
1st Reading

August 23, 2010 19:53 WSPC/117-IJSEKE - SPI-J111 0218-1940 00487

International Journal of Software Engineering1

and Knowledge Engineering2

Vol. 20, No. 4 (2010) 1–163

c© World Scientific Publishing Company4

DOI: 10.1142/S02181940100048765

DEFINING SOFTWARE PROCESS MODEL CONSTRAINTS6

WITH RULES USING OWL AND SWRL7

DANIEL RODRÍGUEZ∗, ELENA GARCÍA†, SALVADOR SÁNCHEZ‡8

and CARLOS RODŔıGUEZ-SOLANO NUZZI§9

Department of Computer Science, University of Alcala10

Ctra. Barcelona km. 33.6, 28871 Alcala de Henares11

Madrid, Spain12
∗daniel.rodriguezg@uah.es13

†elena.garciab@uah.es14
‡salvador.sanchez@uah.es15

§carlos.solano@uah.es16

The Software & Systems Process Engineering meta-model (SPEM) allows the modelling17

of software processes using OMG (Object Management Group) standards such as the18

MOF (Meta-Object Facility) and UML (Unified Modelling Language) making it possi-19

ble to represent software processes using tools compliant with UML. Process definition20

encompasses both the static and dynamic structure of roles, tasks and work products21

together with imposed constraints on those elements. However, the latter requires sup-22

port for constraint enforcement that is not always directly available in SPEM. Such23

constraint-checking behaviour could be used to detect possible mismatches between pro-24

cess definitions and the actual processes being carried out in the course of a project.25

This paper approaches the modelling of such constraints using the SWRL (Semantic26

Web Rule Language), which is a W3C recommendation. To do so, we need to first repre-27

sent generic processes modelled with SPEM using an underlying ontology based on the28

OWL (Ontology Web Language) representation together with data derived from actual29

projects.30

Keywords: SPEM; Ontologies; OWL; rules; SRWL.31

1. Introduction32

Process modelling in general concerns the representation of resources, artifacts and33

dynamic behaviour of activities. As highlighted by Curtis [11] process modelling34

supports the following objectives: (i) facilitating human understanding and com-35

munication; (ii) supporting process improvement; (iii) supporting process manage-36

ment; (iv) providing automated guidance in performing processes, and (v) provid-37

ing automated execution support. Process modelling is of paramount importance to38

improve the quality of organisation’s processes, and in turn, the quality of products39

they generate. There are several well established standards used to describe process

1

http://dx.doi.org/10.1142/S0218194010004876


1st Reading

August 23, 2010 19:53 WSPC/117-IJSEKE - SPI-J111 0218-1940
00487

2 D. Rodŕıguez et al.

in descriptive view such as the ISO 12207 [20] as well as improvement frameworks1

such as the CMMI (Capability Maturity Model Integration) [10] or ISO/IEC 155042

standard [21]. More recently, the OMG (Object Management Group)a has devel-3

oped a meta-model to represent software processes, called SPEM (Software & Sys-4

tems Process Engineering Meta-model) [26]. SPEM, currently in version 2, allow5

us to formalise all the relevant aspects (roles, products, deliverables, guides, life-6

cycle, phases, milestones, etc.) of generic software processes. SPEM is supported7

by different modelling tools such as the Eclipse Process Framework (EPF) Com-8

poserb aiming at better management and monitoring of projects. Although SPEM9

is increasingly gaining popularity as it is based on the same standards as UML, it10

is not the only possibility to represent process. For example, Grüninge and Menzel11

[15] describe the Process Specification Language (PSL) designed to exchange pro-12

cess information among systems.13

In another direction, ontologies [14, 36] are explicit representations of domain14

concepts and their relationships. More formally, an ontology defines the vocabulary15

of a problem domain and a set of constraints on how terms can be combined to16

model the domain. Common uses of ontologies include communication between17

people and organizations and interoperability between systems, i.e., translation of18

modelling methods, paradigms, languages and software tools. Desirable qualities19

provided by ontologies include reusability thanks to formal representations, search-20

ability providing meta-data to information, and reliability performing consistency21

checking. In software engineering, ontologies can be used by applications require a22

higher level of formality of definition. For example, cataloguing resources or mapping23

of vocabularies from different information sources requiring precise definitions, or24

at least significant characterizations that help in deciding which terms to use in25

practical situations. Ontologies allow us to add semantics to data so that different26

software components can share information in a homogeneous way. For example,27

Sicilia et al. [32] review of use of ontologies in the engineering domain and how28

upper ontologies can be of assistance. Furthermore, formal logic can be used in29

conjunction with such formal representations for reasoning about the information30

and facts represented as ontologies.31

In this paper, we show how processes modelled using the SPEM framework can32

be translated into ontologies. Such representation together with actual data from33

current projects (also translated into ontologies) can provide reasoning capabilities34

for consistency checking, model validation, project and resource analysis, business35

rule analysis, etc.36

The rest of this paper is structured as follows. Section 2 covers the background.37

