
IEEE TRANSACTIONS ON EDUCATION, VOL. 49, NO. 4, NOVEMBER 2006 451

e-Learning in Project Management Using
Simulation Models: A Case Study Based

on the Replication of an Experiment
Daniel Rodríguez, Member, IEEE, Miguel Ángel Sicilia, Juan José Cuadrado-Gallego, and Dietmar Pfahl

Abstract—Current e-learning systems are increasing their
importance in higher education. However, the state of the art of
e-learning applications, besides the state of the practice, does not
achieve the level of interactivity that current learning theories
advocate. In this paper, the possibility of enhancing e-learning
systems to achieve deep learning has been studied by replicating
an experiment in which students had to learn basic software
engineering principles. One group learned these principles using
a static approach, while the other group learned the same prin-
ciples using a system-dynamics-based approach, which provided
interactivity and feedback. The results show that, quantitatively,
the latter group achieved a better understanding of the principles;
furthermore, qualitatively, they enjoyed the learning experience.

Index Terms—Management education, simulation software,
software engineering education, student experiments, system
dynamics.

I. INTRODUCTION

E -LEARNING systems have not only become the back-
bone in distance education but also are also at the heart of

traditional university teaching. An ad hoc survey of reputable
universities’ websites shows that all have online systems to
support teaching activities. Initially, the Web was used as a
repository to provide students with handouts, papers, etc.,
supporting one-way communication. Presently, e-learning
systems have been extended with a series of general utilities,
such as calendars, reminders, mailing lists, forums, homework
drop-boxes, and even quizzes, to support continuous evaluation
and facilitate asynchronous communication between students
and between students and instructors. However, many current
e-learning systems lack tools to provide synchronous feedback
about the decisions that students take in the active process of
learning, as required by modern learning theories.

This paper presents and analyzes the results of the replication
of a controlled experiment involving an e-learning system that
uses system-dynamics-based (SD) simulation capabilities to fa-
cilitate a dialogue between the student and the computer. Bidi-
rectional exchange is not achieved with most current e-learning

Manuscript received April 13, 2005; revised June 26, 2006. The research
was supported by the University of Reading and the Spanish Research Agency
(CICYT TIN 2004-06689-C03—The INGESOFT Project).

D. Rodríguez, M. Á. Sicilia, and J. J. Cuadrado-Gallego are with the De-
partment of Computer Science, University of Alcalá, 28871 Alcalá de Henares,
Madrid, Spain (e-mail: drg@ieee.org; msicilia@uah.es; jjcg@uah.es).

D. Pfahl is with the University of Calgary, Schulich School of Engineering,
Calgary, AB T2N 1N4, Canada.

Color versions of Figs. 1–4 are available online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TE.2006.882367

systems. In the e-learning application under study, simulation
capabilities are applied to learn certain software project man-
agement techniques. Project managers make decisions in com-
plex work contexts, where many cause–effect relationships have
to be taken into account. Therefore, future project managers
should be trained so that they learn to exercise sufficient con-
trol over the development process to deliver products in time,
within budget, and with the required quality.

Although the potential of simulation models for the training
of managers has long been recognized [1], very few ex-
perimental studies for software-project-management (PM)
education have been performed. Pfahl et al. [2] performed a
series of studies involving controlled experiments to evaluate
the learning effectiveness of using a simulation model for edu-
cating computer science students in project management. The
original study has been replicated at the University of Reading,
Reading, U.K., as part of a software engineering course. In par-
ticular, the experiment fits as part of the Project Management
section in the IEEE/ACM Computing Curriculum [3]. External
replication of experiments is an important means to both verify
and generalize original results. Furthermore, in this paper, the
results and the design of the externally replicated experiment
are discussed from the perspective of learning theory.

The organization of the paper is as follows. Section II
presents related work about learning theories, and the applica-
tion of SD in the context of software engineering. Section III
provides a discussion of the experimental design. Section IV
presents the data analysis. Section V provides a discussion on
possible threats to validity. Section VI provides a discussion
of the results from a learning perspective. Finally, Section VII
concludes the paper and outlines future research.

II. RELATED WORK

A. Current Learning Theories

At present, available e-learning systems lack capabilities
to create a dialogue between the students and the e-learning
systems, i.e., immediate feedback about the decisions that stu-
dents take in the active process of learning required by modern
learning theories. E-learning systems have been used primarily
to provide students with handouts or submission of practical
work, achieving only a one way communication. This model of
education, which considers the student as a passive receptacle
of teaching, has its origins in the classical Greek philosophers
Plato and Aristotle. Plato’s Theory of Forms [4] advocated that
education should be reserved for the most capable. The ideal
society would be divided into three classes: 1) the merchant

0018-9359/$20.00 © 2006 IEEE

452 IEEE TRANSACTIONS ON EDUCATION, VOL. 49, NO. 4, NOVEMBER 2006

class in charge of the economy, 2) the military class in charge
of public security, and 3) philosopher-kings in charge of po-
litical leadership. A particular person’s class is determined by
an educational process. Only those who complete the entire
educational process become philosopher-kings and are able
to grasp the Forms [4] and make the wisest decisions. Plato’s
ideal educational system was primarily structured to produce
philosopher-kings.

Modern theories in higher education take under consideration
that students have a clear opinion about their learning goals and,
therefore, advocate that teaching should follow a student-cen-
tered approach [5]. In a student-centered approach, the teacher
becomes a facilitator of learning instead of a dispenser of knowl-
edge, and the students take responsibility for their own learning.
In this way the teaching becomes more dynamic, following a
trial-and-error approach—learning-by-doing. The benefit of this
approach is that students can gain a deep approach to learning,
enabling students to develop critical understanding [6] and ac-
tive learning. In a deep approach to learning [7], the students un-
derstand the subject in a personally meaningful way, engaging
their own experience and their previous knowledge in an inter-
active process with the relevant context, logic, and existing ev-
idence of the subject.

