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Abstract

Engineering knowledge is a specific kind of knowledge that is oriented to the production of particular

classes of artifacts, is typically related to disciplined design methods, and takes place in tool-intensive

contexts. As a consequence, representing engineering knowledge requires the elaboration of complex

models that combine functional and structural representations of the resulting artifacts with process

and methodological knowledge. The different categories used in the engineering domain vary in

their status and in the way they should be manipulated when building applications that support

engineering processes. These categories include artifacts, activities, methods and models. This

paper surveys existing models of engineering knowledge and discusses an upper ontology that

abstracts the categories that crosscut different engineering domains. Such an upper model can be

reused for particular engineering disciplines. The process of creating such elaborations is reported

on the particular case study of Software Engineering as a concrete application example.

1 Introduction

Engineering has been defined as the science of production (Auyang, 2004). Other accounts of the

term define it as the discipline(s) of acquiring and applying scientific and technical knowledge to

the design, analysis, and/or construction of works for practical purposes. Vincenti (1993) reported

on case studies regarding how design knowledge is developed from functional collections of

information, concluding that engineering knowledge is different from scientific knowledge since it

is characterized by ‘knowing how to do or make things’. This and other accounts of engineering

knowledge differentiate it from other kinds of knowledge essentially by an emphasis on practice.

As such, the categories used in every engineering endeavor are mainly related to final artifacts and

disciplined procedures for producing them or operating those artifacts.

Engineering requires intensive practice-oriented knowledge, thus it is practical to categorize it

as vertical knowledge versus horizontal knowledge (Dias, 2007). Discipline related information,

comprising engineering science theories and codes of practice, can be referred to as vertical

knowledge. In addition, during a given design project, there will be horizontal knowledge that is

generated by the design team. Also, the main concepts and ways of doing that crosscut different

disciplines can be considered a third subset of engineering knowledge that we might call upper (or

common) vertical knowledge. Common vertical knowledge excludes, by definition, scientific

knowledge that is specific to the design of particular classes of engineering products, for example,

physical laws models reported by Yoshioka et al. (2004) or common mathematical knowledge

(Gruber & Olsen, 1994). As a consequence, such common knowledge retains only those essential

elements that can be considered as characteristic of the way engineers work. This latter category is



the main focus of the model described in the rest of this paper. The scattered literature on

engineering knowledge models indeed provides concepts and relation definitions for many aspects

that pertain to such common vertical knowledge and specific purpose. However, there is no reuse

of foundational engineering elements between models. Here, we try to cover the gap for reference

models in engineering.

There are many different branches of human activity that are referred to as ‘engineering’, some

of them significantly disparate. However, all of them have a common substrate that differentiates

them from other activities. The roots of such common grounds can be found in the history of the

concept. Derived from the Latin word ingenium (meaning ‘natural capacity or invention’), the

word engineer was probably born from another related word ‘engine’. The early engineer was

largely concerned with making and operating engines of war. Engineering was thus originally

divided into military engineering, which included the construction of fortifications as well as

military engines, and civil engineering, related to non-military projects such as bridge construc-

tion. However, that distinction is no longer useful to discern the ontological differences and

commonalities in the diverse engineering disciplines, since it rests on the uses of the artifacts

produced (which are accidental rather than essential) and not on the methods, techniques or

organizations employed to use them.

Regardless of the history of the term, engineers focus on creating ‘useful’ artifacts (as opposed

to the ‘beautiful’ artifacts created by artists), and they do it by applying knowledge and procedures

considered scientific (as opposed to ‘traditional techniques’ as used in craftsmanship). They do not,

however, aim at producing knowledge in itself (as opposed to the principal aims of scientists). This

leads to an importance on representing requirements (or intended uses) inside engineering models,

and the importance to focus on how they evolve into products by using particular methods and

techniques. From the rough sketch of characteristics we have just discussed, the engineering

domain can be characterized as that of purposeful and planned actions to devise artifacts for

specific practical objectives by using scientific and technical knowledge. Such definition captures

the key characteristics of the engineering activity while retaining a high degree of generality. This

will be the starting point for the rest of the discussion.

Several reports on models for engineering activities or elements can be found in the literature.