Sec. 3 summarizes the processes of creating ontologies from SPEM, followed by how38

constrains can be modelled and executed in Sec. 4. Finally, Sec. 5 concludes the39

paper and outlines future work.40

ahttp://www.omg.org/
bhttp://www.eclipse.org/epf



1st Reading

August 23, 2010 19:53 WSPC/117-IJSEKE - SPI-J111 0218-1940 00487

Defining Software Process Model Constraints with Rules Using OWL and SWRL 3

2. Background1

2.1. Software processes and SPEM2

As defined by the SWEBOK [19] a “software process is a set of activities, methods,3

practices, and transformations which people use to develop and maintain software4

and the associated products”. Within the Software Engineering discipline, the def-5

inition, implementation, and improvement of processes is becoming increasingly6

important in what is called Software Process Engineering (SPE) and a large num-7

ber of standards related to process modelling, assessment and improvement of pro-8

cess have been proposed. Also, many of the software process standards proposed9

can provide some automated support such as on-line documentation, templates,10

etc. they are, however, mainly based on paper manuals using natural language11

presenting several problems (e.g., difficulty accessing to the information, different12

versions of the same documents, lack of tailored processes to specific environments13

or projects, etc.). When dealing with the actual management of software process,14

several software systems were proposed as automated prescriptive models prior to15

SPEM, such as EPOS (Process Centred Software Engineering Environment) [25] or16

SPADE (Software Process Analysis, Design, and Enactment) [4]. However, a major17

drawback of these systems is the lack of standard representations and formats.18

The SPEM specification is the first step towards formalising the engineering19

of processes. In the same way as we can model software systems using the UML20

(Unified Modelling Language), it is now possible to define processes formally using21

SPEM which is in turn based on other OMG standards including UML and MOF22

(Meta Object Facility). In addition to a better management and improvement of23

processes, SPEM objectives include the improvement of human comprehension of24

the processes, facilitate process tailoring and reuse as well as the automation of soft-25

ware process execution. SPEM is open specification with all the necessary concepts26

to design, model, publish and tailor software engineering processes in order to (i) cre-27

ate a repository of reusable content; (ii) support the management and development28

of software processes; (iii) establishing a process framework within an organisation29

(e.g., CMM level 3 needs defined as well as tailoring mechanisms) and (iv) genera-30

tion of templates of actual projects. It is worth noting that SPEM is mainly designed31

for software processes and not as a general process modelling. Other efforts exist in32

such direction such as the BPMN (Business Process Modelling Notation)c which is33

also maintained by the OMG.34

When using the SPEM standard, processes can be defined using two approaches35

(i) as a UML profile and (ii) as a meta-model. A UML profile defines a series of36

stereotypes (mainly graphical icons) to represent software engineering concepts.37

Therefore, when used as a profile, it is mainly a diagrammatical tool using UML38

artifacts extended with visual icons to represent software process concepts. As a39

meta-model, SPEM processes can include the semantics of the MOF meta-model40

chttp://www.bpmn.org/



1st Reading

August 23, 2010 19:53 WSPC/117-IJSEKE - SPI-J111 0218-1940 00487

4 D. Rodŕıguez et al.

and it is possible to automate the translation between different representations1

(being MOF the core of the Model Driven Architecture (MDA).d2

The SPEM specification defines two types of concepts: (i) the Method Content3

with basic elements such as Role, Task and WorkProduct and (ii) Process as a com-4

bination of previously defined content elements as a dynamic structure. Concepts5

are organised in the following meta-model packages:6

• Core contains common classes and abstractions used to build upon.7

• Process structure represents the static concepts of processes with nesting activities8

and predecessor and successor dependencies.9

• Process behaviour extends the Process Structure package with behavioural models10

such as activity diagrams for process behaviour or work products with state11

machines to represent its lifecycle.12

• Managed Content introduces concepts for managing textual description (natural13

language) and documentation capabilities for processes.14

• Method Content provides the concepts for defining lifecycle and process inde-15

pendent reusable method content elements that provide a base of documented16

knowledge of software development methods, techniques and best practices.17

• Process With-Methods defines new and redefines existing structures for integrating18

Process Structure concepts with instances of Method Content concepts (Tasks,19

Roles and Work Products) into the context of a lifecycle model comprising, for20

example, phases and milestones.21

• Method Plug-in: It allows us to introduce the concept of variability in processes, in22

what is called method configuration, where the user can add or remove elements23

without modifying the original model.24

A repository (or Method Library) is composed of one or more Plug-ins and25

Method Configurations. Plug-ins are in turn divided into two components: (i) Method26

Content and (ii) Processes modelling static and dynamic concepts respectively. Also,27

as there is no need to use all process documentation at one given instance in time,28

a tailored subset can be defined with Method Configurations. For example, different29

views can be shown to different roles within an organization (e.g., developers only30

need the information related to programming).31

We next need to define the main elements of the packages without being exhaus-32

tive as many concepts are not visible when modelling process. The basic elements33

of Method Content include:34

• Tasks are atomic units of work composed of a series of Steps.35

• Roles are defined as set of abilities, competencies and responsibilities related to36

an individual or group of individuals.37

• Work products are artifacts, deliverables or outcomes.38

• Guidance elements provide additional information related to other elements.39

dhttp://www.omg.org/mda/



1st Reading

August 23, 2010 19:53 WSPC/117-IJSEKE - SPI-J111 0218-1940 00487

Defining Software Process Model Constraints with Rules Using OWL and SWRL 5

• Categories are in turn classified as Standard Category and Custom Category used1

to organise and create hierarchies of elements.2

• Associations between content elements such as Task–Steps, Task–Roles, etc.3

Content Elements (Tasks, Roles and Work Products) that are instantiated in4

a particular process end with the suffix “Use”. For example, we have Task Use,5

Work Product Use, and Role Use representing actual instances of the definition of6

a an activity, actual artefact and actual roles in a process respectively. Note that it7

refers to the generic term in a process definition but it does not correspond to any8

concrete project (e.g., the requirements document in Scrum is referred generically9

as the backlog).10

On the other hand, we have Processes in which the Method Content described11

are combined to define activities and processes. Process basic elements include:12

