
International Journal of Software Engineering and Knowledge Engineering

 World Scientific Publishing Company

1

DEFINING SOFTWARE PROCESS MODEL

CONSTRAINTS WITH RULES USING OWL AND SWRL

(EXTENDED VERSION)
*

Daniel Rodríguez et al†

Department of Computer Science, University of Alcala, Ctra. Barcelona km. 33.6,

28871 Alcala de Henares, Madrid, Spain‡

daniel.rodriguezg@uah.es§

http://www.cc.uah.es/drg

Abstract. The Software & Systems Process Engineering meta-model (SPEM) allows the modelling

of software processes using OMG (Object Management Group) standards such as the MOF (Meta-

Object Facility) and UML (Unified Modelling Language) making possible to represent software

processes using tools compliant with UML. Process definition encompasses both the static and

dynamic structure of roles, tasks and work products together with imposed constraints on those

elements. However, the latter requires support for constraint enforcement that is not always directly

available in SPEM. Such constraint-checking behaviour could be used to detect possible mismatches

between process definitions and the actual processes being carried out in the course of a project. This

paper approaches the modelling of such constraints using the SWRL (Semantic Web Rule

Language), which is a W3C recommendation. To do so, we need first represent generic processes

modelled with SPEM using an underlying ontology based on the OWL (Ontology Web Language)

representation together with data derived from actual projects.

Keywords: SPEM; Ontologies; OWL; rules; SRWL.

1. Introduction

Process modelling in general concerns the representation of resources, artifacts and

dynamic behaviour of activities. As highlighted by Curtis [11] process modelling

supports the following objectives: (i) facilitating human understanding and

communication; (ii) supporting process improvement; (iii) supporting process

management; (iv) providing automated guidance in performing processes, and (v)

providing automated execution support. Process modelling is of paramount importance to

improve the quality of organisation’s processes, and in turn, the quality of products they

generate. There are several well established standards used to describe process in

descriptive view such as the ISO 12207 [19] as well as improvement frameworks such as

the CMMI (Capability Maturity Model Integration) [10] or ISO/IEC 15504 standard [20]

(also known as SPICE –Software Process Improvement and Capability dEtermination–).

*
 For the title, try not to use more than 3 lines. Typeset the title in 10 pt Times Roman, uppercase and boldface.

† Typeset names in 8 pt Times Roman, uppercase. Use the footnote to indicate the present or permanent address

of the author.

‡ State completely without abbreviations, the affiliation and mailing address, including country. Typeset in 8 pt

Times Italic.
§ Typeset author e-mail address in single line.

2 Author’s Names

More recently, the OMG (Object Management Group)** has developed a meta-model to

represent software processes, called SPEM (Software & Systems Process Engineering

Meta-model) [24]. SPEM, currently in version 2, allow us to formalise all the relevant

aspects (roles, products, deliverables, guides, life-cycle, phases, milestones, etc.) of

generic software processes. SPEM is supported by different modelling tools such as the

Eclipse Process Framework (EPF) Composer †† aiming at better management and

monitoring of projects. Although SPEM is increasingly gaining popularity as it is based

on the same standards than UML, it is not the only possibility to represent process. For

example, Grüninge and Menzel [15] describe the Process Specification Language (PSL)

designed to exchange process information (scheduling, process modelling, process

planning, production planning, simulation, project management, work flow, and business-

process reengineering) among systems.

In another direction, ontologies [14][33] are explicit representations of domain

concepts and their relationships. More formally, an ontology defines the vocabulary of a

problem domain and a set of constraints on how terms can be combined to model the

domain. Common uses of ontologies include communication between people and

organizations and interoperability between systems, i.e., translation of modelling

methods, paradigms, languages and software tools. Desirable qualities provided by

ontologies include reusability thanks to formal representations, search-ability providing

meta-data to information, and reliability performing consistency checking. In software

engineering, ontologies can be used by applications require a higher level of formality of

definition. For example, cataloguing resources or mapping of vocabularies from different

information sources requiring precise definitions, or at least significant characterizations

that help in deciding which terms to use in practical situations. Ontologies allow us to add

semantics to data so that different software components can share information in a

homogeneous way. For example, Sicilia et al [29] review of use of ontologies in the

engineering domain and how upper ontologies can be of assistance. Furthermore, logic

can be used in conjunction with such formal representations for reasoning about the

information and facts represented as ontologies.

In this paper, we show how processes modelled using the SPEM framework can be

translated into ontologies. Such representation together with actual data from current

projects (also translated into ontologies) can provide reasoning capabilities for

consistency checking, model validation, project and resource analysis, business rule

analysis, etc.

The rest of this paper is structured as follows. Section 2 covers the background.

Section 3 summarizes the processes of creating ontologies from SPEM, followed by how

** http://www.omg.org/
†† http://www.eclipse.org/epf

Instructions for Typing Manuscripts (Paper’s Title) 3

constrains can be modelled and executed in Section 4. Finally, Section 5 concludes the

paper and outlines future work.

2. Background

2.1. Software Processes and SPEM

As defined by the SWEBOK [18] a “software process is a set of activities, methods,

practices, and transformations which people use to develop and maintain software and

the associated products”. Within the Software Engineering discipline, the definition,

implementation, and improvement of processes is becoming increasingly important in

what is called Software Process Engineering (SPE) and a large number of standards

related to process modelling, assessment and improvement of process have been

proposed, for example:

 Process Standards MIL-STD498, RUP (Rational Unified Process), Open UP, XP

(Extreme Programming), ISO 12207, etc.

