Empirical Findings on Team Size and Productivity in
Software Development

D. Rodriguez®®* M.A. Sicilia®, E. Garcia?, R. Harrison®

?Department of Computer Science, University of Alcald, Ctra. Barcelona, Km. 81.6,
28871 Alcald de Henares, Madrid, Spain
bSchool of Technology, Ozxford Brookes University
Wheatley Campus, Ozford OX33 1HX, UK

Abstract

The size of software project teams has been considered to be a driver of
project productivity. Although there is a large literature on this, new pub-
licly available software repositories allow us to empirically perform further
research. In this paper we analyse the relationships between productivity,
team size and other project variables using the International Software Bench-
marking Standards Group (ISBSG) repository. To do so, we apply statistical
and machine learning approaches to a preprocessed subset of the ISBSG
repository to facilitate the study. The results show some expected correla-
tions between productivity, effort and time as well as corroborating some
other beliefs concerning team size and productivity. In addition, this study
concludes that in order to apply statistical or data mining techniques to
these type of repositories extensive preprocessing of the data needs to be
performed due to ambiguities, wrongly recorded values, missing values, un-
balanced datasets, etc. Such preprocessing is a difficult and error prone
activity that would need further guidance and information that is not always
provided in the repository.

Keywords:
Team size, productivity, effort estimation datasets, ISBSG repository

*Corresponding author. This work was carried out while visiting Oxford Brookes Uni-
versity.

Email addresses: daniel.rodriguezg@uah.es (D. Rodriguez), msicilia@uah.es
(M.A. Sicilia), elena.garciab@uah.es (E. Garcia), rachel.harrison@brookes.ac.uk
(R. Harrison)

Preprint submitted to JSS August 17, 2011

1. Introduction

Among the important factors that affect productivity, project team size
has been considered a key driver. The IEEE Std. 1045-1992 [20] defines
the productivity ratio as the relationship of an output primitive and its cor-
responding input primitive, where the input primitive refers to the effort
(staff-hours) to develop software products and the output primitive refers
to either source statements, function points or documents. Productivity is
sometimes also known as efficiency [39].

Among the many managerial decisions that need to be made in a software
project, personnel related factors are among the ones affecting productivity
most [38]. This raises the concern on finding empirical evidence about the
relationships between project attributes, productivity and staffing levels that
can help optimise managerial decisions. Concretely, it is commonly acknowl-
edged that the time spent in communication among team members increases
with the size of the team. Project team size therefore affects schedule de-
cisions, which are also acknowledged as an important factor in project suc-
cess [40]. Furthermore, team size is important when making decisions about
the structure of teams and the eventual partition of projects into smaller sub-
projects. If an optimal team size could be found, then the decomposition of
projects into smaller pieces would become a key management practice with
direct implications in the decision of distributing project teams.

Team size is also considered one of the more influential factors in soft-
ware productivity by the ISBSG organization: "The ISBSG data shows that
there are three main factors that impact software development productivity:
programming language, development platform and team size. The first two
have the most significant effect but it is also important to consider the im-
pact of team size. The latest ISBSG Special Report reveals that teams of nine
or more are significantly less productive than smaller teams” [22]. The rule
of thumb for the team size less than nine, provides an interesting manage-
ment in-sight. However, there is a need for additional research into data and
models, and it should be complemented by more elaborate models that help
staffing decisions. This rule of thumb is obviously directed to straightfor-
ward decision making, but it is important to contrast such rules with the
available evidence, and eventually, to develop methods for adapting them to
the specificities of each particular organization.

This paper aims to provide a systematic empirical study of the impact
of team size and other development factors in the productivity of software
projects by using statistical analyses after preprocessing an ISBSG repository
(release 10). A better understanding of the interactions between such factors
could help in both defining estimation models as well as decision making pro-
cesses for project managers. There is also a need to study publicly available
software engineering repositories to empirically validate their usefulness.

The rest of this paper is structured as follows. Section 2 covers related
work on team size and productivity in software development. Section 3 de-
scribes the ISBSG repository and the necessary preprocessing for the its
analysis. Then, Section 4 provides an exploratory study of the significance
of team size and productivity according to the data in the ISBSG repository
with statistical and data mining approaches. Finally, conclusions and future
work are provided in Section 6.

2. Related Work

According to the Project Management Institute (PMI)!, Software project
management mainly consists of applying knowledge, skills, tools and tech-
niques to project activities in order to meet or exceed stakeholder needs and
expectations from a project [34]. To do so, project managers need to define
the project tasks, their duration and dependencies and assigning resources
to them.

The influence of team size in the productivity of software teams has been
a topic of research in software engineering for many years. In his well-known
book, Brooks [8] claimed in 1975 that assigning more programmers to a
project running behind schedule will make it even later, due to the time re-
quired for the new programmers to learn about the project, as well as the
increased communication overhead. Although Brooks also stated that this
law is outrageously oversimplified, he provided some facts about why esti-
mates are not accurate: (i) estimating techniques are poorly developed and
we are optimistic by nature; (ii) estimating techniques fallaciously confuse
effort with progress, hiding the assumption that people and months are inter-
changeable; (iii) inherent uncertainty of estimates; (iv) schedule progress is
poorly monitored; and (v) when there is a schedule slippage, software man-
agers tend to increase manpower, making things worst, which is known as

http://www.pmi.org/

Complex

communication
averheads
Mon-partionable
v Communication
overheads

Perfectly partionable

Effort

Team size

Figure 1: Brooks’ Tasks Classification following (following [13])

Brooks’ law. Brooks also classifies tasks as (i) perfectly partitionable task;
(ii) unpartitionable task, (iii) partitionable task requiring communication;
and (iv) task with complex interrelationships. His view is that most tasks in
software engineering belong the the last category, task with complex interre-
lationships. These relationships between effort and team size are summarised
in Figure 1.