• Work Definition is an abstract concept that generalises all types of work13

definitions.14

• Breakdown Element is an abstract generalisation for all other types of process15

elements, mainly Process Parameters, Process Performers, Work Breakdown Ele-16

ments, and Work Sequence connecting two Work Breakdown elements (prede-17

cessor and successor). Work Breakdown Elements are composed of Activities and18

Milestones. Finally, SPEM defines three types of Activities: (i) Phase a significant19

non repeatable time span of a project; (ii) Iteration; and (iii) Milestone.20

Based on process patterns, SPEM provides two classes for adapting and dynam-21

ically ensemble processes: (i) Capability Pattern, a generic and reusable software22

piece that can be reused across several processes; and (ii) Delivery Process which23

describes a complete and integrated approach for performing a specific project type,24

i.e., it covers a complete project lifecycle to be used as a reference for executing25

projects following the same process such us XP, RUP or Scrum.26

Currently, there are several tools such as the Eclipse Process Framework (EPF)27

Composer capable of editing processes using SPEM. The EPF Composer uses XMI28

(XML Metadata Interchange),e another OMG standard for manipulating, storing29

and interchanging information between tools and it enables to export a process30

template to project management tools (e.g., Microsoft Project). Once exported, It31

is necessary to include further information such as the actual duration of tasks.32

It can also generate the process documentation in HTML format to be accessed33

through the Web.34

2.2. Ontologies and reasoning35

Ontologies, as the shared representation of domain concepts and their relationships36

can be represented in different formalisms for quite a long time. Since the inception37

ehttp://www.omg.org/technology/documents/formal/xmi.htm



1st Reading

August 23, 2010 19:53 WSPC/117-IJSEKE - SPI-J111 0218-1940
00487

6 D. Rodŕıguez et al.

of the Semantic Web, in which ontologies are the principal recourse to integrate1

and deal with online information, a new set of standards has been proposed. The2

Ontology Web Language (OWL) [34] is one of such standards that belongs to a fam-3

ily of knowledge representation languages prepared for the Semantic Web that has4

reached status of W3C (World Wide Web Consortium) recommendation. From tech-5

nical point of view OWL extends the RDF (Resource Description Framework) and6

RDF-S (RDF Schema) allowing us to integrate a variety of applications using XML7

as interchange syntax. Although there are several profiles with different expressive8

power, it is possible to specify property domains, cardinality ranges and reason-9

ing on ontologies. Reasoning in OWL can be performed at a class, property or10

instance level and reasoning examples include class membership, equivalence of11

classes, consistency, classification of the information, obtaining additional proper-12

ties using transitiveness or equivalent, etc. Another W3C standard, the Semantic13

Web Rule Language (SWRL) [18], based on RuleML,f extends the OWL providing14

logic based rules, and in consequence, more expressiveness. Rules have the form of15

antecedent implies a consequent. Also, SPARQLg (Protocol and RDF Query Lan-16

guage) SQWRL (Semantic Query-enhanced Web Rule Language)h [30] can be used17

to query ontologies with a large number of build-in libraries. Figure 1 shows the18

use of SWRL rules with OWL ontologies. Rules together with stored facts (knowl-19

edge base) are executed as inputs to by the rule engine inferring new facts as an20

output. Also, if the inference engine infers knowledge using forward chaining, the21

new knowledge can be used for further inference or querying stored or inferred22

knowledge.23

The open source Protégé tooli is one of the possible tools that can be used for24

creating ontologies. It includes the SWRLTab which is an extension for editing and25

executing of SWRL and SQWRL in conjunction with JESS,j a rule engine.26

Facts/Knowledge base

Ontologies

Clases/
Instances

Rules
SWRL

Rule
engine

Facts 
+

Rules

New
facts

Fig. 1. Execution of rules adding new knowledge/constrains from rules.

fhttp://ruleml.org/
ghttp://www.w3.org/TR/rdf-sparql-query/
hhttp://protege.cim3.net/cgi-bin/wiki.pl?SQWRL
ihttp://protege.stanford.edu/
jhttp://www.jessrules.com/



1st Reading

August 23, 2010 19:53 WSPC/117-IJSEKE - SPI-J111 0218-1940 00487

Defining Software Process Model Constraints with Rules Using OWL and SWRL 7

3. Representing Processes with OWL Ontologies1

As stated previously, SPEM is generally used to design generic software processes2

such as the Open Unified Process, XP or Scrum. In this section, we discuss a3

first approach to create an ontology from the Scrum process [28] defined using4

SPEM. Scrum is a relatively simple process with a reasonable number of classes5

and properties.6

Although SPEM models can be translated to a representation in OWL while7

retaining the modelling semantics specified in SPEM, the creation of ontologies is8

not straight forward. There are no standard modelling methodologies but a mix of9

guidelines that combined with techniques from the database and object oriented10

modelling domains can iteratively achieve the desired representation [12]. In any11

case, the translation should not aim at substituting the original model, but to serve12

as a complement for adding reasoning and inference support to SPEM based models.13