The Conversational Framework approach introduced by
Laurillard advocates a dialogue between students and teachers
to connect theory with practice [8]. A strong link between
theory and practice facilitates deep learning. According to
Laurillard, e-learning can support interaction by a) providing
a presentation narrative when teaching conceptions are made;
b) providing feedback to students; c) adapting information
to the specific context of the teaching process; d) supporting
learning processes so that students can discuss and reflect about
their learning in a group setting; and e) providing learning
media, where both teacher and student agree in developing
presentations, etc.

Mayes [9] classifies the degree of interactivity of online
courses into three levels: 1) courseware that is used only to
convey information, such as course handouts or reading lists;
2) systems that question students and encourage them to reflect
on their learning (achieved by online quizzes, etc.); and 3)
systems that establish a dialogue through online discussions or
simulations.

Kolb’s model of the Learning Cycle [10], [11] refers to the
process by which individuals reflect upon their experience and,
consequently, modify their behavior. The process consists of
four stages: 1) experiencing consists of carrying out a task
assigned, usually without reflecting on the task; 2) reflection
consists on reviewing what has been done and experienced
(personal paradigms and vocabulary influence how individuals
attend and note differences); 3) conceptualization involves
interpreting the events and understanding the relationships
among them; and 4) planning allows for new understanding
and making predictions about what can happen next or which
actions should be taken to refine the way the task is handled.
The logic of the Learning Cycle [10], [11] is to make incre-
mental and continual improvements. However, a second-order
change also exits. When assumptions and beliefs are outdated,
the model itself should be questioned, looking for exceptions
to the rule and challenging the dominant paradigm.

In this paper, an e-learning system is presented and analyzed
that integrates simulation as a facilitator for achieving an inter-
active (“deep”) learning experience on a selected topic in soft-
ware project management.

B. System Dynamics in Software Engineering

SD [12] is an approach to the modeling and simulation of
systems. SD has been successfully applied in social, biological,
and economical domains and, more recently, to the domain of
software engineering (SE) [13]. SD uses causal loop structures
to represent dynamic relationships between system parameters
and emulates the effect of system structure on process behavior
over time. The application of SD to the field of software de-
velopment is based on the premise that many interacting fac-
tors throughout the software life cycle can have impact on the
cost and schedule of a project and the quality of the product.
To monitor and control software development projects, manage-
ment experience and knowledge on how to balance the various
influential factors are required.

In educational applications, the complexity of SD models can
be adequately hidden using ad hoc graphical interfaces similar
to those used in the experiment presented below. For example,
Fig. 1 shows how a student can put in software project require-
ments in the background. Then, based on these requirements,
the SD simulator generates a dynamic project performance pro-
file—work distribution over the different project phases in the
foreground.

In the context of SE education, apart from the SD-based
Project Simulator mentioned above, only a few simula-
tion-based, e-learning applications exist. Drappa and Ludewig
[14] developed a simulation system, called SESAM. The be-
havior of the underlying simulation model is demonstrated by
investigating and comparing different strategies for software
development. Drappa and Ludewig also performed an exper-
iment measuring the knowledge acquired during a training
session by comparing a pretest completed before the treatment
and a posttest after the treatment.

Navarro and van der Hoek [15] argue that SE education typi-
cally lacks practical experience with software development pro-
cesses. Students are presented with relevant process theory in
lectures but have limited opportunity to put such concepts into
practice in an associated large-scale class project. To resolve this
problem, Navarro and van der Hoek developed SimSE, an edu-
cational, interactive, fully graphical computer game that simu-
lates software engineering processes. SimSE has been designed
specifically to train students in situations that require an under-
standing and handling of software process issues.

III. DESCRIPTION OF THE EXPERIMENT

The aim of the experiment presented in the following is to
analyze whether a Web-based system, which uses SD-based
software process simulation models at its core, can facilitate
effective learning of selected software project, management
topics for computer science students. The goal of the learning
task is to understand the effects on project performance when
applying some principles of software development, as stated by
Boehm [16], [17]. Although most of such principles are gross
generalizations, they adequately describe some fundamental

RODRÍGUEZ et al.: E-LEARNING IN PROJECT MANAGEMENT USING SIMULATION MODELS 453

Fig. 1. Input and output to/from the project simulator.

economic relationships governing conventional software pro-
cesses (Table I). The Web-based e-learning system used in the
experiment offers a scenario driven, interactive single-learner
environment accessible through the Internet via standard Web
browsers. In addition to facilitating learning, another goal of
the experiment was to raise interest in the topic of software
project management among computer science students and to
make them aware of some of the difficulties associated with
controlling the dynamic complexity of software projects.

A. Experimental Design

To evaluate the effectiveness of a training session using
SD-based process simulation, participating students (referred
to as subjects in the following) had to take a pretest and a
posttest. Subjects were randomly assigned to an experimental
group A and a control group B. Further details are provided in
the next subsections.

The pretest measures the performance of groups A and B be-
fore the treatment, while the posttest measures the performance
of the two groups after the treatment. The effectiveness of the

training was assessed by comparing posttest to pretest scores
(based on the number of correct answers) and by comparing the
scores between subjects in the experimental group (those who
used the SD model) and subjects in the control group (those who
used a conventional project planning model instead of the SD
model). In the study, the well-known COCOMO model [18],
[19] was used by the control group. COCOMO is static cost-es-
timation model which is commonly used in many industrial soft-
ware organizations.