Abdel-Hamid and Madnick developed a System Dynamics model [2, 1] to
study such relationships. Among other things, their model was used to anal-
yse Brooks’ law by applying different staffing policies on cost and schedule
in a specific project, the NASA DE-A project. The authors conclude that
adding more people to a late project always causes it to become more costly
but does not always cause it to finish later.

Phister [27] provided one of the first models that accounted for team size
as a critical variable related to productivity. Smith et al. [37] analysed the
impact on software development effort of the following factors: (i) team size
defined as number of people working on a module; (ii) concurrency defined
the degree to which people work together or dependently in a module; (iii)
intensity, which measures the degree of schedule compression; and (iv) frag-
mentation, which examines the degree to which a team’s time is fragmented
over multiple modules. The authors modified several versions of the CO-
COMO model and also created a new parsimonious model considering only
previously defined factors. The authors concluded that the parsimonious
model was superior to the original and modified COCOMO models while us-
ing fewer factors. Regarding the team size factor, the authors also concluded
that team size does not significantly affect effort in the studied development

environment.

Trendowicz and Miinch [38] report on a comprehensive study of factors
affecting productivity through a systematic literature review [23] and indus-
trial experiences consisting of industrial projects, workshops and surveys.
The authors categorise multiple factors into the following groups: product,
personnel, project and process factors. The authors also analyse their re-
ported frequency in four contexts: cost modeling, productivity measurement,
project data repositories and studies on software process improvement. The
authors consider context factors as those applicable to a variety of environ-
ments used to build models. The factors most frequently cited include the
programming language, domain and development type. Also, influence fac-
tors are those included in the model to explain the variability of context
factors. In this case, some of the most influential factors include: team ca-
pabilities and experience, software complexity, project constraints and tool
usage. According to the authors, the human side of the software develop-
ment process is the most important one followed by tools and methods and
contrary to intuition and belief, reuse is not a key factor in productivity.

One important point is that staffing is considered to vary during the soft-
ware development life cycle and it can be adjusted by the Rayleigh distribu-
tion as first described by Norden [30, 29]. Putman [35] extended Norden’s
model into the Software Llfe Cycle Management (SLIM) model in what he
defined the software equation based on the hypothesis that the size of soft-
ware project is proportional to productivity, effort and time. According
to Putnam in QSM?2, there is an optimum team size, defined as the one
which allows the development team to achieve the maximum productivity
with shortest schedule and lowest cost without affecting the final outcome.
Putman also states that the optimum team size is dependent on a num-
ber of variables including: (i) the size of code to be developed and reused,
(ii) project complexity and (iii) the degree to which schedule or cost is the
overriding schedule constraint. Following a quantitative approach, Putman
presents a study that analyses the productivity of projects stratified into five
groups (1.5-3 staff, 3-5 staff, 5-7 staff, 9-11 staff, 15-20 staff) from a sample
of 491 projects. Putman concluded that productivity is higher for smaller
teams with an optimum team size of 3 to 5 staff but with very similar values
for teams between 5 to 7 staff. In relation to the schedule, Putman stated

2http://www.qsm.com/process_01.html

that schedule performance improves up to a team size of 9 to 11 people but
with larger teams the schedule performance decreases. To sum up, teams
of 9 or more people represent more effort and cost with exponential growth
after such a threshold. Pillai and Sukumaran Nair [33] proposed a further
refined Putman’s model for the dynamics of manpower to provide better ad-
justment capabilities. Other statistical models for estimation in general and
productivity in particular include the work by Sentas et al. [36] which report
on the use of Ordinal Regression to estimate the productivity divided into
four intervals.

More recently, this problem has been approached using Search Based Soft-
ware Engineering (SBSE) techniques which mainly consist of the application
of metaheuristic techniques in Software Engineering [18]. The application of
SSBSE to project management has generated a research area also known as
Search-based Software Project Planning (SBSPP). For example, Di Penta et
al. [13] analysed Brooks’ law using search based techniques (following a previ-
ous work [6]);for perfectly partitionable tasks, we have time=effort/persons.
However as communication effort needs to be taken into account, we have
time=effort/persons)-commEff, where commEff is a measure of communica-
tion effort. Simulations confirmed that (i) different communication overheads
affect statistically the duration time, (ii) increases in communications over-
heads favour a larger number of smaller teams in opposition to a smaller
number of larger teams. Di Penta et al. [12, 7] have also compared different
approaches (Genetic Algorithms, Stochastic Hill Climbing and Simulated An-
nealing) to SBSPP. Previously the authors focused on exploring the staffing
problem and communication overheads (Brook’s law) [32] using genetic al-
gorithms. Other authors such as Alba and Chicano [3, 4] have also applied
genetic algorithms as a technique to optimise the assignation of people to
software development tasks. More recently, multi-objective approaches are
being applied for example by Gueorguiev et al. [17] and also by Chicano et
al. [9]. Kremmel et al. [25, 26] have also tackled allocation of resources to
projects with metaheuristics. In our paper, we focus on studying some im-
portant attributes rather than suggesting techniques to allocate resources.
The clarification of important attributes and thresholds can help to define
constraints that can be used with the search techniques.