Typically, SPEM models would be translated into one or several OWL modules,14

in addition to other OWL modules with basic mappings that would be imported15

by these. It should be noted that there is no need to translate each SPEM package16

into an OWL module as simplicity has been preferred in contrast to mirroring every17

SPEM element. Many terms in the standard are linked to other through inheritance18

to provide the necessary semantic meaning which can be directly defined when19

creating the ontology. For example, ExtensibleElement is an abstract class for all20

the SPEM elements and the ontology can be focused on more visible elements21

such as task or role. The packages, however, can help to organise the different22

concepts in different ontologies and files). For example, from the Core package, we23

just selected the ParameterDirectionKind to create and enumeration of input, output24

or inputOutput linked through a property (hasParameterdirection). The Task, Role25

and WorkProduct elements that appear in the Method Content package are defined26

in the method-content ontology. In the same way the Activity, Milestone, etc. classes27

from the Process package in another process ontology.28

Roles in Scrum are divided into: (i) Chicken roles which are not part of actual29

scrum process but need to taken into such as account stakeholders and customers;30

and (ii) Pig roles which are committed to the project. The Pig roles in Scrum are31

the scrum master, i.e., the project manager, the product owners that represent the32

stakeholders; and the team, which carries out the actual project usually in relatively33

small teams of around 7 people capable of self-organising. In the ontology, the Role34

class from the method-content ontology can be extended within the Scrum ontology,35

i.e., method-Content:Role can have scrum:Pig and scrum:Chicken as subclasses. The36

productOwner, scrumMaster and team will be instances of the Scrum Chicken role.37

The development of a project using Scrum is performed iterative and incre-38

mentally in cycles called sprints. Each sprint is supposed to end up with a working39

system that could be potentially delivered to the client. Requirements are prioritised40

in what is called the Product Backlog which is regularly updated and new items,41

detailing items, estimates and so on. Before starting each sprint, the functionality42



1st Reading

August 23, 2010 19:53 WSPC/117-IJSEKE - SPI-J111 0218-1940 00487

8 D. Rodŕıguez et al.

from the product backlog to be included in the next sprint (sprint backlog) is decided1

during the sprint planning meeting. All these terms can be represented in OWL a2

as a generic process extending the basic terms. In the ontology, these terms are3

defined as WorkProduct in the method content ontology with Artifact, Deliverable4

and Outcome as subclasses. Then, an instance or individual of Artifact will be the5

sprintBacklog as part of the scrum ontology.6

The execution of a project using the Scrum process is composed of the follow-7

ing three phases: (i) Pre-game composed of two phases Planning which defines the8

system to be built (Product Backlog, estimates, etc.) and High-level Design of the9

system based on the Product Backlog and the Design Review Meeting, a prelimi-10

nary planning for the releases is outlined; (ii) Game or Development Phsase. The11

development is performed in sprints. There are several predefined meetings, the12

sprint planning meeting at the beginning of each sprint, a daily scrum stand-up13

meeting and a sprint review meeting; and the (iii) Post-game phase as the closure14

of the project. The process ontology has the Activity class with Iteration and Phase15

classes defined as subclasses. The PreGame, Game and PostGame are defined in16

the scrum ontology.17

Scrum already defines a set of rules that must be followed and many of them are18

related to timing constrains. For example, once a sprint has started, the items from19

the sprint backlog cannot be modified, another one is that at the beginning of each20

day, a stand up meeting, called the daily scrum must take place and only people21

committed to the project can talk (not those only involved). There are also other22

rules related to time; for example, duration of each sprint can vary between 15 days23

to a month but no more and there is a sprint planning meeting at the beginning that24

should not last more than eight hours. There is also a sprint review meeting with a25

time limit of four hours. There is also another meeting defined by Scrum, the sprint26

retrospective, in which all team members analyse what went well and what can be27

improved in the next sprint with a time limit of three hours. In the ontology, we can28

deal with time and time constrains for such classes either using the built-in types or29

merge developed ontologies such as the time ontologyk developed by Hobbs and Pan30

[17]. The same applies to generic terms in the SPEM standards such as Metric. The31

Metrics class is the only concept defined in SPEM to contain measurements such as32

effort estimations of activities, or maximum duration of Scrum meetings and further33

refined ontologies for metrics have defined by [13] among others. Another example34

is the matching between roles, people and competences that can be exported from35

other ontologies [31].36

When an actual project is represented in the ontology, we need to include con-37

crete people, task and time information that is not available through the SPEM38

modules but be retrieved possibly from project management tools. It is there-39

fore necessary to translate such information from project management tools or40

databases into new classes in the ontology. For example, the actual personnel from41

khttp://www.w3.org/TR/owl-time/



1st Reading

August 23, 2010 19:53 WSPC/117-IJSEKE - SPI-J111 0218-1940
00487

Defining Software Process Model Constraints with Rules Using OWL and SWRL 9

an organization could be stored in an ontology which we called genericProjectDefs1

which can have the People class and all the organisation personnel as instances.2

As stated previously, all properties (links between classes) are binary, therefore, in3

order to link personnel, roles and tasks we need to define an n-ary relationship. To4

do so, we need define a new class in which instances and other such as tools can be5

linked through properties (called reified relations).6

For the translation, the OWL ontologies were elaborated using the Protégé7

tool. Although the nomenclature used in the SPEM standard or Scrum was fol-8

lowed whenever was possible, it should be noted that other translation approaches9

could be devised in the future with a more comprehensive alignment to the OMG10

meta-modelling specifications. This includes the use of the recently proposed ODM11