However, they are fragmentary in their coverage of categories that could be applicable to different

engineering disciplines, and their scope is tied to particular domains. This paper reports on an

‘upper level’ ontology for engineering and presents Software Engineering (SE) as a case study of its

applicability. Upper ontologies provide definitions of high-level concepts such as time, quantities,

topology and the like. Examples of upper ontologies are Sowa upper ontology (Sowa, 2000), Dolce

(Gangemi et al., 2002) or Cyc (Lenat, 1995). In this work, we use OpenCyc1, the open source

version of Cyc, as a continuation of our previous work (Abran et al., 2006). Although other upper

ontologies could be used, OpenCyc provides a set of open tools for developing applications and

inferencing. However, it is possible to map different ontologies for interoperability purposes,

eventually leading to some degree of standardization (Niles & Pease, 2001). An ‘upper ontology

for engineering’ is not a replacement but an extension of upper ontologies situated between them,

and the more specific engineering models for concrete disciplines.

The ontology is expressed in the OWL2 (Ontology Web Language) language combined with

SWRL3 (Semantic Web Rule Language). These languages were selected because of (i) their open

nature and (ii) the growing number of tools and technologies that use them. To the best of our

knowledge, the ontology presented is the effort that aims at becoming an upper model for different

engineering domains, even though parts of existing ontologies might be abstracted as generic

models (e.g. Katranuschkov et al., 2002; Darlington & Culley, 2008).

1 http://www.opencyc.org/
2 http://www.w3.org/TR/owl-features/
3 http://www.w3.org/Submission/SWRL/
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The intention of an upper ontology for engineering is to abstract out the details of concrete

domains. Nevertheless, its utility will be fully appreciated only when extended and applied for

particular purposes. SE is a good candidate as a case study for the applicability of such a general

model to specific situations, as this discipline is recent in comparison to more traditional engineering

disciplines. However, SE was, from the beginning, conceived as the translation of established

engineering ways of practicing. For example, Parnas (1998) stated that ‘[y] the introduction of

accredited professional programmes in software engineering, programmes that are modeled on

programmes in traditional engineering disciplines will help to increase both the quality and quantity

of graduates who are well prepared, by their education, to develop trustworthy software products’.

There has been considerable debate on the ‘engineering’ character of SE, and its connection to an

abstract engineering model helps in manifesting the differences and commonalities, complementing

specific work in the area (Abran et al., 2006).

The rest of this paper is structured as follows. Section 2 provides a brief state of the art on

existing knowledge representation models and knowledge-based systems in the different engi-

neering domains, focusing on which of their elements can be considered as generic. Then, Section 3

provides an analysis of the domain of engineering and the main categories of knowledge that arise

in engineering domains. Section 4 reports on the concrete case study that extends and refines the

upper ontology model described for practical purposes in the field of SE. Finally, conclusions and

potential future extensions and applications are reported in Section 5.

2 Survey of knowledge representation for engineering domains

This section briefly references existing work on ontologies covering engineering concepts. Only

those works that report on ontologies, of which a part could be considered generic, are included.

One initial question regarding this survey is what is considered engineering knowledge. For

example, Dias (2007) explored the philosophical dimension of the choice of ‘connexionist’ and

‘cognitivist’ approaches to knowledge representation, emphasizing the role of the former as an

account to represent Polanyi’s (1966) notion of tacit knowledge. However, we are concerned here

with ontological representations, which, by definition, model conceptual domains. Therefore, we

will not discuss the application of connexionist or pattern-finding models here. Other classifica-

tions of engineering knowledge use the domain as a criterion, even though such distinction is not

useful for our purposes. On the contrary, the facets described by Colombo et al. (2007) are indeed

useful in discerning categories of engineering knowledge and will be mentioned in the rest of the

paper. Concretely, the types considered are:

> Structural knowledge: about the components which comprise the design object and their

relations.
> Behavioral knowledge: about the behavior of the design object, that is, about the ways the device

responds to changes in its environment and/or in its own state. This type of knowledge describes

components in terms of the physical quantities that characterize their state and the physical laws

that rule their operation.
> Teleological knowledge: about the purpose and the way the design object is intended to be used.