The problem of productivity is related to the problem of economies and
dis-economies of scale in Software Engineering. For example, Dolado [14]
conducted exhaustive research of cost estimation models using regression
and genetic programming with most of the publicly available repositories

6

available at the time. He concluded that there is no clear economy or disec-
onomy of scale in software development. Comstock [10] has investigated the
same problem of economy and diseconomy of scale using the ISBSG repos-
itory. The equations generated using three models (their own, Putman and
COCOMO) showed an economy of scale for size and diseconomy of scale for
team size. A number of authors have also analysed different releases of the
ISBSG repository in relation to effort estimation. For example, Pendharkar
and Rodger [31] studied the impact of team size on development effort. Ac-
cording to the authors, their study validates Brooks’ law and other interesting
results include that there is no relationship between software development
effort and using CASE (Computer Assisted Software Engineering) tools or
the type of programming language (3GL or 4GL) and development effort.
Haricko et al. [19] explored the relationship between project size, effort and
team size and proposed an approach based on the Generalised Reduced Gra-
dient and Sequential Quadratic Programming to define the optimal number
of developers to minimise the development effort using data from the IS-
BSG repository. In this paper we also analyse the ISBSG repository which
is probably the largest available repository in both the number of projects
and attributes.

3. The ISBSG Repository

The International Software Benchmarking Standards Group (ISBSG)?, a
non-profit organization, maintains a software project management repository
from a variety of organizations. The ISBSG checks the validity and provides
benchmarking information to companies submitting data to the repository.
Projects are defined using over 60 attributes such us number of function
points and type of function points (IFPUG, COSMIC, Mark II, etc.), team
size, software lifecycle phases, etc. The ISBSG attributes can be classified as
follows:

e Project context such as type of organization, business area, and type
of development.

e Product characteristics such as application type user base.

Shttp://www.isbsg.org/

e Development characteristics such as development platform, languages,
tools, etc.

e Project size data: different types of function points (IFPUG, COSMIC,
etc.)

e Qualitative factors such as experience, use of methodologies, etc.

However, before applying statistical or machine learning approaches to
the dataset, there are a number of issues to be taken into consideration
regarding data preparation. We first needed to preprocess data as explained
in the next section.

3.1. Preparation and Validation of the ISBSG Repository

This section describes the preprocessing or data cleaning process car-
ried out across different ISBSG releases. To do so, we performed instance
(project) selection and attribute selection.

Firstly, it was necessary to remove projects that have no significance to
the analysis due to poor quality or lack of data, inspecting instances for each
attribute as follows:

o Rating of the data. The ISBSG uses two attributes, Data Quality Rating
and Unadjusted Function Point Rating as a measure of reliability for
each project.

— Data Quality Rating. Projects are classified from A (where the
submission to the ISBSG consortium satisfied all criteria for seem-
ingly sound data) to D (where the data had some fundamental
shortcomings). According to ISBSG, only projects classified as A
or B should be used for statistical analysis. Therefore, all project
instances labelled as C or D were removed.

— Unadjusted Function Point Rating. This attribute refers to the

quality of the functional size. As above, only projects classified as
A or B should be used for statistical analysis.

e Count Approach. A description of the technique used to size the project.
The projects that used other size estimating method (Derived count
approach) than IFPUG*, NESMA®, Albrecht or Dreger were removed,

4International Function Point Users Group: http://www.ifpug.org/
®Netherlands Software Metrics Users Association: http://www.nesma.nl/

8

since they represent small portions of the database. NESMA is a com-
pliant variant of IFPUG and the differences between them are con-
sidered to have a negligible impact on the results of function point
counts [28]. Counts based on Albrecht’s [5] technique were not re-
moved since in fact IFPUG is a revision of these techniques, similarly,
the Dreger method refers to the book [15], which is simply a guide to
IFPUG counts. All these variants were included.

e The Recording Method attribute represents the method used to ob-
tain work effort data. Projects with Recording method for total effort
other than Staff hours (Recorded) were removed. This method reports
the work effort from a daily record of all the work effort expended
by each person on project related tasks. Others values such as Staff
hours(Derived), or Productive Time Only are not reliable because they
are considered to be more subjective.

e The Resource Level Data is collected about type of effort included in the
work effort data reported. Out of the four possible levels, only Level
1 was considered, i.e., development team effort (e.g., project team,
project management, project administration). Development team sup-
port, computer operations involvement, and end users or clients, are
not included as we are only interested in the project construction effort.

e Next we considered all nominal attributes. It was necessary to perform
a homogenization process, for example, many entries are blank while
others are labeled as “don’t know”. Another example is that the same
programming language is described using equivalent but different labels
such as COBOL 2 or COBOLII. It is, therefore, necessary to unify them
with the same value. A similar process is performed for all attributes.
We also tabulated all nominal attributes to obtain their frequencies.
Nominal values with less than 1% out of the total number of projects
were removed as they were considered not representative. For example,
the Language Type attribute can be 2GL, 3GL, 4GL, 5GL, and ApG but
the number of projects developed with 2GL, 5GL and ApG languages
was less than 1%; these projects were removed, leaving only 3GL and
4GL.

Secondly, we performed attribute selection. The entire ISBSG reposito-
ries have more than 60 attributes grouped around data rating, sizing, effort,

9

productivity, schedule, quality, grouping attributes, architecture, documents
and techniques, project attributes, product attributes, effort attributes, size
attributes and size other than functional size measures. After cleaning and
removing instances (projects) as described, some attributes contained only
one value. Attributes with a single value do not provide any usable informa-
tion for data mining or statistical analyses. Even then, it was not be possible
to consider all remaining attributes in our analysis. Attributes that can con-
fuse the statistical or machine learning algorithms were further removed. For
example attributes in which the percentage of missing values is larger than
85% were removed.

Several attributes represent different way of measuring the same project
characteristic. For example, among all productivity attributes, we selected
the Normalised Level 1 Productivity Delivery Rate as it is the development
productivity recommended by the ISBSG, and as a consequence, the Nor-
malised Level 1 Work Effort was also selected for the effort. Other produc-
tivity or effort attributes were removed.

Table 1 shows a summary of their types, range and percentage of missing
values of the following attributes selected with approximately one third of
all instances:

1. Functional Size (F'P). This is the count of unadjusted Function Points
(FP) [5, 21] using IFPUG or its variants.

2. Normalised Level 1 Work Effort (Eff). Development team only effort
for the full development life-cycle (this can be an estimate when the
project did not cover the full life-cycle). Effort is measured in staff
hours.