 Quality Standards: ISO 9000, SCAMPI (Standard CMMI Appraisal Method for

Process Improvement), etc.

 Capability standards CMMI (capability maturity model integration), ISO/IEC 15504

(SPICE - Software Process Improvement and Capability Determination), etc.

 Guidelines such as PSP (Personal Software Process), TSP (Team Software Process),

Six Sigma, etc.

Although many of the software process standards can provide some computer support

such as on-line documentation or templates to ease the bureaucratic burden, they are

mainly based on paper manuals using natural language presenting several difficulties,

e.g., difficulty accessing to the information, many different versions of the same

documents, lack of tailored processes to specific environments or projects, etc. When

dealing with the actual management of software process, several software systems were

proposed as automated prescriptive models prior to SPEM, such as EPOS (Process

Centred Software Engineering Environment) [23], Marvel [5], SPADE (Software Process

Analysis, Design, and Enactment) [4] which is based on Marvel, etc. However, a major

drawback of these systems is the lack of standard representations and formats.

The SPEM specification is the first step towards formalising the engineering of

processes. In the same way as we can model software systems using the UML (Unified

Modelling Language), it is now possible to define processes formally using SPEM which

is in turn based on other OMG standards including UML and MOF (Meta Object

Facility). The MOF specification defines a modelling architecture based on four levels as

shown in Figure 1. A n-1 level instantiates the elements from the level n (excluding the

upper –M3– level). In this way, a process is built on top of more generic concepts until

suitable for specific environments.

4 Author’s Names

«meta-meta-model»
MOF

«meta-model»
SPEM 2

«meta-model»
UML

«profile»
SPEM 2 profile

M0

«instance»

Process Library Process Library

Project A1 Project B3

«instance»

«instance» «instance»

«instance»

M1

M2

M3

«instance»

Figure 1. Meta-models hierarchy

In addition to a better management and improvement of processes, SPEM objectives

include the improvement of human comprehension of the processes, facilitate process

tailoring and reuse as well as the automation of software process execution. SPEM is

open specification with all the necessary concepts to design, model, publish and tailor

software engineering processes in order to (i) create a repository of reusable content; (ii)

support the management and development of software processes; (iii) establishing a

process framework within an organisation (e.g., CMM level 3 needs defined as well as

tailoring mechanisms) and (iv) generation of templates of actual projects. It is worth

noting that SPEM is mainly designed for software processes and not as a general process

modelling. Other efforts exist in such direction such as the BPDM (Business Process

Definition Metamodel)‡‡ and BPMN (Business Process Modelling Notation)§§ which are

also maintained by the OMG.

When using the SPEM standard, processes can be defined using two approaches (i) as

a UML profile and (ii) as a meta-model. A UML profile defines a series of stereotypes

(mainly graphical icons) to represent software engineering concepts without adding

constrains, i.e., it does not include any semantics (for example, there is no way to add that

the relationship between a task and a role must exist one or more performers). Therefore,

when used as a profile, it is mainly a diagrammatical tool using UML artifacts extended

with visual icons to represent software process concepts. It has the advantage of allowing

‡‡ http://www.omg.org/spec/BPDM/1.0/
§§ http://www.bpmn.org/

Instructions for Typing Manuscripts (Paper’s Title) 5

us to represent a process visually using any UML tool. As a meta-model, SPEM

processes can include the semantics of the MOF meta-model and it is possible to

automate the translation process between different representations (being MOF the core

of the Model Driven Architecture (MDA)***.

The SPEM specification defines two types of concepts: (i) the Method Content with

basic elements such as Role, Task and WorkProduct: and (ii) Process as a combination of

previously defined content elements as a dynamic structure. Such separation promotes the

reusability of processes and its adaptation to different software life-cycles thanks to two

types of extensibility and variability mechanisms called method plug-in and process plug-

in capable of adding or adapting. The concepts are organised in the following meta-model

packages:

 Core: It contains common classes and abstractions used to build upon.

 Process structure: It represents the static concepts of processes with nesting

activities and predecessor and successor dependencies.

 Process behaviour: It extends the Process Structure package with behavioural

models such as activity diagrams for process behaviour or work products with state

machines to represent its lifecycle.

 Managed Content: This package introduces concepts for managing textual

description (natural language) and documentation capabilities for processes.

 Method Content: It provides the concepts for defining lifecycle and process

independent reusable method content elements that provide a base of documented

knowledge of software development methods, techniques, and best practices.

 Process With-Methods: It defines new and redefines existing structures for

integrating Process Structure concepts with instances of Method Content concepts

(Tasks, Roles, and Work Products) into the context of a lifecycle model comprising,

for example, phases and milestones.

 Method Plug-in: It allows us to introduce the concept of variability in processes, in

what is called method configuration, where the user can add or remove elements

without modifying the original model.