(Object Definition Metamodel)l specification which can be used for translations12

between metamodels. A large number of terms are generic to software engineering13

processes and methodologies and defined in numerous standards, guides and other14

ontologies. Such works can be used in conjunction with SPEM as starting point15

of the ontological process and merging of ontologies. For example, the Metric con-16

cept in SPEM 2 is could be further expanded with much richer descriptions from17

other ontologies such as the SMO (Software Measurement Ontologies) [13]. How-18

ever, merging ontologies and terminology from the software engineering standards19

is not a trivial task. For example, Activity and Task definitions in SPEM do not20

exactly comply with the ISO 12207 standard as it defines activity as life cycle phase21

and a task as something performed within an activity. Table 1 shows an excerpt of22

relevant classes in OWL used to represent projects based on the SPEM metamodel.23

Table 1. OWL ontologies representing SPEM projects.

OWL Module Class

Core ParameterDirectionKind {Core:In; Core:Out; Core: InOut}
Method Content Role

· · ·
WorkProduct
TaskType

Process Activity
Milestone
· · ·

Scrum SprintPlanningMeetingType
SprintBackLogCreation
DesingReviewMeeting
ChickenRole PigRole
· · ·

GenericProjectDefs People
Competency
· · ·

lhttp://www.omg.org/docs/formal/09-05-01.pdf



1st Reading

August 23, 2010 19:53 WSPC/117-IJSEKE - SPI-J111 0218-1940 00487

10 D. Rodŕıguez et al.

4. Modelling Process Constraints with SWRL1

As stated previously, the main motivation of this work is to actually check and verify2

constrains that can be defined as part of a SPEM process models and other infor-3

mation that can be obtained from project management tools. It can be devised, for4

example, that other information gathered from software repositories (e.g., metrics)5

could be included in as OWL ontologies and constrains could be verified using rules.6

As it is shown by Fig. 2, ontologies represented using OWL and rules with7

SWRL are combined in order to improve the management of projects. On the one8

hand, we have generic process information from SPEM models using tools such as9

the Eclipse Process Framework. Also, configurations of a concrete project can be10

exported to project management tool (e.g., MS Project) in which the concrete pro-11

cess specification can be populated with information about personnel, information12

about start and end dates of activities, their duration, etc. Information from both13

sources can populate instances in ontologies that can be enriched with constrains14

in the form of rules using tools such as Protégé in conjunction with rules engines15

such as JESS. In this environment we can execute such rules to verify constrains16

and inconsistencies in a project as well as possibly incorporate new knowledge into17

the project management tools to better monitor the project. It is worth noting that18

although many of the constrains in UML can be defined using the Object Con-19

strain Language (OCL), however, it currently lacks the maturity and tool support20

provided by the semantic Web. Following the example described in the SPEM spec-21

ification [26] as a precondition: “Input Document X has been reviewed and signed22

by customer AND the work defined by Work Definition ‘Management Review’ is23

complete”. Such precondition is expressed in natural language and associated to24

the WorkDefinition class compositional association (Fig. 3 shows the UML class25

diagram for the WorkDefinition class). Even if expressed in OCL, we are not aware26

of any environment that automates their execution.27

After defining the SPEM ontology, we can now provide an overview of how28

SPEM and project constrains can be expressed using the SWRL as a rule language29

capable of checking and verifying constrains. It is possible to run rules at the same30

level or between different levels in the ontological hierarchy shown in Fig. 4.31

SPEM
(Process A)

Project 
Management Tool
(e.g. MS Project)

Protégé + Jess
OWL + Rules

OWL

OWL

XML

instances
Inferences

Translator

Translator

Other OWL 
ontologies,...

Fig. 2. Extension of SPEM with Semantic Knowledge and Rules.



1st Reading

August 23, 2010 19:53 WSPC/117-IJSEKE - SPI-J111 0218-1940 00487

Defining Software Process Model Constraints with Rules Using OWL and SWRL 11

Classifier

WorkDefinition

Constrain

WorkDefinitionParameterWorkDefinitionPerformer

+precondition +postcondition

Fig. 3. Constrains as part of the WorkDefinition abstract class.

WorkProductUse Activity

isInputParameter

RequirementDocumentType ReviewProcessType

Upper Level
Ontology
SPEM

instance instance

Process A

RequirementDocument ReviewProcess

instanceOf instanceOf

Project A

isOutputParameter

Fig. 4. Different Semantic Levels when Creating SPEM Ontologies.

An example of executing rules at the same level could be as follows. When an1

activity has a work product as input and output, a rule could automatically include2

another property that such work product is both input and output parameter. In3

the UML SPEM profile this is defined as an enumeration.4

WorkProduct(?a) ∧ ProjectTask(?t) ∧ isInputParameter(?a, ?t) ∧5

isModifiedBy(?a, ?t) → hasParameterDirection(?a, core:inOut)6

We could specify concrete examples using SCRUM. For example, when running7

a project if the backlog for a sprint has been agreed and the sprint started, then we8

could assign to the Boolean property modifiable the value false. Note that such a9

rule could be part of some guideline when specifying the process.10

WorkProduct (sprintBacklog1) ∧ isAgreed(sprintBacklog1) ∧11

sprintStarted(sprintBacklog1, true)12

⇒ modifiable(sprintBacklog1, false)13



1st Reading

August 23, 2010 19:53 WSPC/117-IJSEKE - SPI-J111 0218-1940 00487

12 D. Rodŕıguez et al.

Another example of rule could be when a work product goes through the process1

of review; in such a case, there could exist a property (isReviewedBacklog) which2

automatically is updated.3

WorkProduct(sprintBacklog1) ∧4

isInputParameter(sprintBacklog1, sprintPlanningMeeting1)5

→ isReviewedBacklog(sprintBacklog1, true)6

As stated, many of the restrictions apply to time. One possible solution could be7

to create all temporal needed properties using the built-in datatypes and functions.8