The training session can be described as a three-layered struc-
ture. The first layer defines the learning goal-Boehm’s project
management principles (Table I). The second layer defines the
type of project planning model used in the training session—the
experimental or control treatment. Finally, the third layer de-
fines the learning mode as another dimension to characterize the
training session—inclusion or exclusion of a Web-based, inter-
active role play. The treatment is subdivided into four scenario
blocks as described in the original experiment conducted at the
University of Kaiserslautern, Kaiserslautern, Germany (the KL
experiment) [19]:

454 IEEE TRANSACTIONS ON EDUCATION, VOL. 49, NO. 4, NOVEMBER 2006

TABLE I
SOFTWARE ENGINEERING PRINCIPLES (ADOPTED FROM [16] AND [17])

— Block 1—PM Introduction: general introduction to project
managers’ typical problems with regard to planning and
control;

— Block 2—PM Role Play: illustration of common project
planning problems on the basis of an interactive case (this
block contains the Web-based training module based using
the SD-based simulation model and was only available to
the experimental group);

— Block 3—PM Planning Models: presentation of models
that help project managers with planning tasks (the sub-
jects in the experimental group receive an explanation of
the SD-based simulation model, while the subjects in the
control group receive an explanation of the COCOMO
model);

— Block 4—PM Application Examples: explanation on how
to apply the PM Planning Models on the basis of examples
that are presented in the form of little exercises that the
subjects have to carry out.

The effectiveness of the training was evaluated by comparing
posttest to pretest scores (counting the number of correct an-
swers) and by comparing the scores between subjects in the ex-
perimental group A and the control group B.

B. Experimental Treatment

The core element of the training delivered to the students
in the experimental group is the SD-based, software process
simulation model facilitated in the PM Role Play. The tertiary
level of interaction and dialogue advocated by Mayes [9] to
generate Kolb’s Learning Cycle is created by scenarios where
the students need to reflect and make decisions to achieve their
goals to complete successfully a software development project

without violating a given set of constraints. For example, Fig. 2
shows two Web pages offered during the PM Role Play block.
The background page shows how a student can select one
of Boehm’s principles. Assume that the student selected the
ninth principle to reduce project duration. Then, the next page
shown to the student gives the opportunity to implement the
selected principle by adjusting related input parameters of the
SD simulation model, to run a simulation, and to analyze the
resulting effects on project duration, effort consumption, and
product quality.

The experimental group performs all scenario blocks. The SD
model is also used as the predictive PM Planning Model in sce-
nario blocks 3 and 4. In scenario block 2 (PM Role Play), the
usage of the SD model is integrated into scenarios. Scenarios
offer stories that help students understand the implications of
Boehm’s principles. A role play is conducted in which the stu-
dent takes the role of a project manager who has been assigned
to a new development project. Several project constraints are
imposed on the project manager—the size of the product (func-
tionality), the maximal number of field defects per size unit
(quality), the maximal project duration, the maximal number of
available developers. Depending on the principles that students
decided to apply in their role of project manager, various actions
can be taken and subsequently additional options are provided
by the system. Eventually, students always find a way to com-
plete the assigned task successfully—finish the project within
time, budget, and quality required. At the end of the role play, a
short discussion of the different solutions is provided to the stu-
dents. The role play is designed so that the students need to apply
several development principles. Some combinations of princi-
ples yields success faster than others, depending on the set of
project goals and constraints.

RODRÍGUEZ et al.: E-LEARNING IN PROJECT MANAGEMENT USING SIMULATION MODELS 455

Fig. 2. Selection of alternatives and the outcome of such alternatives.

C. Control Treatment

The students in the control group have to use the original
version of the COCOMO model [18]. The COCOMO model
helps to predict the duration and effort necessary to complete a
software project of certain size (functionality). The COCOMO
model is composed of three submodels: a) basic COCOMO,
b) intermediate COCOMO, and c) detailed COCOMO. The
choice of the model depends on the level of knowledge that

users have about the project under estimation. In the basic
model, also called nominal, only an estimate of the size is
necessary. The Intermediate COCOMO model uses an Effort
Adjustment Factor (EAF) to adjust the effort and schedule esti-
mates to specific constraints that are already known at project
start, a set of so-called cost driver attributes. The detailed
COCOMO model uses different effort multipliers for each
phase of a project. The phase-dependent effort multipliers yield
better estimates than the Intermediate model.

456 IEEE TRANSACTIONS ON EDUCATION, VOL. 49, NO. 4, NOVEMBER 2006

The EAF used by the Intermediate COCOMO model can be
used to estimate the effects on project effort and duration, de-
pending on the set of development principles selected by stu-
dents. The control group performs only scenario blocks 1, 3,
and 4.

D. Subjects

The replication study was conducted during a university term
with 11 undergraduate students of the University of Reading. All
participating students were taking the SE module (second-year
undergraduate course). The SE module offered by the Depart-
ment of Computer Science at the University of Reading consists
of 20 lectures (one hour each), and the goal is to explain the
principles of SE. The SE module covers the complete software
development life cycle from requirements elicitation to main-
tenance, following the structure of the Software Engineering
Body of Knowledge (SWEBOK) [20] and most textbooks on
software development. When the experiment was conducted in
Reading, more than 150 students were taking the SE module.
The large number of students made it impossible to have prac-
tical work or laboratories associated with the lectures. As a
result, most of the SE concepts taught could not be applied in
practice and thus were difficult to understand by students. A few
options exist to mitigate this problem: one is to provide as many
examples as possible to students, for example, by selecting suit-
able books (for the SE module, Pfleeger’s book on Software
Engineering [21] provided two extended examples throughout
the whole book), and by providing additional literature on case
studies that the students could read on their own time; another
option is to facilitate an interactive Web-based e-learning system
that helps students experience the implications of theoretical
SE concepts through a role play that simulates typical software
project behavior.