*** http://www.omg.org/mda/

6 Author’s Names

MethodPlugin

ProcessWithMethods

MethodContent

ProcessBehaviour

ProcessStructure

Core

ManagedContent

Figure 2 SPEM 2 Meta-packages

There is no need to use all the packages defined by SPEM 2. For example, some

organisations could just use the Core, Managed Structure and Method Content as a way

of organising a documentation repository for the processes.

A repository (or Method Library) is composed of one or more Plug-ins and Method

Configurations. Plug-ins are in turn divided into two components: (i) Method Content

and (ii) Processes modelling static and dynamic concepts respectively. Also, as there is

no need to use all process documentation at one given instance in time, a tailored subset

can be defined with Method Configurations. For example, different views can be shown

to different roles within an organization (e.g., developers only need the information

related to programming). Figure 3 shows the organization of a process using SPEM –left

hand side– and how a tool such the EPF Composer mirrors such structure –right hand

side–).

Method
Library

Plug-ins

Configurations

Content Package

Standard Categories

Custom Categories

Capability Patterns

Delivery Processes

Method
Content

Processes

Figure 3 SPEM 2 Organization

Instructions for Typing Manuscripts (Paper’s Title) 7

Once the organisation is described, we next need to define the main elements of the

packages without being exhaustive as many concepts are not visible when modelling

process. The basic elements of Method Content include:

 Tasks are atomic units of work composed of a series of Steps.

 Roles are defined as set of abilities, competencies and responsibilities related to an

individual or group of individuals.

 Work products are artifacts, deliverables or outcomes.

 Guidance elements provide additional information related to other elements. There is

large number of defined guidance elements such as reusable asset, term definitions,

guidelines, whitepapers and examples.

 Categories are in turn classified as Standard Category and Custom Category used to

organise and create hierarchies of elements. The Standard Category is composed of

five predefined categories: Role set to group roles (e.g., analysts could group

requirements analysts and design analysts); discipline to categorize tasks; Domain to

create hierarchies of work products; Tool to categorise tool guides; and Work

Product Kind to allow us to include a work product under different classes.

 Associations between content elements such as Task – Steps as an ordered list to

perform a task, Task – Roles which is composed of primary performer and

additional performers, Task – Work Products composed of mandatory inputs,

optional inputs and outputs, etc.

Content Elements (Tasks, Roles and Work Products) that are instantiated in a

particular process end with the suffix “Use”. For example, we have Task Use, Work

Product Use, and Role Use representing actual instances of the definition of a an activity,

actual artefact and actual roles in a process respectively. Note that it refers to the generic

term in a process definition but it does not correspond to any concrete project (e.g., the

requirements document in Scrum is referred generically as the backlog).

On the other hand, we have Processes in which the Method Content described are

combined to define activities and processes. Basic elements include:

 Work Definition is an abstract concept that generalises all types of work definitions.

 Breakdown Element is an abstract generalisation for all other types of process

elements, mainly Process Parameters, Process Performers, Work Breakdown

Elements, and Work Sequence connecting two Work Breakdown elements

(predecessor and successor). Work Breakdown Elements, which are the main type of

Breakdown element, are composed of Activities and Milestones. Activities are

preformed by Process Performers and can have input and output parameters

(Process Parameters). Finally, SPEM defines three types of Activities: (i) Phase a

significant non repeatable time span of a project typically ending typically in a

milestone; (ii) Iteration, a repeatable set of nested tasks; and (iii) Milestone.

Based on process patterns, SPEM provides two classes for adapting and dynamically

ensemble processes: (i) Capability Pattern, a generic and reusable software piece that can

8 Author’s Names

be reused across several processes; and (ii) Delivery Process which describes a complete

and integrated approach for performing a specific project type, i.e., it covers a complete

project lifecycle to be used as a reference for executing projects following the same

process such us XP, RUP or Scrum.

Currently, there are several tools such as the Eclipse Process Framework (EPF)

Composer capable of editing processes using SPEM. The EPF Composer uses XMI

(XML Metadata Interchange)†††, another OMG standard for manipulating, storing and

interchanging information between tools and it enables to export a process template to

project management tools (e.g., Microsoft Project). It can also generate the process

documentation in HTML format to be accessed through the Web. Figure 4 shows how a

process modelled using the EPF composer can be exported to MS Project. It can be noted

that it is necessary to include further information such as the actual duration of tasks.

Figure 4 A project in the EPF Composer (left) exported to MS Project (right)

2.2. Ontologies and reasoning

Ontologies, as the shared representation of domain concepts and their relationships can

be represented in different formalisms for quite a long time. Since the inception of the

Semantic Web, in which ontologies are the principal recourse to integrate and deal with

online information, a new set of standards has been proposed. The Ontology Web

Language (OWL) [31] is one of such standards that belongs to a family of knowledge

representation languages prepared for the Semantic Web that has reached status of W3C

††† http://www.omg.org/technology/documents/formal/xmi.htm

Instructions for Typing Manuscripts (Paper’s Title) 9

(World Wide Web Consortium) recommendation. From technical point of view OWL

extends the RDF (Resource Description Framework) and RDF-S (RDF Schema) allowing

us to integrate a variety of applications using XML as interchange syntax. There are three

OWL flavours, OWL Lite, OWL DL (Description Logics) and OWL Full, being the

OWL depending on the expressiveness and reasoning capabilities provided. In short,

OWL ontologies are composed of (i) classes as sets of individuals, (ii) individuals as

instances of classes, i.e., objects of the domain and (iii) properties as binary relations

between individuals. It is possible to specify property domains, cardinality ranges and

reasoning on ontologies. Reasoning in OWL can be performed at a class, property or

instance level and reasoning examples include class membership, equivalence of classes,

consistency, classification of the information, obtaining additional properties using

transitiveness or equivalent, etc.