Another approach is to include the data entry ontology [17]. Similar restrictions9

can be applied to the duration of each of the iteration in a Scrum project cannot10

be longer than 30 days:11

activitySprint(?sp1) ∧ startDate(dt1?, ?spr1) ∧12

temporal:durationGreaterthan (30, ?dt1, "Days")13

⇒ conformingPlan (?sp1, false)14

Ontologies and rules could also represent a novel approach to plan, manage and15

monitor software projects. SWRL can be used in conjunction with SPARQL and16

SQWRL to query OWL files chaining knowledge. For example, we could verify that17

a person cannot be assigned to two full time overlapping activities or personnel18

competencies and types of jobs that could be assigned. In these cases, chain of rules19

could be used as an approach to CSP (Constrain Satisfaction Problems).20

5. Related Work21

One of the initial ontologies in software engineering is REFSENO (Representa-22

tion Formalisms for Software Engineering Ontologies) developed by Tautz and von23

Wangenheim [35]. This ontology has been applied for modelling experience facto-24

ries [6] using the Goal-Question-Metric paradigm [4] and to software maintenance25

process by Vizcáıno et al. [37]. Kitchenham et al. [22] also defined an ontology for26

software maintenance using UML as a formalism for identifying and defining several27

domain factors (e.g., product, process, people and organization) and attributes that28

influence the maintenance process. Based on Kitchenham et al. work, Ruiz et al. [29]29

defined another ontology for the management of software maintenance. Althoff et al.30

[2] describe an architecture oriented to reuse the experience in software engineering31

that use ontologies as the underlying formalism. In relation to process ontologies,32

Ceravolo et al. [9] describe the Extreme Programming Ontology (XPO) specifying33

the main concepts of the XP methodology. Authors aim is to analyse agile processes,34

mining process data about developer’s activity and repositories content in order to35

extract new concepts potentially identifying critical factors in agile software devel-36

opment. As SPEM is increases its popularity as a way of representing models more37

formally, several researchers are using SPEM as a foundation for defining ontolo-38

gies. For example, Garćıa et al. [13] developed an ontology to represent software39

engineering measurement concepts merging SPEM with other ontologies.40



1st Reading

August 23, 2010 19:53 WSPC/117-IJSEKE - SPI-J111 0218-1940 00487

Defining Software Process Model Constraints with Rules Using OWL and SWRL 13

Researchers have also developed ontologies based on current standards such as1

the Guide to the Software Engineering Body of Knowledge (SWEBOK) [19], which2

is also an ISO standard (ISO/IEC TR 19759:2005). Standards provide an agreement3

on the content of what compose the software engineering discipline opening new4

possibilities to ontology engineering in the field of software engineering, since they5

represent a shared consensus on the contents of the discipline. For example, Abran6

et al. [1] report on the developed of a software engineering ontology based on the7

SWEBOK and the process for its creation.8

Although these works represent a very important and starting point to define9

terms and processes related to software engineering, most of cited ontologies mainly10

define concepts and their relationships without providing formalisms for reason-11

ing. In most cases, ontologies consist of definitions defined using UML classes and12

attributes with textual descriptions of the definitions without reasoning capabilities.13

When referring to reasoning with models are mainly focused on the UML (in which14

SPEM can be based) and the OCL (Object Constrain Language) as a way of veri-15

fying models. For example, Cabot, Clarisó and Riera [8] describe how to transform16

UML class diagrams together with OCL specifications into Constrain Satisfaction17

Problems (CSP) in order to validate them. A similar approach is taken by Queralt18

and Teniente [27] to validate UML models and by Simmonds et al. [33]. As a result19

of the REWERSE project, Milanović et al. [23] have defined an approach for meta-20

model transformation between UML/OCL and OWL/SRWL, based on the R2ML21

(REWERSE Rule Markup Language) which is a MOF-defined pivotal language for22

the translation. The MOF is a meta-modeling language for specifying models, i.e.,23

it allow us to specify models of modeling languages. As stated by Milanović et al.,24

there are benefits of the bridging the gap between OMG models such as UML or25

SPEM and the semantic Web with OWL. On the one hand, OWL has become the26

de-facto standard for specifying ontologies and on the other hand, models which they27

define as set statements of can be verified using the reasoning technologies provided28

by the Semantic Web. From the same project, Aβmann, Zshaler and Wagner [3]29

also present a schema combining ontologies and metamodels for the MDE (Model30

Driven Engineering) approach as a complementary techniques.31

Different Constrain Satisfaction Problems (CSP) approaches have been used in32

software project management. For example, Neagu and Faltings [24] have applied33

Case Based Reasoning to deal with soft and hard constrains. Other authors [5, 16]34

have applied search based technique to deal with project constrains. The approach35

presented in this paper is based on logic and standard tools.36

6. Conclusions and Future Work37

This paper describes how software process ontologies can be derived from the Soft-38

ware and Systems Process Engineering Meta-model (SPEM) models. SPEM stan-39

dardises and formalises the way of representing software engineering processes in40

relation to both their static and dynamic concepts such as activities, roles, tasks41