The instructor invited students to participate in the experi-
ment on a voluntary basis. From a total of 180 students, 30
responded positively, but only 11 turned up on the day of the
experiment. The treatment was divided randomly among the stu-
dents, solely based on which computer they selected. Table II
summarizes personal characteristics of the subjects.

E. Experimental Variables

During the experiment, data for three types of variables are
collected for judging the performance of the students:

— one independent variable X.1;
— four dependent variables Y.1, Y.2, Y.3, and Y.4;
— three variables Z.1, Z.2, and Z.3, representing potentially

disturbing factors.
Each variable type is explained in the following subsections.

1) Independent Variables: The independent variable X.1 can
have two values: , assigned to the experimental group A, and

, assigned to the control group B. The difference between
and is determined by the scenario blocks applied to the

students and the associated PM Planning Model (Sections III-B
and III-C).

2) Dependent Variables: The dependent variables Y.1,
Y.2, Y.3, and Y.4 represent various aspects of interest and
understanding to concepts in SE in general and software project
planning in particular. The values of the dependent variables
are determined by analyzing data collected through the pretest

TABLE II
PERSONAL CHARACTERISTICS

and posttest questionnaires. Examples of questions contained
in these questionnaires can be found in [2]. Below, only a brief
characterization of each variable is provided.

— Y.1—Interest in software project management issues
(“Interest”): Questions assessing the personal interest in
learning more about software project management.

— Y.2—Knowledge about typical behavior patterns of
projects (“Knowledge”): Questions about typical perfor-
mance patterns of software projects based on empirical
findings and lessons learned summarized by Boehm’s top
10 list of SE principles (Table I).

— Y.3—Understanding of “simple” project dynamics (“Un-
derstand simple”): Questions on project planning prob-
lems that require simple application of the provided PM
planning models, addressing trade-off effects between no
more than two planning variables (project effort and du-
ration, project effort and product quality, project duration,
and product quality).

— Y.4—Understanding of “complex” project dynamics
(“Understand complex”): Questions on project planning
problems addressing trade-off effects between more than
two planning variables (project effort, project duration,
and product quality), and questions on planning problems
that may require replanning because of alterations of
project constraints during project performance.

3) Disturbing Factors: The disturbing factors are defined as
follows:

— Z.1: personal characteristics (age, gender), university
education, practical software development experience,
software project management, literature background, and
preferred learning style;

— Z.2: actual time consumption per scenario block and
perceived time need (in case the time provided was
not sufficient);

— Z.3: personal judgement of the training session.

RODRÍGUEZ et al.: E-LEARNING IN PROJECT MANAGEMENT USING SIMULATION MODELS 457

TABLE III
TERMS AND DEFINITIONS OF THE HYPOTHESES

F. Experimental Hypotheses

The two hypotheses of the experiment were stated as follows:
1) A positive learning effect exists in both groups A

experimental group and B control group . Using the
notations in Table III, this effect can be formulated as
follows:
— score score for

— score score for

2) The learning effect in group A is higher than in group
B, either with regard to the performance improvement
between pretest and posttest (relative learning effect), or
with regard to posttest performance (absolute learning
effect). The absolute learning effect is of interest because
it may indicate an upper bound of the possible correct
answers depending on the type of training (A or B). This
expectation can be formulated as follows:
— score score for

— score score for

The related null hypotheses were stated as follows.
— : no difference is shown between pretest scores and

posttest scores within group A and group B;
— score score ;
— score score for ;
— : no difference is displayed in relative learning effec-

tiveness between group A and group B;
— score score for ;
— : no difference is shown in absolute learning effec-

tiveness between group A and group B;
— score score for .

G. Experimental Procedure

In the replication of the experiment conducted in Reading,
the same didactical intention and technical environment as in
the original KL experiment were in place. However, the evalu-
ation of the KL experiment suggested some modifications. Al-
most all participants of the KL experiment stated that they did
not have enough time for working through the materials [2].
Therefore, more time was reserved for the treatment during the
replication in Reading. Moreover, while the initial experiment
was conducted on two days with one week of time in between,
the Reading experiment was conducted on one single day.

Table IV shows the time in minutes spent on each activity
of the experiment, comparing the original experiment (KL)
to the replication (Reading). After a short introduction during
which the purpose of the experiment and general organizational
issues are explained, data on the background characteristics
(Z.1) is collected. Then, the pretest is conducted, and data on
all dependent variables (Y.1 to Y.4) is collected. Following
the pretest, students are randomly assigned to either the ex-
perimental or the control group, and each group undergoes
its treatment. In both experiments, six students were assigned
to the experimental group and five to the control group. Both
groups perform the posttest using the same set of questions
as during the pretest, thus providing data on the dependent
variables for the second time. Finally, the subjects evaluate the
training session, providing data on variables Z.2 and Z.3.

H. Data Collection Procedure

The data collection procedure of the replicated experiment
remained the same as in the original KL experiment. The raw
data for Y.1 to Y.4 were collected during pretest and posttest
with the help of questionnaires. Each answer in the question-
naire is mapped to range [0, 1] (“totally disagree” as 0, “dis-
agree” as 0.25, “undecided” as 0.5, “agree” as 0.75, and “fully
agree” as 1).