Another W3C standard, the Semantic Web Rule Language (SWRL) [17], based on

RuleML‡‡‡, extends the OWL providing logic based rules, and in consequence, more

expressiveness. Rules have the form of antecedent implies a consequent. Figure 5 shows

the use of SWRL rules with OWL ontologies. Rules together with stored facts

(knowledge base) are executed as inputs to by the rule engine inferring new facts as an

output. Also, if the inference engine infers knowledge using forward chaining, the new

knowledge can be used for further inference (in contrast with backward chaining where

the search for knowledge starts from the consequent to the antecedent).

Facts/Knowledge base

Ontologies

Clases/
Instances

Rules
SWRL

Rule
engine

Facts
+

Rules

New
facts

Figure 5. Execution of rules adding new knowledge/constrains from rules

The open source Protégé tool§§§ is one of the possible tools that can be used for

creating ontologies. It includes the SWRLTab which is an extension for editing and

executing of SWRL in conjunction with JESS****, a rule engine.

‡‡‡ http://ruleml.org/
§§§ http://protege.stanford.edu/
**** http://www.jessrules.com/

10 Author’s Names

3. Representing processes with OWL Ontologies

As stated previously, SPEM is generally used to design generic software processes such

as the Open Unified Process, XP or Scrum. In this section, we discuss a first approach to

create an ontology from the Scrum process [26] defined using SPEM. Scrum is a

relatively simple process with a reasonable number of classes and properties.

Although SPEM models can be translated to a representation in OWL while retaining

the modelling semantics specified in SPEM, the creation of ontologies is not straight

forward. There are no standard modelling methodologies but a mix of guidelines that are

combined with techniques from the database modelling and object oriented modelling to

iteratively achieve the desired representation [12]. In any case, the translation should not

aim at substituting the original model, but to serve as a complement for adding reasoning

and inference support to SPEM based models.

Typically, a SPEM model would be translated into one or several OWL modules, in

addition to other OWL modules with basic mappings that would be imported by these. It

should be noted that there is no need to translate each SPEM package into an OWL

module as simplicity has been preferred in contrast to mirroring every SPEM element.

Many terms in the standard are linked to other through inheritance to provide the

necessary semantic meaning which can be directly defined when creating the ontology.

For example, ExtensibleElement is an abstract class for all the SPEM elements and the

ontology can be focused on more visible elements such as task or role. The packages,

however, can help to organise the different concepts in different ontologies and files). For

example, from the Core package, we just selected the ParameterDirectionKind to create

and enumeration of input, output or inputOutput linked through a property

(hasParameterdirection). Furthermore, the Task, Role and WorkProduct elements that

appear in the Method Content package are defined in the method-content ontology. In the

same way the Activity, Milestone, etc. classes from the Process package in another

process ontology.

Roles in scrum are divided into: (i) Chicken roles which are not part of actual scrum

process but need to taken into such as account stakeholders and customers; and (ii) Pig

roles which are committed to the project. The Pig roles in Scrum are the scrum master,

i.e., the project manager, the product owners that represent the stakeholders; and the

team, which carries out the actual project usually in relatively small teams of around 7

people capable of self-organized. In the ontology, the Role class from the method-content

ontology can be extended with in the Scrum ontology, i.e., method-Content:Role can have

scrum:Pig and scrum:Chicken as subclasses. The productOwner, scrumMaster and team

will be instances of the Scrum Chicken role.

Instructions for Typing Manuscripts (Paper’s Title) 11

The development of a project using Scrum is performed iterative and incrementally in

cycles called sprints. Each sprint is supposed to end up with a working system that could

be potentially delivered to the client. Requirements are prioritised in what is called the

Product Backlog which is regularly updated and new items, detailing items, estimates and

so on. Before starting each sprint, the functionality from the product backlog to be

included in the next sprint (sprint backlog) is decided during the sprint planning meeting.

All these terms can be represented in OWL a as a generic process extending the basic

terms. In the ontology, these terms are defined as WorkProduct in the method content

ontology with Artifact, Deliverable and Outcome as subclasses. Then, an instance or

individual of Artifact will be the sprintBacklog as part of the scrum ontology.

The execution of a project using the Scrum process is composed of the following

three phases: (i) Pre-game composed of two phases Planning which defines the system to

be built (Product Backlog, estimates, etc.) and High-level Design of the system based on

the Product Backlog and the Design Review Meeting, a preliminary planning for the

releases is outlined; (ii) Game or Development Phase. The development is performed in

sprints. There are several predefined meetings, the sprint planning meeting at the

beginning of each sprint, a daily scrum stand-up meeting and a sprint review meeting;

and the (iii) Post-game phase as the closure of the project. The process ontology has the

Activity class with Iteration and Phase classes defined as subclasses. The PreGame,

Game and PostGame are defined in the scrum ontology.