This type of knowledge describes the goals assigned to an artifact and enables designers to

translate market requests into specific expected behavior of the artifact.
> Functional knowledge: about the behaviors and goals of the artifact itself.

This typology is useful for understanding the four dimensions present in every engineering

domain. Top and Akkermans (1994) divide their full ontology in three parts (sub-ontologies)

namely functional components, physical processes and mathematical constraints. The first one can

be considered a combination of structural and functional knowledge, whereas the other two are in

fact representations of scientific knowledge.

If we focus on particular but common engineering areas, the most important aspect is

requirements elicitation. Darlington and Culley (2008) report on the process of building an
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ontology for supporting design requirement elicitation in engineering. Their approach includes

three different ontologies: engineering design requirements, product finish and machine motion. The

last one is specific to some particular kinds of engineering and, in comparison with the first one, is

largely general to different ontological domains. Katranuschkov et al. (2002) also reported on a

‘core engineering ontology’ covering common categories, but the main part of their model is

oriented to the interchange between CAD (computer-aided design) applications.; Teleological

knowledge, as defined by Colombo et al. (2007), is also connected to requirements.

Many applications of knowledge-based systems in concrete engineering domains address specific

problems or applications, but only a fraction of them use ontologies as the representation paradigm.

For example, Blomqvist and Ohgren (2008) report on the method of constructing an ontology in the

automotive supplier domain, dealing mostly with the artifacts. Ontologies in classical engineering

fields also include models of physical objects, phenomena and laws, and they usually become inte-

grated in CAD/CAE (computer-aided engineering) environments. For example, Yoshioka et al.

(2004) report on a system in which the engineer builds a functional hierarchy from functional

specifications and then maps the functional hierarchy into physical features that are building blocks

for conceptual design. Lin and Harding (2007) report on an ontology for manufacturing, from which

a few concepts such as Project and Process can be abstracted, even though their definition is

primitive. Ahmed et al. (2007) reported on an ontology-development methodology for engineering

design that can be used for extending an upper engineering ontology to particular cases.

In the specific domain of SE, Abran et al. (2006) reported on a formal ontology covering

the concepts of the discipline. Their effort was based on the so-called Guide to the Software

Engineering Body of Knowledge (SWEBOK)4. This work provides general principles for SE

ontologies, some of which have been reused here. Other works propose the use of ontologies to

bridge engineering tools; for example, Peachavanish et al. (2006) report on ontology-based inter-

operability for entities, actions and role definitions between GIS (Geospatial Information Systems)

and CAD applications. Those are pairwise mappings for concrete engineering objects and actions

that could be useful in evaluating the generality of a general model for engineering. Finally, a

comprehensive survey of ontologies in the software domain can be found in Coral et al. (2006).

3 Main categories in engineering models

The first step for the development of the upper model presented here was setting the requirements

that serve as evaluation criteria. One of the ways to determine the scope of ontologies is to

elaborate a list of questions that an application using the ontology should be able to answer. These

are often called competency questions (Gruninger & Fox, 1995). From this idea, we first stated a

competency scope and then derived competency questions from a definition of the domain being

modeled. This section identifies the main ontological categories derived from the definition of

engineering. Those categories are later included into a general framework. The definitions are

based on available ontologies, which are referenced by prefixes to the names of ontology elements;

for example, those definitions taken from OpenCyc are prefixed by ‘oc_’5.

3.1 The competency scope

The competency scope for engineering an upper ontology is stated as follows: ‘providing support

for the management and accountancy of the products and activities in engineering work, covering

all the aspects involved in engineering as a general problem solving activity operating under

technical and organizational constraints’. In consequence, competency questions addressed

include support for both horizontal and vertical knowledge. The statement of scope determines the

ambit of the ontology, although some clarification regarding the coverage of ‘organizational

4 http://www.swebok.org/
5 The resulting OWL1 SWRL files can be found at http://www.cc.uah.es/ie/ont/engineering
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constraints’ is still required. Here, the domain of organizations is considered out of scope, and

constraints are only considered as they affect technical processes. This entails that the model does

not include categories related to organizational structures or processes that surround engineering

work. For example, this work can be considered complementary to a Knowledge Management

ontology (Sicilia et al., 2006) in the sense that the latter manages the dissemination, evaluation and

transfer of knowledge about engineering products and engineering experience. However, they

cover separate domains of work activity.