3. Normalised Level 1 Productivity Delivery Rate (PDR). Number of
hours per functional size unit. This is calculated from Normalised Level
1 Work Effort for the development team only divided by Functional
Size (Unadjusted Function Points). Therefore, smaller values represent
better productivity.

4. Development Type (DevType). Whether the development was a new
development, enhancement or re-development.

5. Organization type (OrgType). Type of organization that submitted the
project (e.g.: Banking, Manufacturing, Retail).

6. Development Platform (Platf). It defines the primary development
platform, (as determined by the operating system used). Each project

10

Table 1: Relevant ISBSG Attributes, their Types and % of Missing Values (after prepro-

cessing)
Attribute \ Type (Range) \ % Missing
FP Ratio [3-4,911] 0%
Eff Ratio [4-73,920] 0%
PDR Ratio [0.1-378.1] 0%
DevType Nominal {Enhancement, NewDev} 0%
OrgType Nominal {Insurance, Ordering, VoiceProvisioning, 40%
Banking, Manufacturing, Communications, FinProp-
BusServ}
Platf Nominal {MF, PC, Multi, MR} 51%
LangType Nominal {3GL, 4GL} 25%
PrimaryProgLang | Nominal {Java, C, ORACLE, COBOL, PL, VB, SQL, 25%
C++, NATURAL}
MTS Ratio [0.5-309)] 58%
ATS Ratio [1-41] 79%

is classified as: PC, MR (Mid-Range), M F (Mainframe) or Multi
(Multi-platform).

7. Language Type (LangType). Language type used for the project, 3G L,
4G L.

8. Primary Programming Language (PrimaryProgLang). The primary
language used for the development: Java, C++, PL/1, Natural, COBOL,
etc.

9. Maximum Team Size (MTS). The maximum number of people that
worked at any time on the project (for the Development Team).

10. Average Team Size (ATS). The average number of people that worked
on the project (calculated from the team sizes per phase).

Table 2 shows the descriptive statistics for the numerical attributes when
all 951 project instances of ISBSG release 10 are taken into account.

We checked the standard skewness and kurtosis values together with the
histograms (Figures 2 to 4) and found that none of the relevant variables
follows the normal distribution. Although this is quite intuitive from the
histograms, it was also confirmed with the Shapiro-Wilk test for normality.
Therefore we cannot apply parametric tests with this data.

11

Table 2: Descriptive Statistics for the Selected Continuous Variables in the ISBSG after
Preprocessing

| FP Eff PDR MTS ATS

Count 951 951 951 401 200
Avg | 302.7 3375.3 17.9 8.4 7.9

Med 135 1521 11.3) 5
Std Dev | 490.1 6055.3 26.9 17.0 7.2
Min 3 4 0.1 0.5 1

Max | 4911 73920 387.1 309 41
Rng | 4908 73916 387 308.5 40

=0~ 1~ 1 L L L B

400

300

200

100

all.. | |||I-|_||I | | |

e looe 200 300 4000 5000 6000

FP

Figure 2: Histogram for the Functional Size (F'P) Variable

12

e@0p - -~ ety

200

le0

Figure 3: Histogram for the Productivity (PDR) Variable

4. Analysis of the Productivity and Team Size in the ISBSG Repos-
itory

In this section, we analyse relationship between between team size and
productivity together with other attributes. Exploratory analyses were per-
formed on releases 8, 9 and 10 of the ISBSG database after preprocessing the
data following the same procedure for each release as described previously.
However, all analyses described here were performed using the release 10 as
each release of ISBSG mainly increases the number of reported projects.

As a first analysis, Table 3 shows the correlations of those variables used
later on using the non-parametric Spearman’s rank method as measure of
statistical dependence between two variables. There is an obvious correlation
between the MTS and the AT'S but there is a degree of association between
the rest of the variables, especially between normalized work effort and the
team size measures.

When considering only those projects reporting both the team size at-
tributes (MTS and ATS) after the preprocessing and after, the descriptive
statistics regarding team size and productivity are shown in Table 4.

13

[T
15@ [T T T
120} 1 eol

98 I

40}

60

30 :

a'l 1 1 1 | 1 1 1 11 B'l ! 1 1 l 1 1 1 I

@ 5115202530354 @ 5 1e1520253835490

MTS ATS

Figure 4: Histogram for the Maximum Team Size (MT'S) and Average Team Size (AT'S)
Variables

Table 3: Spearman’s Rank Correlations between Relevant Numerical Variables
| FP Eff PDR MTS ATS

FP| — 067 -032 04l 0.0

Eff — 043 076 0.73
PDR — 042 057
MTS —0.90

Table 4: Descriptive Statistics for Projects Reporting Both ATS and MTS (after Prepro-
cessing)

ISBSG Avg/StdDev ATS — Avg/StdDev MTS 3Q ATS 3Q MTS Avg/StdDev PDR

R10 (n = 200) 79 /721 9.15 / 8.79 10.0 11.0 15.94 / 17.21

14

ATS>=9 oo O O B
ATS<9 | H 2]
| L L ' | ' ' ' | ' ' L | L ' ' 1 ' ' ' | ' L L |
7] 20 40 60 80 100 120

Figure 5: Box Plot for AT'S < 9 and ATS > 9.