The raw data for disturbing factors was collected before
pretest (Z.1) and after posttest (Z.2 and Z.3). To determine the
values of factor Z.1 (“Personal background”) information on
gender, age, number of terms studied, subjects studied (major
and minor), personal experience with software development,
and number of books read about software project management
was collected. The values for factor Z.2 are normalized average
scores reflecting the time needed for reading and understanding
of the scenario blocks 1, 3, and 4, for familiarization with the
supporting tools, and for filling in the posttest questionnaire.
The values for factor Z.3 (“Session evaluation”) are based on
subjective measures reflecting the quality of the treatment. For
the experimental group A, the variables and
include also scores related to scenario block 2.

I. Data Analysis Procedure

As a first step of the statistical analysis, a t-test [22] was used
to investigate the effect of the independent variable X.1 on the
dependent variables Y.1 to Y.4. A very low number of subjects
took part in the experiment; however, t-test is relatively strong
to non-normality, and the outlier analysis showed that all data
points lie within the range of standard deviations around

458 IEEE TRANSACTIONS ON EDUCATION, VOL. 49, NO. 4, NOVEMBER 2006

TABLE IV
TIME DISTRIBUTION FOR VARIOUS STAGES DURING THE EXPERIMENTS

TABLE V
SCORES OF DEPENDENT VARIABLES

the samples’ means. The power of a statistical test [23] is de-
pendent on the significance level , effect size [22], and the
number of subjects. Low power has to be considered when inter-
preting nonsignificant results. A value of = 0.1 was decided
since sample sizes were rather small in the initial experiment,
and no sufficiently stable effect sizes from previous empirical
studies were known. For this study, effects where 0.5 are
considered to be of practical significance (based on the indexes
proposed by Cohen [23]).

IV. EXPERIMENTAL RESULTS

Table V shows the calculated values for mean, median, and
standard deviation of the raw data collected during the Reading
experiment for the pretest, posttest, and the difference scores.

Table VI shows the calculated values for mean, median, and
standard deviation of the raw data collected for the disturbing
factors. Statistical analyses, using the data collected for dis-
turbing factors, did not change any of the results achieved when
using only the data collected for dependent variables Y.1 to

RODRÍGUEZ et al.: E-LEARNING IN PROJECT MANAGEMENT USING SIMULATION MODELS 459

TABLE VI
SCORES OF DISTURBING FACTORS

TABLE VII
RESULT FOR POSTTEST VERSUS PRETEST

Y.4. Therefore, in the following discussion only statistical re-
sults based on data for Y.1 to Y.4 are presented and discussed.

A. Hypothesis

Table VII shows the results of testing hypothesis , using
a one-way tailed paired t-test to compare the means of the pre-
posttest scores within each group. Group A achieved significant
results for dependent variables Y.2, Y.3, and Y.4, and group B
for dependent variables Y.1 and Y.3. Therefore, the null hypoth-
esis can be rejected for these cases at . Note that
for group A, the dependent variable Y.1 supports the direction of
the hypothesis without showing an effect size of practical signif-
icance. In addition, for group B, values for dependent variables
Y.2 and Y.4 also support the direction of the expected positive
learning effect, with and without practical significance respec-
tively. The analysis corroborates the result of the previous ex-
periments in regard to the variables Y.2 and Y.3 for group A,
and for Y.3 in group B.

B. Hypothesis

Table VIII shows the results of the testing hypothesis
using a one-tailed t-test for independent samples. For signif-
icance level , the score difference between posttest

TABLE VIII
RESULT FOR PERFORMANCE IMPROVEMENT

TABLE IX
RESULTS FOR POSTTEST PERFORMANCE

and pre-test for the dependent variables Y.2 and Y.4 are sig-
nificantly larger in group A as compared to group B; thus, hy-
pothesis can be rejected for these variables. The values of
Y.3 support the direction of the expected relative learning effect,
showing a medium to large effect size (practical significance).
The value for Y.1 does not even support the direction of the ex-
pected relative learning effect.

C. Hypothesis

Table IX shows the results of testing hypothesis using a
one-tailed t-test for independent samples. For significance level

, the posttest scores of variable Y.3 are significantly
larger for the experimental group A as compared to the con-
trol group B, and thus hypothesis H0,2b can be rejected for this
variable. The values of variables Y.2 and Y.4 also support the
direction of the expected absolute learning effect, however, only
with a small effect size. The values for variable Y.1 does do not
even support the direction of the hypothesis.

460 IEEE TRANSACTIONS ON EDUCATION, VOL. 49, NO. 4, NOVEMBER 2006

TABLE X
SUMMARY OF INDIVIDUAL RESULTS OF H

TABLE XI
RESULTS OF H

D. Qualitative Results

The participants reported problems encountered and made
improvement suggestions. Besides suggestions regarding tech-
nical aspects of the tools, comments generally supported the
findings of the quantitative analyses related to learning effec-
tiveness and effect on interest in software project management.
Positive comments about the usefulness of the treatments as
a whole were made in both groups. Negative comments or
problem statements addressed difficulties in understanding the
amount of information (both groups) and the structure of the
complex SD simulation model used by the experimental group.

E. Meta-Analysis of the Experiments

Table X shows the main results of the two experiments in re-
gard to null hypotheses and . Meta-analysis tech-
niques [24] are used for comparing and combining results from
different studies to identify effects that could escape the scrutiny
in a single study with much lower statistical power. To make a
step in this direction and include both p-values and effect sizes
in the discussion, the hypothesis testing results of each study
were classified as follows.

— Statistical significance (stat. sig.): Null hypothesis could
be rejected at significance level .

— Practical significance (pract. sig.): Null hypothesis could
not be rejected, but effect size .

— Positive effect : No practical significance could be ob-
served but effect size . The number in parentheses
indicates how many subjects would have been needed to
achieve statistical significance with the given effect size.

— No effect or negative effect (-): t-value .