Note that the focus is on building a model that could be embedded in applications and tools

to improve engineering productivity and effectiveness. In consequence, philosophical issues

are considered only when they impact on practical issues. This aligns with the postulates stated

by Quine (1948), that is, whatever ontology best serves the epistemological role in science merits

adoption.

3.2 A definition and related competency questions

To ensure that the competency scope matches the widespread notion of engineering supported

by ABET6, we adopt ABET’s definition of engineering:

The creative application of scientific principles to design or develop structures, machines, appa-

ratus, or manufacturing processes, or works utilizing them singly or in combination; or to con-

struct or operate the same with full cognizance of their design; or to forecast their behavior under

specific operating conditions; all as respects an intended function, economics of operation and

safety to life and property.

From that definition, and considering the discussion in the previous section, a collection of

competency questions covering different aspects was elaborated. These questions are summarized

in Table 1.

Question q1 deals with what is designed or developed by engineering. In the case of mechanical parts,

mereological formulations (Colombo et al., 2007) describe the structural knowledge of the artifacts

that are tangible and solid (e.g. as those represented by oc_SolidTangibleArtifact). However,

other artifacts such as software pieces (e.g. instances of oc_ComputerCode) posses a structure that

does not entail any kind of significant topological relation, but relations such as dependencies that can

only be understood in the context of program execution. In consequence, the categorization of artifacts

needs to be flexible enough to cope with a variety of entities. Question q2 is closely related to q1 and

concerns the alternate combinations of components that lead to a useful product. This goes a

Table 1 Competency questions for the upper engineering ontology

ID Competency question

q1 Which are the artifacts produced and used in engineering and how can they be classified?

q2 Which is the configuration of an engineering artifact?

q3 How are artifacts’ functions defined?

q4 How are requirements defined and how they relate to each other?

q5 How are requirements connected to the artifacts or elements produced?

q6 What is a specification in engineering?

q7 What is a model in engineering?

q8 Which is the nature of the relation of engineering artifacts, documents, specifications and models?

q9 What are methods in engineering?

q10 How can engineering work be evaluated?

6 ABET (Accreditation Board for Engineering and Technology) certifies college and university programs in

engineering and other disciplines (http://www.abet.org/).
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step beyond structural knowledge to deal with the management of versions and configurations of

different artifacts that end up in composed artifacts with different functions.

Questions q3 and q4 are, respectively, related to functional and teleological knowledge.

Question q5 synthesizes the requirements traceability problem. Question q6 deals with the

expression of design, and q7 covers the concept of model, which is pervasive in engineering. Then,

the relation of artifacts produced, the documents that realize them, and the expressions of the

design are all stated by question q8. Question q9 is related to the ‘disciplined ways of working’,

that is, methods and techniques, which drive actual engineering activity. Finally, question q10

focuses on the essential scientific characteristic of engineering: activities and processes need to be

subject to contrast and evaluation. This includes not only quantitative measures on the char-

acteristics of the products, but also general criteria, principles and evaluation techniques.

Looking back at ABET’s definition, there are some aspects that have been deliberately considered

out of scope. For example, the ‘creative’ nature of engineering is a complex phenomenon for which

there are no widely accepted theories, so it is left aside. Also, the operation of the products of

engineering is only considered in the cases that they require engineering skills. Non-central issues such

as safety and privacy can be introduced in the ontology as specific kinds of requirements.

Some of the competency questions can still be broken into more specific ones. For example, q2

is related to configuration, which entails the maintenance of versions in general.

The rest of this section discusses the main ontological commitments7 of the upper engineering

ontology. The discussion starts from the individuals that perform engineering actions, and con-

tinues with the origin of engineering work, followed by the results. After dealing with the inputs

and outputs, the rest of the section discusses general ways of performing engineering work.