Scrum already defines a set of rules that must be followed and many of them are

related to timing constrains. For example, once a sprint has started, the items from the

sprint backlog cannot be modified, another one is that at the beginning of each day, a

stand up meeting, called the daily scrum must take place and only people committed to

the project can talk (not those only involved). There are also other rules related to time;

for example, duration of each sprint can vary between 15 days to a month but no more

and there is a sprint planning meeting at the beginning that should not last more than

eight hours. There is also a sprint review meeting with a time limit of four hours. There is

also another meeting defined by Scrum, the sprint retrospective, in which all team

members analyse what went well and what can be improved in the next sprint with a time

limit of three hours. In the ontology, we can deal with time and time constrains for such

classes either using the built-in types or merge developed ontologies such as the time

ontology†††† developed by Hobbs and Pan [16]. The same applies to generic terms in the

SPEM standards such as Metric. The Metrics class is the only concept defined in SPEM

to contain measurements such as effort estimations of activities, or maximum duration of

Scrum meetings and further refined ontologies for metrics have defined by [13] among

others. Another example is the matching between roles, people and competences that can

be exported from other ontologies [28].

†††† http:// www.w3.org/TR/owl-time/

12 Author’s Names

When an actual project is represented in the ontology, we need to include concrete

people, task and time information possibly from project management tools and new

classes in the ontology are necessary to provide the links. For example, the actual

personnel from an organization could be stored in an ontology which we called

genericProjectDefs which can have the People class and all the organisation personnel as

instances. As stated previously, all properties (links between classes) are binary,

therefore, in order to link personnel, roles and tasks we need to define an n-ary

relationship. To do so, we need define a new class in which instances and other such as

tools can be linked through properties (called reified relations).

Figure 6 Process Ontology modeled in Protégé

For the translation, the OWL ontologies were elaborated using the Protégé tool as

shown in Error! Reference source not found.. Although the nomenclature used in the

Instructions for Typing Manuscripts (Paper’s Title) 13

SPEM standard or Scrum was followed whenever was possible, it should be noted that

other translation approaches could be devised in the future with a more comprehensive

alignment to the OMG meta-modelling specifications. This includes the use of the

recently proposed ODM (Object Definition Metamodel)‡‡‡‡ specification which can be

used for translations between metamodels. A large number of terms are generic to

software engineering processes and methodologies and defined in numerous standards,

guides and other ontologies. Such works can be used in conjunction with SPEM as

starting point of the ontological process and merging of ontologies. For example, the

Metric concept in SPEM 2 is could be further expanded with much richer descriptions

from other ontologies such as the SMO (Software Measurement Ontologies) [13].

However, merging ontologies and terminology from the software engineering standards

is not a trivial task. For example, Activity and Task definitions in SPEM do not exactly

comply with the ISO 12207 standard as it defines activity as life cycle phase and a task as

something performed within an activity.

4. Modelling process constraints with SWRL

As stated previously, the main motivation of this work is to actually check and verify

constrains that can be defined as part of a SPEM process models and other information

that can be obtained from project management tools. It can be devised, for example, that

other information gathered from software repositories (e.g., metrics) could be included in

as OWL ontologies and constrains could be verified using rules.

SPEM
(Process A)

Project
Management Tool
(e.g. MS Project)

Protégé + Jess
OWL + Rules

OWL

OWL

XML

instances
Inferences

Translator

Translator

Other OWL
ontologies,...

Figure 7 Extension of SPEM with Semantic Knowledge and Rules

Figure 7 shows this approach, where ontologies represented using OWL and rules

with SWRL are combined in order to better manage the project. On the one hand, we

have generic process information from SPEM models using tools such as the Eclipse

Process Framework. Also, configurations of a concrete project can be exported to project

management tool (e.g., MS Project) in which the concrete process specification can be

populated with information about personnel, information about start and end dates of

‡‡‡‡ http://www.omg.org/docs/formal/09-05-01.pdf

14 Author’s Names

activities, their duration, etc. Information from both sources can populate instances in

ontologies that can be enriched with constrains in the form of rules using tools such as

Protégé in conjunction with rules engines such as JESS. In this environment can execute

such rules to verify constrains and inconsistencies in a project as well as possible

incorporate new knowledge into the project management tools to better monitor the

project. It is worth noting that although many of the constrains in UML can be defined

using the Object Constrain Language (OCL), however, it currently lacks the maturity and

tool support provided by the semantic Web. Following the example described in the

SPEM specification [24] as a precondition: “Input Document X has been reviewed and

signed by customer AND the work defined by Work Definition ‘Management Review’ is

complete”. Such precondition is expressed in natural language and associated to the

WorkDefinition class compositional association (Figure 8 shows the UML class

diagram for the WorkDefinition class). Even if expressed in OCL, we are not aware of

any environment that allows their execution.

Classifier

WorkDefinition

Constrain

WorkDefinitionParameterWorkDefinitionPerformer

+precondition +postcondition

Figure 8 Constrains as part of the WorkDefinition abstract class

After defining the SPEM ontology, we can now provide an overview of how SPEM

and project constrains can be expressed using the SWRL as a rule language capable of

checking and verifying constrains. It is possible to run rules at the same level or between

different levels in the ontological hierarchy shown in Figure 9.

