretch techniques were not re-
moved since in fact IFPUG is a revision of these tech-
niques, similarly, the Dreger method refers to the book
(Dreger, 1989), which is simply a guide to IFPUG
counts.

3.2. Procedure

The unsupervised EM clustering algorithm (Demp-
ster et al., 1977) was selected based on the evidence of
its appropriateness for the task reported elsewhere
(Garre et al., 2004). Nonetheless, the standard EM
implementation used (the one included in the WEKA
Java libraries)6 assumes independent input variables,
which seems not justified given the various interrelation-
ships that common project attributes hold with each
other. To overcome this potential problem, a variant
of the EM algorithm was coded as a C program, intro-
ducing correlation matrices in the process of clustering.

The procedure for two parts of the study consisted in
the following steps:

• In the ‘‘blind’’ clustering process, the entire database
was given to the modified version of the EM
algorithm.

• In the ‘‘tailored’’ clustering process, four partitions
were prepared from the database, corresponding to
each of the possible boolean value combination of
the parameters considered. Projects with missing val-
ues in any or both of these parameters were not con-
sidered, which resulted in a significantly smaller
databases. In the case of CASET, only the ‘‘Upper
CASE’’ attribute was used. The reason for this was
6 http://www.cs.waikato.ac.nz/ml/weka/.
twofold. First, the other CASE categories resulted
in small sized categories. And second, the CASE cat-
egories were not considered similar enough to con-
sider them together, since ‘‘Analysis and Design’’
tools provide a very different kind of automated sup-
port than, for example, coding support tools.

In both parts of the study, the models obtained from
regression techniques were subject to cross-validation
following standard practices. The data assigned to each
cluster was randomly split into two sets called training
(t) and validation (v), respectively containing a 70%
and a 30% of the data. Then, the measures for each clus-
ters are computed on both sets, as a standard means to
validate the goodness of adjustment. The measures of
prediction accuracy used were standard MMRE and
PRED(0.3) which are commonly accepted measures that
reflect different aspects of the models (Dolado, 2001).
Mean magnitude of relative error (MMRE) is defined
as (Conte et al., 1986)

MMRE ¼ 1

n

Xn

i¼1

ei � bei

ei

����
���� ð4Þ

where ei is the actual value of the variable and bei its cor-
responding estimate, and n is the number of observa-
tions. Thus if MMRE is small, then the predictions
can be considered as good.

Prediction at level p where p is a percentage, is defined
as the quotient of number of cases in which the estimates
are within the p absolute limit of the actual values, di-
vided by the total number of cases. For example,
PRED(0.2) = 70 means that 70% of the cases have esti-
mates within the 20% range of their actual values.

Additionally, a small number of outliers have been
removed after checking of the distance from the mean
of the clusters, as it is also common practice.

For comparison purposes, an overall model (1) was
obtained from the entire ISBSG-8 database. The mea-
sures of adjustment for this model with and without
cross-validation are showed in Table 1.

As it can be appreciated in the numbers in Table 1,
the predictive properties of a single-relationship model
justifies the search for alternative parametric ap-
proaches. Discussions on heterodestacity (Stensrud et
al., 2002) point out that clustering algorithms that deal
with measures related to variance could be candidates
to break down the problem according to data
characteristics.
MMRE PRED(0.3) a b

With c.v. 2.81 0.23 7.6 1.07
Without c.v. 0.88 0.027 14.5 0.4615

http://www.cs.waikato.ac.nz/ml/weka/


Table 2
Blind clustering results and adjustment coefficients

Cluster # # points MMRE
[t/v]

PRED(0.3)
[t/v]

a b

1 152 0.5/0.51 0.49/0.55 88.37 0.2883
2 183 0.38/0.45 0.6/0.67 1058 �0.1557
3 343 0.3/0.33 0.6/0.52 601.5 0.1825
4 226 0.36/0.48 0.5/0.56 7.552e4 �0.7427
5 115 0.87/0.89 0.43/0.32 3.451e6 �1.09
6 365 0.26/0.67 0.75/0.73 12,440 �0.2624
7 209 0.23/0.21 0.67/0.71 9213 �0.03311
8 228 0.97/0.96 0.35/0.36 4.443e6 �0.8956
9 96 0.66/0.59 0.26/0.37 2.528e8 �1.218
10 29 0.76/0.68 0.1/0.28 3.210e10 �1.539

Overall 0.53/0.58 0.48/0.51
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3.3. Results and discussion

Fig. 1 depicts in loglinear scale the clusters obtained
with the ‘‘blind’’ procedure, along with the overall
non-cross-validated curve which parameters are pro-
vided in Table 1. Table 2 provides partial and average
measures for each of the ten clusters. Globally, it can
be appreciated that it provides much better adjustment
than overall models. However, it should be noted that
the clustering process could be applied recursively in
several steps to improve adjustment, as described in
Garre et al. (2004), but this is not relevant for our pres-
ent comparative study.