3.3 The engineers

First, the Engineers that perform the actual work can be characterized as a subset of the class

oc_IntelligentAgent defined in OpenCyc as follows: ‘An agent is an intelligent agent if and

only if it is capable of knowing and acting, and capable of employing its knowledge in its actions.’

Engineers usually work in teams, and as a consequence the term oc_Organization can be

reused. The belonging of agents to an organization is modeled in a generic form by the

oc_groupMembers predicate. Then, a first definition of EngineeringOrganization as

subsumed by oc_Organization can be implemented through an OWL restriction in the form

oc_groupMembers some Engineer. A basic model of organizations is provided by the

oc_subOrganizations predicate, which relates organizations to its subordinates, and allows

us to model different kinds of organizations, groups or teams.

An important concept in most engineering domains is oc_Project, which are actually collections

of oc_PurposefulActions. The oc_Project concept can be used as the root of a separate

ontology for projects, which could be modeled as an extension by codifying the knowledge in the Project

Management Body of Knowledge (PMBOK8). Projects include engineering activities as well as other

activities such as training and deployment. Abels et al. (2006) discuss PROMONT, a project man-

agement ontology covering the DIN 69901 standard that could be used as the basis for such an effort.

3.4 The problems: requirements

Requirements correspond to teleological knowledge, as the expression of intended uses of the

artifact to be designed. All design activities are aimed at translating functional requirements into

structures that are able to realize them, and several relations between functions and components or

parts (as HAS-A or PERFORMS-A) have been proposed by Colombo et al. (2007). In addition,

predicates connecting requirements to functions, such as the predicate NEED-A can be stated.

7 Terms and predicates in the ontology are typed in Courier font.
8 http://www.pmi.org/
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An initial concern is the status of different kinds of requirements. Lin et al. (1996) distinguish

between external and internal requirements, the latter being posed by the engineering team. We

deal only with external requirements, since the latter pertain to the decomposition of the initial

design. In a different direction, Darlington and Culley (2008) provide a comprehensive classifi-

cation of DESIGN_REQUIREMENTs, including economic, product, functional, ergonomic, legal

and other requirements. There is, however, a need for particular definitions for each of them, for

example, legal requirements might be defined by a required connection to Legal_sources

according to the LKIF (Legal Knowledge Interchange Format) legal core ontology (Hoekstra

et al., 2007). These different definitions can be elaborated as extensions of a generic ontology, and

an important observation is that most kinds of requirements can be translated into constraints on

a particular kind of requirement, namely functional requirement. For instance, a performance

requirement may be represented as a constraint on a particular functional requirement: the shape

or disposition of an object can be constrained by a safety requirement, a legal requirement might

constrain the exposure of certain information in a software application, etc.

In any case, the ontology deals only with specifications, since the requirements situate at a subjective

level for the needs of individuals. In consequence, the specifications serve as the unique elements used in

engineering activities. Functional requirement specifications in turn denote function specifications, that

is, they are constrained by the OWL oc_thingSpecified some FunctionSpecification

constraint. We maintain both specification entities because the former is a user requirement whereas

the second is not specific to the subjectivity of users, but instead an internal requirement.

Furthermore, a distinction between Functions and UserRequirements needs clarifica-

tion as it deeply influences the traceability of engineering elements and activities. Requirements are

first associated to a concrete engineering process (rather than concrete products, that might have

not been conceived at the time of requirement formulation). On the contrary, functions are the

final uses of the devised artifacts. For instance, in OpenCyc, the primary function of a given object

type is connected to a type of situation role as in the following example:

(typePrimaryFunction Telephone AudioCommunicating deviceUsed)

Given that the artifacts (Telephone) and the role they play (deviceUsed) are not necessarily

determined a priori, specifying the situation is essential. The oc_SituationSpecification con-

cept is flexible enough to cover this role. The synonym FunctionSpecification is then connected

to the category of UserFunctionalRequirementSpecifications, and a generic con-

straintRequirement predicate can be used as a general-purpose relation covering relationships

between requirements, and thus, also giving support to competency question q4. Note that the sub-

specification predicates of OpenCyc can be reused for the decomposition structure of user requirements.