Table 5: Statistics for Variations between MT'S and ATS in R10
Count ~ MTS Mean/Std Dev ~ FP Mean/Std Dev ~ PDR Mean/Std Dev

(MTS — ATS) >0 46 9.05/11.99 544.30/579.24 13.98/20.72
(MTS — ATS) =0 153 9.09/7.63 285.73/369.12 16.62/16.05

An important initial observation is that 75% of the data is concerned
with a team size of less than 10 people. This suggests that predictive models
should consider at least a segmentation of the database into two parts. As
expected from the literature, productivity is worst for those projects with
AT'S larger or equal to 9 people (the value suggested by the ISBSG reposi-
tory [22]). Comparing productivity medians instead of the means of as the
data is very asymmetric and skewed, larger values (less productivity) cor-
respond to larger teams (see Figure 5). Also the Wilcoxon Rank Sum test
indicates that this difference is statistically significant between the two dis-
tributions at the 95.0% confidence level (p — value = 2.2¢719).

When we compare productivity between those projects reporting a dif-
ference between MT'S and ATS, there is a large variability in their average
and standard variation as can be seen in Table 6. According to the Wilcoxon
test, there is a statistically significant difference between these two groups at
the 95.0% confidence level (p —value = 0.0081). However, on a closer look at
these two groups, we observe that there are important differences in the de-

15

Table 6: Descriptive Statistics for R10
\ PDR (dif f =0) PDR (dif f #0)

Count 152 47
Average 16.3 13.7
Median 10.9 7.1
StdDev 15.7 20.6

Min 0.5 0.8
Mazx 88.3 113.2
Range 87.8 112.4
3Q 20.7 16.1

velopment, organization and business types of organizations. First, although
there are missing values, all projects that reported that there is no difference
between MTS and AVT belong to the telecommunications sector. Second,
those projects not reporting any difference are mainly enhancement projects
(120 out of 152) and all of them belong to the telecommunications business
type. In contrast, those reporting differences are mainly new developments
(33 out of 47) and 15 out of 47 belong to banking organisations. The other
domains are blanks. This also affects the type of languages (mainly COBOL
in the banking group). A risk from analysing these values is that both groups
seem completely disjoint. It is possible that a single organisation reported
these projects providing with both team size values so we could possibly
comparing the productivity of a single organisation against the rest (this is
unknown from the data). Therefore, further analyses of the productivity val-
ues in different organization types, programming languages and development
types were performed taking into account all projects and the ATS.

A factor that differentiates productivity is whether the projects are new
developments or enhancement projects. Table 7 shows the descriptive statis-
tics for productivity between new developments and enhancements projects.
The test to compare both distributions shows that there is a statistically
significant difference between then at the 95% level (p — value = 1.948¢77).
It is difficult to generalise due to the unknown origin of the data, but it is
important from the manager’s point of view to recognise that enhancement
project will be more productive, probably due to the experience of personnel
in both the domain of the application and the application itself.

As stated previously, according the ISBSG there are three main factors
that affect productivity: (i) programming language, (ii) development plat-
form and (iii) team size. In order to analyse how these variables affect pro-

16

Table 7: Productivity Statistics for New Developments vs. Enhancement Projects
| PDR (New Dev) PDR (Enh)

Count 733 219
Average 19.57 12.43
Median 12.4 7.6
StdDev 29.46 14.21

Min 0.3 0.1
Mazx 386.8 113.2
Range 387.1 113.1
3Q 22.3 15.8

ductivity using one-way Anova, Naperian logarithmic transformation was
applied to continuous variables in order to approximate them to the normal
distribution. Figure 6 shows the normal probability plot for the productivity
variable (PDR). The values along the straight line show that we can assume
normality of the transformed function.

As expected, there are large differences in productivity across the different
languages which were analysed using one-way Anova to compare the means
of productivity values. Such differences are statistically different according
to p — value of the F' — test which is practically 0 at 95% confidence level.

Table 8 shows the mean productivity for the programming languages se-
lected in the analysis, the standard error of each mean and its interval based
on Fisher’s Least Significant Difference (LSD) procedure (the intervals are
constructed in such a way that if two means are the same, their intervals
will overlap 95% of the time). Figure 7 shows the box plots of the means
of the transformed productivity variable by programming language. Table 8
also shows the multiple range tests of previous table intervals to determine
which means are significantly different from which others. It is worth noting
that there is a large number of different languages reported in the primary
programming language attribute but after the preprocessing those listed here
are the ones which have a reasonable number of instances for statistical anal-
ysis. Also, many instances report 3GL or 4GL as a primary language (96
and 34 respectively); this information is also reported in the language type
attribute) and those projects not considered in this analysis.

Among the 9 languages considered, Visual Basic (VB) was the most pro-
ductive which seems quite reasonable considering its visual component and
simplicity when compared with the rest of the languages considered. There is
a large variability among the mainframe related languages (Natural, PL/1,

17

99.9

Figure 6: Normal Probability Plot for the Productivity Variable

Table 8: Means for in(PRD) by Programming Language with 95% LSD intervals and
Homogeneous Groups

Count Mean Std Lower Upper Homog.
Err limit limit Groups

VB 74 1.98 0.11 1.83 214 A
NATURAL 16 221 024 1.87 2,55 ABC
ORACLE 82 232 0.11 217 247 B
C 83 245 0.11 230 2,59 BC
PL/I 40 257 0.15 235 2.78 BCD
SQL 42 258 0.15 237 2.78 BCD
COBOL 131 2.66 0.08 2.55 2.78 CD
C++ 34 3.01 017 278 3.25 DE
Java 52 3.07 0.13 2.89 3.26 E

18

C

C++
COBOL
Java
NATURAL
ORACLE
PL/

SQL /A

VB

-1.3 0.7 2.7 4.7 6.7

Figure 7: Box Plots of In(PDR) by Programming Language

COBOL and some of the projects reported as SQL). Less productive lan-
guages include C++ and Java. Perhaps surprisingly C++ is reported here
as more productive than Java. Many of the Java projects recorded were
carried out at the beginning of its adoption, perhaps showing a lack of expe-
rience when compared with C+4. Another surprising result is that the mean
productivity of C is a lot less than that of Java which in general is considered
a difficult 3G L language. In general, languages considered as 4G L, (database
related languages, systems such as Oracle and SQL and many instances of
VB) have better productivity values than those considered as third genera-
tion languages (3GL). It is worth noting that VB has not been consistently
recorded as a third or fourth generation language in the ISBSG repository.
A pairwise comparison of the differences between the primary programming
languages is shown in Table 9.