Instructions for Typing Manuscripts (Paper’s Title) 15

WorkProductUse Activity

isInputParameter

RequirementDocumentType ReviewProcessType

Upper Level
Ontology
SPEM

instance instance

Process A

RequirementDocument ReviewProcess

instanceOf instanceOf

Project A

isOutputParameter

Figure 9 Different Semantic Levels when Creating SPEM Ontologies

An example of executing rules at the same level could be as follows. When an

activity has a work product as input (isInputParameter) and output

(isOutputParameter), a rule could automatically include another property that such

work product is both input and output parameter. In the UML SPEM profile this is

defined as an enumeration (ParamterDirectionKind).

WorkProduct(?a) ∧

ProjectTask(?t) ∧

isInputParameter(?a, ?t) ∧

isModifiedBy(?a, ?t)

 → hasParameterDirection(?a, core:inOut)

Another example of rule could be when a work product goes through the process of

review; in such a case, there could exist a property (isReviewedBacklog) which

automatically is updated to true.

methodContent:WorkProduct(sprintBacklog1) ∧

project:isInputParameter(sprintBacklog1,

sprintPlanningMeeting1)

 → isReviewedBacklog(sprintBacklog1, true)

We could specify concrete examples using SCRUM. For example, when running a

project if the backlog for a sprint has been agreed and the sprint started, then we could

16 Author’s Names

assign to the Boolean property modifiable the value false. Note that such a rule could

be part of some guideline when specifying the process.

WorkProduct (sprintBacklog1) ∧

isAgreed(sprintBacklog1) ∧

sprintStarted(sprintBacklog1, true)

⇒ modifiable(sprintBacklog1, false)

As stated, many of the restrictions apply to time. One possible solution could be to

create all temporal needed properties using the simple built-in datatypes from XML

Schema. However, a more powerful approach and possibly more elegant is to include the

data entry ontology [16].

ScrumPlanningMeeting(?x)

startDate (?tartMtingDt1, ?x) &

temporal:add(?endMtingDt1, ?startMtingDt1, 8, “Hours”)

temporal: durationGreaterThan(

⇒ nonConformingMeeting(?x)

Other possible example could be more generic to all types of projects. For example,

assuming that a person is always assigned full time to an activity, we could verify that a

person can not be assigned to two overlapping activities:

People (?p) ∧ WorkProduct(?plan)

Activity(?act1) ∧ Activity(?act2) ∧

assignedRelation(?p, ?act1) ∧

assignedRelation (?p, ?act2) ∧

activityOverlaps(act1, act2)

⇒ conformingPlan (?plan, false)

Similar restrictions can be applied to the duration of each of the iteration in a Scrum

project as the can not be longer than 30 days:

activitySprint(?sp1) ∧ startDate(dt1?, ?spr1) ∧

temporal:durationGreaterthan (30, ?dt1, “Days”)

⇒ conformingPlan (?sp1, false)

Other examples could be generic about personnel, competencies of the personnel and

types of jobs that could be assigned and even inferred knowledge could be used to

perform further inference finding suitable combinations of personnel, schedule and tasks.

Instructions for Typing Manuscripts (Paper’s Title) 17

inTeam(?x) ^

role(DBDesigner, ?x) ^

experienceCompetencyLevel (?x, DataBases, “High”)

⇒ suitableTeamMember(?x, true)

5. Related Work

One of the initial ontologies in software engineering is REFSENO (Representation

Formalisms for Software Engineering Ontologies) developed by Tautz and von

Wangenheim [32]. This ontology has been applied for modelling experience factories [6]

using the Goal-Question-Metric paradigm [4] and to software maintenance process by

Vizcaíno et al [34]. Kitchenham et al [21] also defined an ontology for software

maintenance using UML as a formalism for identifying and defining several domain

factors (e.g., product, process, people and organization) and attributes that influence the

maintenance process. Based on Kitchenham et al work, Ruiz et al [27] defined another

ontology for the management of software maintenance. Althoff et al [2] describe an

architecture oriented to reuse the experience in software engineering that use ontologies

as the underlying formalism. In relation to process ontologies, Ceravolo et al. [9] describe

the Extreme Programming Ontology (XPO) specifying the main concepts of the XP

methodology. Authors aim is to analyse agile processes, mining process data about

developer’s activity and repositories content in order to extract new concepts potentially

identifying critical factors in agile software development. As SPEM is increases its

popularity as a way of representing models more formally, several researchers are using

SPEM as a foundation for defining ontologies. For example, García et al [13] developed

an ontology to represent software engineering measurement concepts merging SPEM

with other ontologies.

Researchers have also developed ontologies based on current standards such as the

Guide to the Software Engineering Body of Knowledge (SWEBOK) [18], which is also

an ISO standard (ISO/IEC TR 19759:2005). Standards provide an agreement on the

content of what compose the software engineering discipline opening new possibilities to

ontology engineering in the field of software engineering, since they represent a shared

consensus on the contents of the discipline. For example, Abran et al [1] report on the

developed of a software engineering ontology based on the SWEBOK and the process for

its creation.