1st Reading

August 23, 2010 19:53 WSPC/117-IJSEKE - SPI-J111 0218-1940 00487

14 D. Rodŕıguez et al.

and work products. Ontologies in turn can be extended with rules representing con-1

strains over elements of a concrete software project and those rules can be executed2

to verify such constrains and discover possible problems during the execution of a3

project. We presented a basic approach as a proof of concept using the Ontology4

Web Language (OWL) combined with SWRL (Semantic Web Rule Language) rules5

to represent constraints as rules. This approach provides the benefit of representing6

certain information that can not be represented in SPEM alone and furthermore it7

can be automatically verified.8

Future work includes further development of the ontologies and rules for existing9

software processes that started here as a proof of concept. In this work, we created10

the ontology manually; it may however be possible to obtain a first version of the11

ontologies using model transformations. As both SPEM and the new ODM (Ontol-12

ogy Definition Metamodel) are defined using meta-models, the translation can be13

performed using M2M (Model-to-Model) using for example the ATLm (Atlas Trans-14

formation Language) or the QVTn (Query/View/Transformation) specifications.15

Also, there are several existing ontologies related to software engineering or other16

disciplines (e.g., measurement ontologies, competencies) that can be integrated and17

form an important activity in the development of new ontologies and tool support18

for processes and project managers. The extension of process frameworks such as the19

Eclipse Process Framework to include rules as well as translators between project20

management and ontology based tools for the introduction of rules and their verifi-21

cation. Another open research issue is not only to verify the constrains of a project,22

but also how new inferred information could fed back to the project management23

tools in order to improve the control of a project.24

Acknowledgements25

Authors thank the University of Alcalá for the financial support and anonymous26

reviews from the ONTOSE conference for their useful comments.27

References28

1. A. Abran, J. Cuadrado, E. Garćıa-Barriocanal, O. Mendes, S. Sanchez-Alonso and29

M. A. Sicilia, Engineering the ontology for the software engineering body of knowledge:30

issues and techniques, in Ontologies for Software Engineering (Springer Verlag, New31

York, 2006).32

2. K. D. Althoff, A. Birk, S. Hartkopf, W. Muller, M. Nick, D. Surmann and C. Tautz,33

Systematic Population, Utilization, and Maintenance of a Repository for Compre-34

hensive Reuse, in Learning Software Organizations — Methodology and Applications,35

LNCS Vol. 1756 (Springer Verlag, 2000), pp. 25–50.36

3. U. Assmann, S. Zschaler and G. Wagner, Ontologies, Meta-models, and the Model-37

Driven Paradigm, in Ontologies for Software Engineering and Software Technology,38

C. Calero, F. Ruiz and M. Piattini (Eds.) (Springer Verlag, 2006).39

mhttp://www.eclipse.org/m2m/atl/
nhttp://www.omg.org/spec/QVT/1.0/



1st Reading

August 23, 2010 19:53 WSPC/117-IJSEKE - SPI-J111 0218-1940 00487

Defining Software Process Model Constraints with Rules Using OWL and SWRL 15

4. S. C. Bandinelli, A. Fuggetta and C. Ghezzi, Software Process Model Evolution in the1

SPADE Environment, IEEE Trans. Softw. Eng. 19(12) (1993) 1128–1144.2

5. A. Barreto, M. de O. Barros and C. M. L. Werner, Staffing a software project: A3

constraint satisfaction and optimization-based approach, Computers & Operations4

Research 35(10) (2008) 3073–3089.5

6. V. Basili, R. G. Caldiera and H. D. Rombach, The experience factory, in Encyclopedia6

of Software Engineering, ed. J. J. Marciniak (John Wiley & Sons, 1994), pp. 469–476.7

7. D. Berardi, D. Calvanese and G. De Giacomo, Reasoning on UML class diagrams,8

Artificial Intelligence 168(1–2) (2005) 70–118.9

8. J. Cabot, R. Clarisó and D. Riera, Verifying UML/OCL Operation Contracts, 7th10

International Conference on Integrated Formal Methods (IFM 2009), Düsseldorf, Ger-11

many, February 16–19, 2009. LNCS Vol. 5423, 2009, pp, 40–55.12

9. P. Ceravolo, E. Damiani, M. Marchesi, S. Pinna and F. Zavatarelli, A ontology-based13

process modelling for XP, in Software Engineering Conference, 2003, Tenth Asia-14

Pacific Conference, pp. 236–242, 2003.15

10. CMMI, Capability Maturity Model Integration, Version 1.2. Website: http://www.16

sei.cmu.edu/cmmi/17

11. B. Curtis, M. I. Kellner and J. Over, Process modeling, Commun. ACM 35(9) (1992).18

12. V. Devedžic, Understanding ontological engineering, Commun. ACM 45(4) (2002)19

136–144.20

13. F. Garćıa, F. Ruiz, C. Calero, M. F. Bertoa, A. Vallecillo, B. Mora and M. Piattini,21

Effective use of ontologies in software measurement, Knowledge Engineering Review22