Figs. 2–4 depict in loglinear scale the clusters ob-
tained with the ‘‘tailored’’ procedure, and Table 3 pro-
vides the adjustment measures for the ‘‘tailored’’
procedure, organized according to (METHO, CASET)
pairs. Comparing the results by cluster in both cases,
it can be appreciated that the tailored technique results
in clusters with a size below or equal 10. These are pre-
cisely the clusters that have the worst adjustment prop-
erties. In the case of the clusters for the set (nm, c), the
two clusters can be merged, resulting in curve parame-
ters a = 54.49 and b = 0.6765, with MMRE[t/
v] = 0.66/0.53 and PRED(0.3)[t/v] = 0.27/0.66. In the
case of the (m, c) number 3 cluster, the cluster can be
simply discarded, since the other two clusters in the set
still provide two divergent characterizations. The result-
ing overall measure after these two changes is showed in
Table 3 with the label Overall(*). In addition, it should
be noted that the average predictive quality for the
(nm, nc) set is significantly better.

An important qualitative issue that should also be
considered is that the category (nm, c) represents pro-
 10
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blind clu

Fig. 1. Clusters obtained throug
jects in which an upper-CASE tool was used, but no
methodology was followed (including methods devel-
oped ‘‘in-house’’). This seems an uncommon configura-
tion for projects, and in fact, the number of projects
registered is small, and their high dispersion results in
poor adjustment. This has lead us to discard this cate-
gory from the analysis. The (m, c) category has also a
small number of points which also result in small clus-
ters and worse adjustment measures. Nonetheless, the
parametric models obtained are fairly different to those
of the other clusters.

The average measures of adjustment for the two stud-
ies can be considered as of a comparable magnitude. In
consequence, a first quantitative conclusion is that the
introduction of a priori knowledge result in similar over-
all predictive characteristics, in the case of METHO and
CASET (even though the size of the database used in the
second study is significantly). Nonetheless, an analysis
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of the form of the clusters obtained leads to a different
view on the data.

The first important finding of the comparison is that
the clusters from different a priori partitions have a con-
siderable amount of overlapping, which is consistent
with the hypothesis that there is not a correlation be-
tween size and use of CASE tools or methodologies,
i.e., they are revealing underlying aspects of the process
that are significant to the creation of realistic parametric
models. This consideration raises the need for a system-
atic study of the potential impact of other variables,
since the cost realism of the models could be improved
through such studies.
In second place, if the ‘‘blind’’ and ‘‘tailored’’ proce-
dure would have resulted in clusters with large degrees
of overlapping, it may be argued that the differences
are not so relevant. Fig. 5 provides an illustration that
evidences that this is not the case. In Fig. 5, the clusters
c1–c5 are the five first ‘‘direct’’ clusters, and they are put
into contrast with the three first clusters of the (m, nc)
‘‘tailored’’ category. The rectangles are computed by
obtaining the average of each cluster, and adding and
subtracting the standard deviation to that ‘‘center
value’’, thus roughly characterizing the area of the
points that would be considered as part of the cluster.
It can be appreciated that clusters c1 and c2 are to a
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Table 3
Tailored clustering results and adjustment coefficients