Although these works represent a very important and starting point to define terms

and processes related to software engineering, most of cited ontologies mainly define

concepts and their relationships without providing formalisms for reasoning. In most

cases, ontologies consist of definitions defined using UML classes and attributes with

textual descriptions of the definitions without reasoning capabilities. When referring to

reasoning with models are mainly focused on the UML (in which SPEM can be based)

18 Author’s Names

and the OCL (Object Constrain Language) as a way of verifying models. For example,

Cabot, Clarisó and Riera [8] describe how to transform UML class diagrams together

with OCL specifications into Constrain Satisfaction Problems (CSP) in order to validate

them. A similar approach is taken by Queralt and Teniente [25] to validate UML models

and by Simmonds et al [30]. As a result of the REWERSE project, Milanović et al [22]

have defined an approach for meta-model transformation between UML/OCL and

OWL/SRWL, based on the R2ML (REWERSE Rule Markup Language) which is a

MOF-defined pivotal language for the translation. The MOF is a meta-modeling language

for specifying models, i.e., it allow us to specify models of modeling languages. As stated

by Milanović et al , there are benefits of the bridging the gap between OMG models such

as UML or SPEM and the semantic Web with OWL. On the one hand, OWL has become

the de-facto standard for specifying ontologies and on the other hand, models which they

define as set statements of can be verified using the reasoning technologies provided by

the Semantic Web. From the same project, Aβmann, Zshaler and Wagner [3] also present

a schema combining ontologies and metamodels for the MDE (Model Driven

Engineering) approach as a complementary techniques.

6. Conclusions and Future Work

This paper describes how software process ontologies can be derived from the Software

and Systems Process Engineering Meta-model (SPEM) models. SPEM standardises and

formalises the way of representing software engineering processes in relation to both

their static and dynamic concepts such as activities, roles, tasks and work products.

Ontologies in turn can be extended with rules representing constrains over elements of a

concrete software project and those rules can be executed to verify such constrains and

discover possible problems during the execution of a project. We presented a basic

approach as a proof of concept using the Ontology Web Language (OWL) combined with

SWRL (Semantic Web Rule Language) rules to represent constraints as rules. This

approach provides the benefit of representing certain information that can not be

represented in SPEM alone and furthermore it can be automatically verified.

Future work includes the further development of the ontologies and rules for existing

software processes that started here as a proof of concept. In this work, we created the

ontology manually; it may however be possible to obtain a first version of the ontologies

using model transformations. As both SPEM and the new ODM (Ontology Definition

Metamodel) are defined using meta-models, the translation can be performed using M2M

(Model-to-Model) using for example the ATL§§§§ (Atlas Transformation Language) or

the QVT***** (Query/View/Transformation) specifications. Also, there are several

existing ontologies related to software engineering or other disciplines (e.g.,

measurement ontologies, competencies) that can be integrated and form an important

activity in the development of new ontologies and tool support for processes and project

§§§§ http://www.eclipse.org/m2m/atl/
***** http://www.omg.org/spec/QVT/1.0/

Instructions for Typing Manuscripts (Paper’s Title) 19

managers. The extension of process frameworks such as the Eclipse Process Framework

to include rules as well as translators between project management and ontology based

tools for the introduction of rules and their verification. Another open research issue is

not only to verify the constrains of a project, but also how new inferred information could

fed back to the project management tools in order to improve the control of a project.

References

[1] A. Abran, , J. Cuadrado, E. Garcia-Barriocanal, O. Mendes, S. Sanchez-Alonso, M.A. Sicilia,

Engineering the ontology for the software engineering body of knowledge: issues and

techniques. Ontologies for Software Engineering, Springer Verlag, New York, NY, (2006).

[2] K.D. Althoff, A. Birk, S.Hartkopf, W.Muller, M. Nick, D.Surmann, C. Tautz,: Systematic

Population, Utilization, and Maintenance of a Repository for Comprehensive Reuse. In

Learning Software Organizations - Methodology and Applications, Springer Verlag, LNCS

1756, pp. 25-50. (2000)

[3] U. Aßmann, S. Zschaler and G.Wagner, Ontologies, Meta-models, and the Model-Driven

Paradigm. In Ontologies for Software Engineering and Software Technology, Calero, C,

Ruiz F. and Piattini M., (Edts) Springer Berlin Heidelberg, 2006.

[4] S. C.Bandinelli, A. Fuggetta, and , C.Ghezzi 1993. Software Process Model Evolution in the

SPADE Environment. IEEE Trans. Softw. Eng. 19(12) (Dec. 1993), pp. 1128-1144.

[5] N. BarghoutiS. 1992. Supporting cooperation in the Marvel process-centered SDE. SIGSOFT

Softw. Eng. Notes 17, 5 (Nov. 1992), pp. 21-31.

[6] V. Basili, R. G. Caldiera, and H. D. Rombach, The experience factory, in Encyclopedia of

Software Engineering, ed. J. J. Marciniak, (John Wiley & Sons, 1994), pp. 469–476.

[7] Berardi, D., Calvanese, D., De Giacomo, G., Reasoning on UML class diagrams, Artificial

Intelligence, Volume 168, Issues 1-2, October 2005, Pages 70-118.

[8] J. Cabot, R. Clarisó, D. Riera, Verifying UML/OCL Operation Contracts, 7th International

Conference on integrated Formal Methods (IFM 2009), Düsseldorf, Germany, February 16-

19, 2009. Lecture Notes in Computer Science LNCS Volume 5423/2009, pp 40-55.