24(1) (2009) 23–40.23

14. T. R., Gruber, Toward principles for the design of ontologies used for knowledge24

sharing, Int. J. Human-Computer Studies 43(5–6) (1995) 907–928.25

15. M. Grüninger and C. Menzel, The process specification language (PSL) theory and26

applications, Artificial Intelligence Magazine 24(3) (2003) 63–74.27

16. S. Gueorguiev, M. Harman and G. Antoniol, Software project planning for robustness28

and completion time in the presence of uncertainty using multi objective search based29

software engineering, in Proceedings of the 11th Annual Conference on Genetic and30

Evolutionary Computation (GECCO’09) (ACM, New York, 2000), pp. 1673–1680.31

17. J. R. Hobbs, F. Pan, Time Ontology in OWL, W3C Working Draft 27 September32

2006, http://www.w3.org/TR/2006/WD-owl-time-20060927/33

18. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and M. Dean, SWRL:34

A Semantic Web Rule Language Combining OWL and RuleML, W3C (World Wide35

Web Consortium), 2004. Website: http://www.w3.org/Submission/SWRL/36

19. IEEE, SWEBOK, Guide to the Software Engineering Body of Knowledge. 2004. Web-37

site: http://www2.computer.org/portal/web/swebok38

20. ISO: ISO/IEC 12207:2008 Systems and software engineering — Software life cycle39

processes (2008).40

21. ISO: ISO/IEC 15504 Information technology Process assessment. Parts 1 to 8. Web-41

site: http://www.iso.org/ (2009).42

22. B. A. Kitchenham, G. H. Travassos, A. V. Mayrhauser, F. Niessink, N. F.43

Schneidewind, J. Singer, S. Takada, R. Vehvilainen and H. Yang, Towards an Ontol-44

ogy of software maintenance, Journal of Software Maintenance: Research and Practice45

11(6) (1999) 365–389.46

23. M. Milanović, D. Gašević, A. Giurca and G. Wagner, On Interchanging between47

OWL/SWRL and UML/OCL, in Proceedings of 6th OCL Workshop at the48

UML/MoDELS Conference (OCLApps 2006), Genova, Italy, October 2, 2006.49



1st Reading

August 23, 2010 19:53 WSPC/117-IJSEKE - SPI-J111 0218-1940 00487

16 D. Rodŕıguez et al.

24. N. Neagu and B. Faltings, Soft Interchangeability for Case Adaptation, Case-Based1

Reasoning Research and Development, 5th International Conference on Case-Based2

Reasoning (ICCBR 2003), Lecture Notes in Artificial Intelligence Vol. 2689, J. G.3

Carbonell and J. Siekmann Trondheim (Eds.) (Norway, June 23–26, 2003), pp. 347–4

361.5

25. M. N. Nguyen, A. I. Wang, and R. Conradi, Total software process model evolution6

in EPOS: experience report, in Proceedings of the 19th international Conference on7

Software Engineering (1997).8

26. OMG, Software Process Engineering Meta-model (SPEM) Specification. Version 2.9

Technical Report ptc/2008-04-01, Object Management Group (2008).10

27. A. Queraltand and E. Teniente, Reasoning on UML class diagrams with OCL con-11

straints, in D. W. Embley, A. Olive and S. Ram (Eds.) ER, Lecture Notes in Computer12

Science, Vol. 4215 (Springer-Verlag, 2006), pp. 497–512.13

28. L. Rising and N. S. Janoff, The Scrum software development process for small teams,14

IEEE Software 17(4) (2000) 26–32.15

29. F. Ruiz, A.Vizcáıno, M. Piattini and F. Garćıa, An ontology for the management of16

software maintenance projects, Int. J. Software Engineering and Knowledge Engineer-17

ing 14(3) (2004) 323–349.18

30. M. J. O’Connor and A. K. Das, SQWRL: A Query Language for OWL, in Proceed-19

ings of OWL: Experiences and Directions (OWLED 2009), R. Hoekstra and P. F.20

Patel-Schneider (Eds.) (Chantilly, VA, 2009). Available at: http://www.webont.org/21

owled/2009.22

31. M. A. Sicilia (ed.), Competencies in Organizational E-learning. Concepts and Tools23

(Idea Group Publishing, Hershey, PA, 2006).24

32. M. A. Sicilia, E. Garcia-Barriocanal, S. Sanchez-Alonso, D. Rodriguez, Ontologies of25

engineering knowledge: general structure and the case of Software Engineering, The26

Knowledge Engineering Review 24(3) (2009) 309–326.27

33. J. Simmonds, M. C. Bastarrica, N. Hitchfeld-Kahler and E. Rivas, A Tool based on DL28

for UML Model consistency Checking, Int. J. Software Engineering and Knowledge29

Engineering 18(6) (2008) 713–735.30

34. M. K. Smith, C. Welty and D. L. McGuinness, OWL Web Ontology Language Guide”.31

W3C, 2004, http://www.w3.org/TR/owl-guide/32

35. C. Tautz and C. G. von Wangenheim, REFSENO: A Representation Formalism for33

Software Engineering Ontologies, Fraunhofer Institute IESE IESE-015.98/E (1998).34

36. M. Uschold and M.Grüninger, Ontologies: Principles, Methods, and Applications,35

Knowledge Engineering Review 11(2) (1996) 93–113.36

37. A. Vizcaino, F. Ruiz, M. Piattini and F. Garcia, 2004. Using REFSENO to Represent37

Knowledge in the Software Maintenance Process, in Proceedings of the Database and38

Expert Systems Applications, 15th International Workshop, DEXA. IEEE Computer39

Society, Washington, DC, 2004, pp. 488–493.40