METHO, CASET Cluster # # points MMRE [t/v] PRED(0.3) [t/v] a b

nm, nc 1 33 0.39/0.3 0.375/0.55 229.7 0.2009
nm, nc 2 39 0.26/0.3 0.71/0.45 873.9 0.2014
nm, nc 3 28 0.42/0.31 0.45/.625 87,640 �0.4326
nm, nc 4 19 0.57/0.7 0.23/0.33 3.423e6 �0.7347
nm, c 1 10 0.31/0.4 0/0.33 142.7 0.3985
nm, c 2 9 0.42/1.2 0.5/0 100.7 0.7064
m, nc 1 61 0.76/0.46 0.35/0.3 178.4 0.1841
m, nc 2 47 0.66/0.74 0.41/0.46 3497 0.09716
m, nc 3 116 0.26/0.23 0.6/0.49 699.9 0.202
m, nc 4 78 0.27/0.19 0.62/0.6 1356 0.2508
m, nc 5 69 0.46/0.66 0.43/0.44 35120 �0.2503
m, nc 6 29 0.37/0.87 0.4/0.33 4.565e5 �0.4006
m, c 1 18 0.51/0.66 0.33/.16 0.147 1.527
m, c 2 20 0.54/0.64 0.47/0.4 2297 0.05899
m, c 3 9 0.26/1.71 0.66/0 1.572 1.242

Overall 0.43/0.56 0.44/0.36

Overall(*) 0.49/0.51 0.44/0.43
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great extent included in cluster 1 of (m, nc). This may be
interpreted as a similarity between the two procedures,
since the mnc1 cluster could be subject to an additional
clustering, resulting in two partitions roughly equivalent
to c1 and c2. Nonetheless, the same pattern does not oc-
cur for the rest of the clusters. It is particularly relevant
the case of cluster c5, which overlaps to some extent
mnc2 but also mnc3 and others, and it does so with a
different configuration with respect to deviations on ef-
fort. An analysis of the degree of overlapping of clusters
using the respective c(ci) procedures leads to the conclu-
sion that not in all the cases the segments can be consid-
ered as similar or as decompositions of other.
Another interesting analysis in the same direction can
be appreciated in Fig. 3. The curve fitted to cluster (m,
nc) number 4 is compared with the overlapping ‘‘direct’’
cluster number 6 (both of them with reasonably good
adjustment measures as can be appreciated in the tables
above). The differences between the two models are in-
verse in their growth, which indicates divergent consid-
erations on economies of scale (Dolado, 2001). This
aspect provides an stronger evidence that the use of a
priori parameters bring up aspects that are not consid-
ered in the blind approach.

In summary, the actual models that would be used in
each of the approaches differ significantly. This points
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Fig. 5. Overlapping of ‘‘direct’’ clusters 1–6 and ‘‘tailored’’ clusters (m, nc) 1–3.
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out that the use of variables actually has a significant
influence in the resulting models.
4. Conclusions and future work

The use of segmented models in parametric software
cost estimation provides an alternative to single-relation
models for input domains that are large and heteroge-
nous. Segments can be obtained through clustering pro-
cedures that consider project distributions and
divergences in variance. Even though size is considered
to be the main driver of effort in software development,
other factors have also a significant influence. The com-
parative study described in this paper has provided
evidence about the influence of considering two well-
known process-related attributes as determinants of
the clustering process. Even though the measures of
adjustment in the ‘‘direct’’ and ‘‘tailored’’ approaches
do not differ significantly, the properties and form of
the clusters and models obtain are not assimilable to
the same underlying characteristics. This suggests that
segmented models should first proceed by assessing po-
tential drivers of the clustering process to obtain more
realistic estimation frameworks.

From a pragmatic perspective, the approach de-
scribed here provides two advantages over existing
models. On the one hand, it provides a way to produce
parametric estimation models with improved predictive
quality without neglecting the consideration of specific
relevant process attributes. And on the other hand, the
empirical analysis procedure followed can be used to
study and gain understanding on the influence of
some project attributes for the history of projects
available.

There are two main directions for continuing the re-
search presented here. On the one hand, a compre-
hensive and detailed evaluation of the influence of
well-known cost drivers should be carried out to gather
additional evidence on the divergences between the two
approaches. And on the other hand, other clustering
schemes or algorithms combining several of them should
be experimented with. The systematic study of cost driv-
ers would provide insights on the actual influence of
them, serving as a means for assessing the appropriate-
ness of including them in parametric models. Further-
more, techniques to compare the results of the clusters
(e.g., their degree of overlapping) should be applied in
an attempt to gain insight on the actual similarities of
clusters obtained with and without consideration of
pre-selected attributes. With regards to continuing the
work on the application of clustering techniques, in
addition to using other algorithms, a more thorough
cross-validation procedure should be used whenever en-
ough volume of project data is available.

Further work is ongoing in experimenting other clus-
tering algorithms for the same problem. Concretely,
algorithms that attempt to extract relationships charac-
terizing clusters like the M5� could provide additional in-
sight in obtaining realistic and interpretable shapes for
project clusters.
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