The same procedure was followed for the Development Platform variable.
As it can be observed from Figure 8 and Table 10, mainframe projects (M F')
are less productive than the rest.

Finally, we also analysed the productivity of the different organisational
types expecting some differences between them. However, as it can be ob-
served in Figure 9 and Table 11, the different organisational types have
similar productivity values with the exception of Ordering and Voice Pro-

19

Table 9: Contrasting in(PDR) Differences by Programming Language
Contrast Difference £ Limits

C-C++ *.0.56 0.39

C - COBOL -0.22 0.27

C - Java *.0.62 0.34

C - NATURAL 0.24 0.52

C - ORACLE 0.13 0.30
C-PL/I -0.12 0.37

C - SQL -0.13 0.36

C-VB *0.46 0.31

C++ - COBOL 0.35 0.37
C++ - Java -0.06 0.42

C++ - NATURAL *0.81 0.58
C++ - ORACLE *0.69 0.39
C++ - PL/I 0.45 0.45

C++ - SQL 0.44 0.44

C++ - VB *1.03 0.40
COBOL - Java *.0.41 0.31
COBOL - NATURAL 0.46 0.51
COBOL - ORACLE *0.35 0.27
COBOL - PL/I 0.10 0.35
COBOL - SQL 0.09 0.34
COBOL - VB *0.69 0.28
Java - NATURAL *0.87 0.55
Java - ORACLE *0.76 0.34
Java - PL/I *0.50 0.40

Java - SQL *0.50 0.40

Java - VB *1.09 0.35
NATURAL - ORACLE -0.11 0.52
NATURAL - PL/I -0.36 0.57
NATURAL - SQL -0.37 0.56
NATURAL - VB 0.22 0.53
ORACLE - PL/I -0.25 0.37
ORACLE - SQL -0.26 0.36
ORACLE - VB *0.33 0.31
PL/I - SQL -0.01 0.42
PL/I- VB *0.58 0.38

SQL - VB *0.59 0.37

* denotes a statistically significant difference.

Table 10: Means for In(PRD) by Development Platform
Mean Std Lower Upper Homog.
Err limit limit Groups

Multe 23 1.84 0.19 1.57 211 A
PC 46 202 014 183 221 A
MR 59 225 0.12 2.08 242 A
MF 189 2.62 0.07 252 271 B

20

MF

MR 3

Multi

PC

-1.3 0.7 2.7 4.7 6.7

Figure 8: Box Plots of In(PDR) by Development Platform

visioning. In this case, Voice Provisioning seems to be a special case in
the repository. All projects performed by a Voice Provisioning organisation
were enhancement projects developed during 2002 and developed mainly in
C++ (and some in C or Java) as primary programming language. Similarly,
Ordering projects in our preprocessed dataset seem to be specific to a single
organisation as all were developed during 2002, most in C or C++.

Therefore, contrary to what we were expecting, if we exclude the last
two groups it seems that there are no statistical differences in productivity
across different organisation types. The last two groups (ordering and voice
provisioning) may have been submitted by a single organisation or they may
reflect the real-time nature of their domains. In addition, those two organisa-
tion types do not have a large number of projects in the repository (approx.
9%).

In order to relate productivity to its most important related attributes,
we used multiple regression analysis following Comstock et al. [11] approach.
Using the most important variables when dealing with productivity reported
by ISBSG, AT'S, the primary programming language (instead of using the

21

Banking O

Communications |

Fin, Prop, & Bus Serv
Insurance
Manufacturing |
Ordering

Voice Provisioning

-1.3 0.7

Figure 9: Box Plots of In(PDR) by Organisation Type

Table 11: Means for in(PRD) by Organisation Type

Mean Std Lower Upper Homog.
Err limit limit groups
Manufacturing 17 215 0.23 1.84 247 A
Fin, Prop € Business Serv 60 2.16 0.12 199 233 A
Communications 188 2.31 0.07 222 241 A
Insurance 51 242 0.13 224 260 A
Banking 65 248 0.12 232 264 A
Ordering 22 3.25 020 297 353 B
Voice Provisioning 17 3.85 0.23 353 4.16 C

22

Table 12: Coefficients of the Linear Regression for in(PDR)
Coefficient Std Error t-value Pr(> |t])

log(ATS) 0.57 012 469 1.39¢
AGL -0.35 020 -1.73 0.08

MR -0.42 027 -1.52 0.13

PC -0.44 029 -1.48 0.14

primary programming language variable, we used language type) and plat-
form, we obtained Eq. (1) considering the productivity as the independent
variable and the other three variables as dependent.

log(PDR) = 1.85 4 0.57 - log(AT'S) + a;¢(LangType;) + B;p(Platf;) (1)

where «; and 3 correspond to the regression coefficients reported in Table 12.

The R? value is 32.33% (adjunsted R? is 0.28), which means that the
model is acceptable with 32% of the variance in the dependent variable ex-
plained by the number of predictors. Table 12 also shows the the regression
statistical results together with the Pr(> |t|) value which shows that AT'S
is very relevant in predicting productivity (the smaller the value, the more
relevant it becomes). The other values are also relatively small for software
engineering standards. A problem with this analysis is that after removing
instances with missing values we only have 4G L samples for the language type
variable and PC' and M R for the platform variable. Following Comstock et
al. [11] the number of instances that remain to calculate the regression equa-
tion is 71, a bit below the borderline of the recommended 50 + 8k instances
(where k is the number of predictors) [16]. We obtained similar results using
the primary programming language and the maximum team size variables
but in all cases team size is the variable explaining most of the R? value.
From the point of view of project managers, a simple model as the one de-
scribed here could be used by project managers for rough estimates when
they do not have historical data as well as to understand the addition of
personnel to productivity.