Table X shows that null hypothesis could only be re-
jected in all experiments for variable Y.3 (both for the experi-
mental and the control groups). In addition, for the experimental
group A, could be rejected in all cases for Y.2 and in one
case for Y.1. For the control group B, could be rejected in
two cases for Y.1.

Table XI shows that null hypothesis could only be re-
jected in all cases for variables Y.2. A significant result was
achieved in one case for variable Y.1. Regarding null hypothesis

, statistical testing yielded statistically and practically sig-
nificant results for variable Y.2. In the KL experiment, nothing
indicates that the experimental group A performs better than the
control group B with regard to understanding simple and com-
plex project dynamics (variables Y.3 and Y.4). However, in the
Reading experiment, a better performance for the experimental
group was obtained for these variables. The role-play scenario
explicitly states project management principles that were not
clearly specified for the control group B. On the other hand, per-
forming the role-play-imposed additional time pressure on the
subjects in the experimental group A, which might have resulted
in low scores for questions related to dependent variables Y.3
and Y.4 in the KL study; this pressure was not observed in the
Reading experiment and may be explained because students in
Reading were given more time to perform the scenario blocks
than students in KL. Also a major difference existed between
the Reading and KL experiments in relation to the experience
of the students. Reading students were in the middle of a course
on software engineering and only a few weeks before they were
introduced to principles of project management. Possibly such
issues related to project management were fresh in their minds
and might be the reason the results were better as regards to Y.4
and hypotheses and .

RODRÍGUEZ et al.: E-LEARNING IN PROJECT MANAGEMENT USING SIMULATION MODELS 461

V. THREATS TO VALIDITY

A. Construct Validity

Construct validity is the degree to which the variables used in
the study accurately measure the concepts they purport to mea-
sure. The related issues remain the same as in the KL experiment
[25].

a) SD models might not adequately capture the specific ad-
vantages over conventional planning models.

b) Interest in a topic and evaluation of a training session are
difficult concepts that have to be captured with subjective
measurement instruments.

c) To avoid an “unfair” comparison between SD models and
COCOMO is difficult because SD offers features that are
not available for COCOMO.

B. Internal Validity

Internal validity is the degree to which conclusions can be
drawn about the causal effect of the independent variable on the
dependent variables.

a) A selection effect was avoided by random assignment of
subjects.

b) Non-drop-out of subjects has been avoided by the exper-
imental design.

c) Different treatments in the number of blocks and time
available may have induced an instrumentation effect.

C. External Validity

External validity is the degree to which the results of the re-
search can be generalized to the population under study and
other research settings.

a) Being the subjects of the experiment computer science
students or related fields, generalizations to professionals
should be made with caution.

b) Adequate size and complexity of the applied materials
might vary depending on previous knowledge about SD
modelling and COCOMO.

VI. ANALYSIS OF THE RESULTS AND DISCUSSION

The main objective of developing and applying a simulation-
based training module is to facilitate effective learning about
certain topics of software project management for computer sci-
ence students. From the results of the replication and from the
original experiment, one can conclude that the goal of achieving
deep learning in project management is accomplished better by
those students using simulation. According to the posttest and
qualitative results, students using the SD simulation model seem
to have learned and understood SE principles better than stu-
dents in the control group using a more traditional approach
involving the static COCOMO model. When analyzing these
results from the point of view of current learning theories, the
following points can be highlighted.

a) e-learning systems with simulation can achieve the inter-
activity advocated by current learning theories. By using
simulation, students can achieve Mayes’ tertiary level [9]
of interactivity as if they could consult the instructor or an
expert (with the benefit that the instructor does not need

to be present). Also, students need to reflect on the exper-
imental structure designed by the instructor which helps
to establish Kolb’s Learning Cycle [10], [11].

b) Based on the students’ comments, simulation attained a
motivation effect. Students liked to play, try out different
solutions, and check the effects. Thus, considering the
motivating effect that emotion has on learning to fuel
a “want to learn” [26], while “emotional intelligence”
[27] is the energy that takes students from the single-loop
learning of Kolb’s learning cycle to the potentially para-
digm-shifting of double-loop learning—deep learning.

The average of the final marks of the students that took part in
this experiment was better than the class average (one of the stu-
dents in the SD group obtained all the possible marks in the final
exam). However, such results were not very surprising since the
experiment was conducted on a voluntary basis with primarily
good students deciding to participate.

This experiment shows that instructors can improve
e-learning environments by using simulation. However,
SD is not the only simulation technique that can be applied.
The Bayesian Networks (BN) can be used to generate similar
causal effect relationships by combining graph and probability
theories. For example, Fig. 3 represents a simplified defect
estimation model where the residual defects depend on the
defects introduced in the source code and the defects detected
during testing. The number of defects detected during testing
depends on the amount of testing effort and the number of
defects in the source code. Every node has a probability table
defining the strength of the relationships between connected
nodes. The power of BNs emerges when setting evidences.
Once evidences (or facts) have been entered into the network,
such evidences can be used to update the probabilities in the
BN (Fig. 4). Using this technique, students can check the causal
effect of their decisions.

Problems also exist when applying SD and BN models. The
first set of problems is related to the creation and validation of
such models. Models need to be created specific to a domain.
Therefore, expertise is required to model the entities, attributes,
and cause–effect relationships that compose such models. Fur-
thermore, once those models have been created, they need to be
validated against the real world they are modeling. Kitchenham
et al. [28] propose a framework for validating bidding systems,
which can also be used for evaluating SD or BN models. The
evaluation framework is composed of five quality aspects:
1) syntactic quality, 2) semantic quality, 3) pragmatic quality,
4) test quality, and 5) value quality. For each quality aspect, the
authors define goals and means to achieve them.

1) Syntactic quality is achieved by syntactic correctness. Both
SD and BN have a well-defined syntax based on mathemat-
ical theories.