[9] P. Ceravolo, E. Damiani, M. Marchesi, S. Pinna, F. Zavatarelli, A ontology-based process

modelling for XP, In Software Engineering Conference, 2003. Tenth Asia-Pacific , pp. 236-

242, 2003

[10] CMMI, Capability Maturity Model Integration, Version 1.2. Web site:

http://www.sei.cmu.edu/cmmi/

[11] B. Curtis, M. I. Kellner, and J. Over, 1992. Process modeling. Communications of the. ACM

35, 9 (Sep. 1992)

[12] V. Devedžic, Understanding Ontological Engineering, Communications of the ACM, 45(4)

(2002) 136-144.

[13] F. García, F. Ruiz, C. Calero, M.F. Bertoa, A. Vallecillo, B. Mora, M. Piattini: Effective use

of ontologies in software measurement. Knowledge Engineering Review 24(1) (2009) 23-40.

[14] T.R., Gruber, Toward Principles for the Design of Ontologies Used for Knowledge Sharing,

International Journal of Human-Computer Studies, 43(5-6) (1995) 907-928.

[15] M. Grüninger, and C. Menzel, The process specification language (PSL) theory and

applications, Artificial Intelligence Magazine. 24(3) (2003) 63-74.

[16] J.R. Hobbs, F. Pan, 2006, Time Ontology in OWL. W3C Working Draft 27 September 2006,

http://www.w3.org/TR/2006/WD-owl-time-20060927/

[17] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean, SWRL: A

Semantic Web Rule Language Combining OWL and RuleML, W3C (World Wide Web

Consortium), 2004. Web site: http://www.w3.org/Submission/SWRL/

20 Author’s Names

[18] IEEE, SWEBOK, Guide to the Software Engineering Body of Knowledge. 2004, Web site:

http://www2.computer.org/portal/web/swebok

[19] ISO: ISO/IEC 12207:2008 Systems and software engineering -- Software life cycle processes

(2008)

[20] ISO: ISO/IEC 15504 Information technology Process assessment. Parts 1 to 8. Web site:

http://www.iso.org/ (2009)

[21] B.A. Kitchenham, G.H. Travassos, A.V. Mayrhauser, F. Niessink, N.F. Schneidewind, J.

Singer, S. Takada, R. Vehvilainen, and H. Yang, Towards an Ontology of software

maintenance, Journal of Software Maintenance: Research and Practice, 11 (6) (1999) 365-

389.

[22] M. Milanović, D. Gašević, A. Giurca, G. Wagner: On Interchanging Between OWL/SWRL

and UML/OCL. In: Proceedings of 6th OCL Workshop at the UML/MoDELS Conference

(OCLApps 2006), Genova, Italy (2nd October 2006)

[23] M. N. Nguyen, A. I. Wang, and R. Conradi,. Total software process model evolution in

EPOS: experience report. In Proceedings of the 19th international Conference on Software

Engineering (Boston, Massachusetts, United States, May 17 - 23, 1997). ICSE '97 (1997)

[24] OMG, Software Process Engineering Meta-model (SPEM) Specification. Version 2.

Technical Report ptc/2008-04-01, Object Management Group (2008)

[25] A. Queraltand E. Teniente Reasoning on UML class diagrams with OCL constraints. In D. W.

Embley, A. Olive and S. Ram, editors, ER, volume 4215 of Lecture Notes in Computer

Science, pages 497?512. Springer-Verlag, 2006

[26] L. Rising, N.S.Janoff, The Scrum software development process for small teams, IEEE

Software, 17(4) (2000) 26-32.

[27] F. Ruiz, A.Vizcaíno, M. Piattini and F. García, , An Ontology for the Management of

software Maintenance Projects, International Journal of Software Engineering and

Knowledge Engineering, 14(3) (2004) 323-349.

[28] Sicilia, M.A. (ed.), Competencies in organizational e-learning. Concepts and Tools. (Idea

Group publishing, Hershey, PA., 2006)

[29] Sicilia, M.A., Garcia-Barriocanal, E., Sanchez-Alonso, S., Rodriguez, D., Ontologies of

engineering knowledge: general structure and the case of Software Engineering, The

Knowledge Engineering Review

[30] J. Simmonds, , M.C. Bastarrica, N. Hitchfeld-Kahler, and E. Rivas, A Tool based on DL for

UML Model consistency Checking, International Journal of Software Engineering and

Knowledge Engineering Vol. 18, No. 6 (2008) 713–735.

[31] M.K. Smith, C. Welty, and D.L. McGuinness, OWL Web Ontology Language Guide". W3C,

2004, http://www.w3.org/TR/owl-guide/

[32] C. Tautz, and C.G. von Wangenheim, REFSENO: A Representation Formalism for Software

Engineering Ontologies, Fraunhofer Institute IESE IESE-015.98/E (1998).

[33] M. Uschold, M.Grüninger,: Ontologies: Principles, Methods, and Applications, Knowledge

Engineering Review, 11(2) (1996) 93-113.

[34] A. Vizcaino, F. Ruiz, M. Piattini, and F. Garcia, 2004. Using REFSENO to Represent

Knowledge in the Software Maintenance Process. In Proceedings of the Database and Expert

Systems Applications, 15th international Workshop (August 30 - September 03, 2004).

DEXA. IEEE Computer Society, Washington, DC, 488-493.