5. Threats to Validity

As with all empirical studies, there are some threats to validity that need
to be considered in this study.

23

Construct validity is the degree to which the variables used in the study
accurately measure the concepts they are supposed to measure. We have only
used those projects classified with the quality attribute classified as A or B.
Although there seems to be an agreement about the practical usefulness of
publicly available repositories and a large amount of work using such datasets,
the origin of the data is not completely known and therefore such a risk
is present. There is also a risk in the way that the preprocessing of the
dataset was performed (e.g., considering that all versions of Visual Basic are
equivalent, unifying the consistency across the languages and their generation
type, etc).

Internal validity is the degree to which conclusions can be drawn. A ma-
jor threat can be related to the preprocessing performed. Although we have
reported and specified each step, we may have discarded relevant attributes
or joined values incorrectly. We also needed to deal with a large number of
missing values for some of the attributes. For example, after the preprocess-
ing, the maximum team size and average time size variables have almost 60%
and 80% of missing values respectively with the risk of being very few or even
a single organisation reporting such attributes. It could have been very valu-
able to know which projects correspond to a particular company, and other
measures about personnel stability. The ISBSG does not report detailed in-
formation about the personnel characteristics and it is known that there are
large differences in productivity. Therefore, projects of similar size can differ
hugely in the amount of time and effort required. We are not able to analyse
such characteristics with this repository. We believe that their usefulness is
not clearly proven for some data mining and statistical analyses.

Ezxternal validity is the degree to which the results of the research can be
generalised to the population under study and other research settings. Al-
though the data comes from real projects and is in principle, generalisable,
the ISBSG organisation recognise these project may not be representative of
the industry (they are selected by the companies providing the data which
in turn belong to the better performed organisations with experience using
function point estimation techniques). In the context of estimation, Kitchen-
ham et al. [24] performed a Systematic Literature Review of predictions from
cross-company models with predictions from within-company models. Al-
though the authors state that their results are inconclusive as there is sup-
port in both directions, it seems to be easy to misuse cross-company models.
In any case, each organisation should select and perform the studies and
estimations with subsets of the data close to their domain and organisation

24

type, environment, language, etc.

6. Conclusions and Future Research Directions

In this paper, we analysed the ISBSG repository to study the relationship
between staffing levels and productivity. We first preprocessed the data to ob-
tain a sample of 951 instances for the ISBSG Release 10 from 4,105 projects.
The preprocessing consisted of several steps such as selecting only projects
reported with high quality according the ISBSG rules, removing attributes
with a large percentage of missing values, homogenization of values (e.g.,
COBOL 2 and COBOL II) and removing typos and mistakes. For analyses
requiring team sizes, only 199 out of the those 951 projects reported both
values for maximum and average team sizes. All the remaining 951 projects
were used for analyses that did not require the maximum and average team
sizes (e.g., productivity of new vs. enhancement projects, the productivity
of the programming languages or the productivity of organisation types).

The results showed that there are statistical correlations between team
size, effort, productivity and project duration but these correlations are not
always what one would expect from the literature or intuition. With the
preprocessed data used in this study, projects with an average team size of 9
or more people (the threshold suggested in the literature) are less productive
than those above such this threshold. Also enhancement projects have a
better productivity than new projects. The type of language has a impact
on productivity. Mainframe development is less productive than the other
platforms. Voice provisioning organisations seem to be less productive than
the others and are mainly developed in C+4-. The drawback of using this
repository is the difficulty in cleaning and preprocessing of the data. There
is a large number of attributes but many of them have a large number of
missing values. These drawbacks can hinder its usefulness when applying
statistical and data mining techniques and the reliability of its results.

In future work, further statistical and data mining studies will be per-
formed with the ISBSG repository as well as other repositories in order to
study the quality of such repositories, validate generic claims found in the
literature and provide guidelines for decision making.

References

[1] T.K. Abdel-Hamid, The dynamics of software project staffing: A system
dynamics based simulation approach, IEEE Transactions on Software

25

[10]

Engineering 15 (1989) 109-119.

T.K. Abdel-Hamid, S.E. Madnick, Software Project Dynamics: An In-
tegrated Approach, Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1991.

E. Alba, J. Chicano, Management of software projects with gas, in:
Proceedings of the 6th Metaheuristics International Conference (MIC
'05), Elsevier Science Inc., Vienna, Austria, 2005, pp. 13-18.

E. Alba, J. Chicano, Software project management with gas, Informa-
tion Sciences 177 (2007) 2380-2401.

A.J. Albrecht, J.E. Gaffney, Software function, source lines of code,
and development effort prediction: A software science validation, IEEE
Transactions on Software Engineering 9 (1983) 639-648.

G. Antoniol, A. Cimitile, G.A. Di Lucca, M. Di Penta, Assessing staffing
needs for a software maintenance project through queuing simulation,
IEEE Transactions Software Engineering 30 (2004) 43-58.

G. Antoniol, M. Di Penta, M. Harman, Search-based techniques applied
to optimization of project planning for a massive maintenance project,
in: Proceedings of the 21st IEEE International Conference on Software
Maintenance (ICSM ’05), IEEE, Los Alamitos, California, USA, 2005,
pp. 240-249.

F.P. Brooks, The Mythical Man-Month, Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, anniversary ed. edition, 1995.