2) Semantic quality results from feasible completeness and
feasible validity. Feasible completeness means that the
model includes all relevant causal relationships of the
domain. Feasible validity refers to the correctness of such
relationships to the domain. Typically, semantic quality
goals are the most difficult to achieve in the context of SD
or BN, since they are related to the problem of accurate
knowledge elicitation.

462 IEEE TRANSACTIONS ON EDUCATION, VOL. 49, NO. 4, NOVEMBER 2006

Fig. 3. Simplified BN Estimation Model.

Fig. 4. Evidences and probabilities updated in the model.

3) Pragmatic quality deals with the issue of adequately
presenting model and results from feasible comprehen-
sion and feasible understandability. Methods to facilitate
comprehension include visualization, explanation, and
filtering, which can be assessed through empirical studies.
Expressive economy and structure are model properties
that enable the achievement of feasible understandability.

4) Test quality results from achieving feasible test coverage.
5) Value quality results from practical utility of the models.

Kitchenham et al. mention appropriate user manuals,
training, etc., as means to achieve practical utility.

Finally, another problem relates to the ease of use of the
models and tools provided to the students. Although both
SD and BN tools usually provide graphical user interfaces,
e-learning simulation systems may require the creation of new
interfaces appropriate to the domain they are modeling to avoid
steep learning curves imposed by too abstract or complex
causal models.

VII. CONCLUSION

The empirical studies presented in this paper investigated the
effect of using a Web system based on system dynamics (SD)
to assist software project management education. The study
was completed by replicating an experiment to gain better
insight about its utility in project management in particular
and in higher education in general. The treatment focused on

problems of project planning and control. In this work, the SD
models were based on a Web interactive role-play scenario
against the control group without interactive role play.

The performance of the students, which was measured using
a pretest and posttest, was analyzed with regard to four dimen-
sions—interest in the topic of software project management,
knowledge of typical project behavior patterns, understanding
of simple project dynamics, and understanding of complex
project dynamics. By studying the differences between the
posttest and pretest scores of the experimental group (based
on an SD model) and the control group (based on COCOMO),
conclusions were drawn with respect to the effects of the
different treatments.

The results indicated that students using the e-learning system
with the incorporated SD simulation model gained a better un-
derstanding about typical behavior patterns of software devel-
opment projects. The findings of the replicated experiment cor-
roborates that using SD models increase the students’ interest in
software project management and also improve their knowledge
about typical project behavior patterns. This positive result of
the experiment may result from the SD simulation model being
integrated into e-learning systems that achieve the level of in-
teraction advocated by current learning theories.

Future work will be related to the creation of generic tools
that facilitate easy integration of SD models into Web-based
e-learning systems. In addition, other dynamic methods such
as BN should be investigated as an alternative to SD models.
An experiment that compares the effectiveness of SD and BN
models in the context of software project management educa-
tion is currently in the planning stage.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their useful comments.

REFERENCES

[1] A. K. Graham, J. D. W. Morecroft, P. M. Senge, and J. D. Sterman,
“Model-supported case studies for management education,” Eur. J.
Oper. Res., vol. 59, pp. 151–166, 1992.

[2] D. Pfahl, O. Laitenberger, G. Ruhe, J. Dorsch, and T. Krivobokova,
“Evaluating the learning effectiveness of using simulations in software
project management education: Results from a twice replicated exper-
iment,” Inf. Softw. Technol., vol. 46, pp. 127–147, 2004.

RODRÍGUEZ et al.: E-LEARNING IN PROJECT MANAGEMENT USING SIMULATION MODELS 463

[3] IEEE/ACM Joint Task Force on Computing Curricula, “Software En-
gineering 2004, Curriculum guidelines for undergraduate degree pro-
grams in software engineering,” IEEE Computer Soc. Press and ACM
Press, Aug. 2004 [Online]. Available: http://www.computer.org/cur-
riculum

[4] E. Hamilton and H. Cairns, The Collected Dialogues of Plato, In-
cluding the Letters. Princeton, NJ: Princeton Univ. Press, 1961.

[5] G. O’Neill and T. McMahon, “Student-centred learning: What does it
mean for students and lecturers?,” in Emerging Issues in the Practice
of University Learning and Teaching, G. O’Neill, S. Moore, and B.
McMullin, Eds. Dublin, Ireland: AISHE, 2005, vol. 1.

[6] J. Biggs, Teaching for Quality Learning at University. Buckingham,
U.K.: Society for Research into Higher Education and the Open Univ.
Press, 1999.

[7] G. Light and R. Cox, Learning & Teaching in Higher Education:
The Reflective Professional. Newbury Park, CA: Paul Chapman
Publishing, 2001.

[8] D. Laurillard, Rethinking University Teaching : A Conversational
Framework for the Effective Use of Learning Technologies, 2nd
ed. London, U.K.: RoutledgeFalmer, 2002.

[9] J. T. Mayes, “Learning technology and groundhog day,” in Hypermedia
at Work: Practice and Theory in Higher Education, W. Strang, V.
Simpson, and D. Slater, Eds. Canterbury, U.K.: Univ. of Kent Press,
1995.

[10] D. A. Kolb, Experiential Learning: Experience as the Source of
Learning and Development. Englewood Cliffs, NJ: Prentice-Hall,
1984.

[11] R. Ross, B. Smith, and C. Roberts, “The wheel of learning: Mastering
the rhythm of a learning organization,” in The Fifth Discipline Field-
book, P. Senge, R. Ross, B. Smith, C. Roberts, and A. Kleiner,
Eds. New York: Currency/Doubleday, 1994.