J. Chicano, F. Luna, A.J. Nebro, E. Alba, Using multi-objective
metaheuristics to solve the software project scheduling problem, in:
13th Annual Conference on Genetic and evolutionary computation
(GECCO’11), GECCO’11, ACM, New York, NY, USA, 2011, pp. 1915—
1922.

C. Comstock, Z. Jiang, J. Davies, Economies and diseconomies of scale in
software development, Journal of Software Maintenance and Evolution:
Research and Practice In Press (2011).

26

[11]

[12]

[13]

[14]

[15]

[16]

[17]

C. Comstock, Z. Jiang, P. Naudé, Strategic software development: Pro-
ductivity comparisons of general development programs, International
Journal of Computer and Information Engineering 1 (2007) 486-491.

M. Di Penta, M. Harman, G. Antoniol, The use of search-based opti-
mization techniques to schedule and staff software projects: an approach
and an empirical study, Software: Practice and Experience 41 (2011)
495-519.

M. Di Penta, M. Harman, G. Antoniol, F. Qureshi, The effect of com-
munication overhead on software maintenance project staffing: a search-

based approach, in: IEEE International Conference on Software Main-
tenance (ICSM 2007), pp. 315-324.

J. Dolado, On the problem of the software cost function, Information
and Software Technology 43 (2001) 61-72.

J.B. Dreger, Function Point Analysis, Prentice Hall, NJ: Englewood
Cliffs, 1989.

S.B. Green, How many subjects does it take to do a regression analysis?,
Multivariate Behavioral Research 26 (1991) 499-510.

S. Gueorguiev, M. Harman, G. Antoniol, Software project planning for
robustness and completion time in the presence of uncertainty using
multi objective search based software engineering, in: Proceedings of
the 11th Annual Conference on Genetic and Evolutionary Computation
(GECCO’09), ACM, Montral, Canada, 2009, pp. 1673-1680 (Best Paper
Award).

M. Harman, B.F. Jones, Search-based software engineering, Information
and Software Technology 43 (2001) 833-839.

M. Hericko, A. Zivkovic, I. Rozman, An approach to optimizing software
development team size, Information Processing Letters 108 (2008) 101
106.

IEEE, IEEE standard for software productivity metrics, 2003.

IFPUG, Function Point Counting Practices Manual (CPM) - Release
4.3.1, International Function Point Users Group (IFPUG), 2010.

27

[22]

[23]

[24]

[25]

[31]

[32]

ISBSG, Team Size Impacts Special Report, Technical Report, Interna-
tional Software Benchmarking Standards Group (ISBSG), 2007.

B.A. Kitchenham, S. Charters, Guidelines for performing Systematic
Literature Reviews in Software Engineering, Technical Report EBSE-
2007-01, Keele University, 2007.

B.A. Kitchenham, E. Mendes, G.H. Travassos, Cross versus within-
company cost estimation studies: A systematic review, IEEE Trans-
actions on Software Engineering 33 (2007) 316-329.

T. Kremmel, J. Kubalik, S. Biffl, Multiobjective evolutionary algo-
rithm for software project portfolio optimization, in: Proceedings of
the 12th Annual Conference on Genetic and Evolutionary Computation
(GECCO’10), ACM, Portland, Oregon, USA, 2010, pp. 1389-1390.

T. Kremmel, J. Kubalik, S. Biffl, Software project portfolio optimiza-
tion with advanced multiobjective evolutionary algorithms, Applied Soft
Computing 11 (2011) 1416-1426.

P. Montgomery, Jr., A model of the software development process, Jour-
nal of Systems and Software 2 (1981) 237-255.

NESMA, NESMA FPA Counting Practices Manual CPM 2.1, Nether-
lands Software Metrics Users Association (NESMA), 2004.

P. Norden, Project life cycle modeling: Background and application of
the life cycle curves, in: U.S. Army Computer Systems Command.

P.V. Norden, Curve fitting for a model of applied research and develop-
ment scheduling, IBM Journal of Research and Development 2 (1958)
232-248.

P.C. Pendharkar, J. A.Rodger, An empirical study of the impact of
team size on software development effort, Information Technology and
Management 8 (2007) 253-262.

M.D. Penta, M. Harman, G. Antoniol, F. Qureshi, The effect of com-
munication overhead on software maintenance project staffing: a search-
based approach, in: Proceedings of the 23rd IEEE International Confer-
ence on Software Maintenance (ICSM ’07), IEEE, Paris, France, 2007,
pp- 315-324.

28

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

K. Pillai, V.S. Sukumaran Nair, A model for software development effort
and cost estimation, IEEE Transtions on Software Engineering 23 (1997)
485-497.

PMI, A Guide To The Project Management Body Of Knowledge (PM-
BOK Guides), Project Management Institute (PMI), 2004.

L. Putnam, A general empirical solution to the macro software sizing
and estimating problem, IEEE Transactions on Software Engineering 4
(1978) 345-361.

P. Sentas, L. Angelis, I. Stamelos, G. Bleris, Software productivity and
effort prediction with ordinal regression, Information and Software Tech-
nology 47 (2005) 17-29.

R.K. Smith, J.E. Hale, A.S. Parish, An empirical study using task as-
signment patterns to improve the accuracy of software effort estimation,
IEEE Transactions on Software Engineering 27 (2001) 264-271.

A. Trendowicz, J. Miinch, Factors influencing software development pro-
ductivity — state-of-the-art and industrial experiences, volume 77 of Ad-
vances in Computers, Elsevier, 2009, pp. 185-241.

K.G. van der Poel, S.R. Schach, A software metric for cost estima-
tion and efficiency measurement in data processing system development,
Journal of Systems and Software 3 (1983) 187-191.

J. Verner, W. Evanco, N. Cerpa, State of the practice: An exploratory
analysis of schedule estimation and software project success prediction,
Information and Software Technology 49 (2007) 181-193.

29