[12] J. W. Forrester, Principles of Systems. Norwalk, CT: Productivity
Press, 1961.

[13] T. K. Abdel-Hamid and S. E. Madnick, Software Project Dynamics:
An Integrated Approach. Englewood Cliffs, NJ: Prentice-Hall, 1991.

[14] A. Drappa and J. Ludewig, “Simulation in software engineering
training,” in Proc. 22nd Int. Conf. Software Engineering, Limerick,
Ireland, Jun. 4–11, 2000, pp. 199–208.

[15] E. O. Navarro and A. Van Der Hoek, “Software process modeling for
an educational software engineering simulation game,” Softw. Process
Improvement Practice, vol. 10, pp. 311–326, 2005.

[16] B. W. Boehm, “Industrial software metrics top 10 list,” IEEE Software,
vol. 4, pp. 84–85, 1987.

[17] B. W. Boehm and V. R. Basili, “Software defect reduction top 10 list,”
IEEE Computer, vol. 34, pp. 135–137, 2001.

[18] B. W. Boehm, Software Engineering Economics. Englewood Cliffs,
NJ: Prentice-Hall, 1981.

[19] D. Pfahl, M. Klemm, and G. Ruhe, “A CBT module with integrated
simulation component for software project management education and
training,” J. Syst. Softw., vol. 59, pp. 283–298, 2001.

[20] Guide to the Software Engineering Body of Knowledge (SWEBOK).
New York: (SWEBOK) IEEE Press, 2004.

[21] S. L. Pfleeger, Software Engineering: Theory and Practice, 2nd
ed. Upper Saddle River, NJ: Prentice-Hall, 2001.

[22] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures. Boca Raton, FL: CRC Press, 1997.

[23] J. Cohen, Statistical Power Analysis for the Behavioral Sciences, 2nd
ed. Hillsdale, NJ: Lawrence Earlbaum, 1988.

[24] J. Miller, “Applying meta-analytical procedures to software engi-
neering experiments,” J. Syst. Softw., vol. 54, pp. 29–39, 2000.

[25] D. Pfahl, N. Koval, and G. Ruhe, “An experiment for evaluating the
effectiveness of using a system dynamics simulation model in soft-
ware project management education,” in Proc. 7th Int. Software Metrics
Symp., Metrics 2001, 2001, pp. 97–109.

[26] P. Race and S. Brown, The Lecturer’s Toolkit. London, U.K.: Kogan
Page, 1998.

[27] A. Brockbank and I. McGill, Facilitating Reflective Learning in Higher
Education. New York: Open Univ. Press, 1999.

[28] B. A. Kitchenham, L. Pickard, S. Linkman, and P. Jones, “A framework
for evaluating a software bidding model,” Inf. Softw. Technol., vol. 47,
pp. 747–760, 2005.

Daniel Rodríguez (M’99) received the B.Sc. degree in computer science from
the University of the Basque Country, Spain, in 1995 and the Ph.D. degree from
the University of Reading, U.K., in 2003.

He is currently a Lecturer in the Department of Computer Science at the Uni-
versity of Alcalá, Madrid, Spain. His research interests are in the area of soft-
ware engineering, including empirical software engineering and the application
of data mining techniques to software engineering.

Miguel Ángel Sicilia received the Ms.C. degree in computer science from the
Pontifical University of Salamanca, Madrid, Spain, in 1996 and the Ph.D. degree
from the Carlos III University, Madrid, Spain, in 2003.

He worked as a Software Architect in e-commerce consulting firms, where
he was part of the development team of a Web personalization framework at
Intelligent Software Components (iSOCO). Currently, he leads the Information
Engineering Unit at the Computer Science Department, University of Alcalá,
Madrid, Spain. His research interests are primarily in the areas of adaptive hy-
permedia, learning technology, and human–computer interaction. He is coau-
thor of more than 20 refereed publications in these areas, and he also leads the
AIS SIG on reusable learning objects (http://www.sigrlo.org).

Juan José Cuadrado-Gallego received the Ph.D. degree in computer sciences
engineering from the University Carlos III, Madrid, Spain, in 2001.

He previously held positions at the University of Valladolid and University
Carlos III, Madrid, Spain. He currently works in the Department of Computer
Science at the University of Alcalá, Madrid, Spain, and the University Oberta
of Catalunya, Barcelona, Spain. His research interest are in the area of software
engineering and especially software measurement.

Dr. Cuadrado-Gallego is the President of the Spanish Function Points Users
Group (SFPUG), Spain.

Dietmar Pfahl received the Ph.D. degree (Dr. rer. nat.) in computer science
from the University of Kaiserslautern, Kaiserslautern, Germany, and the M.Sc.
(Diplom-Wirtschaftsmathematik) degree in applied mathematics and economics
from the University of Ulm, Ulm, Germany.

He joined the Schulich School of Engineering at the University of Calgary,
AB, Canada, in July 2005. Previously, he was department head with the Fraun-
hofer Institute for Experimental Software Engineering (IESE), Kaiserslautern,
Germany; Project Manager with Siemens Corporate Technology, Munich, Ger-
many; and Research Staff Member with the German Aerospace Research Estab-
lishment, Oberpfaffenhofen, Germany. He has almost 20 years of experience in
conducting and leading national and international research and transfer projects
with the software industry, including organizations such as Bosch, Daimler-
Chrysler, Dräger, Ericsson, and Siemens. His current research interests include
empirical software engineering, quantitative software project management, soft-
ware process analysis and improvement, and simulation-based learning and de-
cision support.

Dr. Pfahl is an affiliate member of the IEEE Computer Society, a senior
member of the Association for Computing Machinery (ACM), a member of
the Institute of Mathematics and Its Application, and a member of the German
Computer Society.