The connection of requirements to engineering processes is implemented by relating them to

oc_Plans, which are normative specifications for actions to be performed. Such plans can be later

connected to projects or concrete actions, but this latter aspect is not further analyzed here. Figure 1

shows the subordination of requirements to plans, which in turn are connected to independent

function specifications (fs). Then, functions are mapped to artifacts (or artifact types, at) that

realize those functions. This mapping provides basic support for automating the search of knowl-

edge to be reused during the initial stages of a project, when functional requirements are established.

To illustrate the above discussion, let us consider the following example about mechanical seals.

A generic requirement specification that could originate the engineering of such artifact is:

‘join systems or mechanisms together by preventing leakage’. This results in a UserFunctio-

nalRequirementSpecification instance, which we will identify as noLeakageInOil-

Junctions. This instance will be connected to the FunctionSpecification instance

joinOilConductionWithoutLeakage. This is a concrete requirement that is connected to

a more generic joinWithoutLeakage generic function specification, as a way to abstract out

the common aspects of different requirements. Doing so provides an opportunity to share design

knowledge that could be reused in other contexts, which is acknowledged to be a driver in

innovation processes (Hargadon, 2002).
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Although the requirement will be tied to a particular plan of an organization, this will not be

discussed here9 as it belongs to the project management scope.

Lin et al. (1996) modeled some basic properties of requirements, such as decomposition, that are

considered in the upper ontology described here. An interesting definitional characteristic of their

model is the expression of requirements as logical expressions. However, these properties do not apply

to all possible requirement specifications, so in our model they are left to the rules layer provided by

SWRL, which can be attached in a modular way to the ontology as described in the next section.

Other important aspects of requirements in the domain of engineering are the following:

1. Requirements need to be documented.

2. Requirements need to be related to the design artifacts they are origin or constraint of.

Aspect (1) raises a general ontological commitment—the differentiation of the documents and

the specifications themselves. This is realized in OpenCyc with the categories of oc_Informa-

tionBearingThings and oc_PropositionalInformationThings, providing support to

the propositional content and to the thing that conveys it, respectively. For instance, a require-

ments document can be broken into several documents, but the propositional content is unique

irrespective of its form (digital or hardcopy). When speaking about the engineering process, the

important part is the propositional content. As the concrete things have some degree of arbi-

trariness in formatting, they are only important for cataloging processes specific to each project.

Even though aspect (2) can be generically realized by linking UserRequirementSpecifica-

tions to oc_Artifacts, the concrete semantics of these links are left to sub-properties which will

specify particular constraints. Traceability (q5) from requirements to artifacts starts by such links, but

other predicates are required to link the chain of artifacts produced by the different steps in the

engineering process. This will be studied in the following sub-section.

3.5 The activities

Engineering is basically an artifact-producing activity performed by engineers. At this level,

engineering can be seen as a flow of activities. Ideally, every activity, its doers and the artifacts

used, changed or created should be represented. This consideration does not take into account the

ways of carrying out the activities (the methods) but only of the representation of the activities

actually enacted. In fact, this is the recording of actual, real empirical experience of engineering as

a human activity. In OpenCyc, activities can be represented as oc_Action instances. These

actions are defined as ‘the collection of oc_Events that are carried out by some ‘‘doer’’ (see

oc_doneBy). Instances of oc_Action include any event in which one or more actors effect some

Figure 1 Requirements, function and artifacts

9 A complete example can be found in the Web of the ontology
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change in the (tangible or intangible) state of the world, typically by an expenditure of effort or

energy.’ An oc_Event is in turn ‘a dynamic situation in which the state of the world changes;

each instance is something one would say, ‘‘happens’’ ’. Furthermore, engineering activities are in

fact oc_PurposefulActions. Each instance of oc_PurposefulAction is ‘an action con-

sciously, volitionally and purposefully done by at least one actor’. Then, EngineeringAction

instances define the scope of horizontal knowledge, and are able to represent the day-to-day

activities in engineering projects.

There are several situationRoles for EngineeringActions to be mentioned as

characteristic of engineering activities of any kind, including those that are not carried out by

specific techniques or methods:

> The actions are decomposed into oc_subEvents.
> The events are oc_performedBy some concrete professional roles.
> The oc_inputs and oc_outputs for the activity.
> The collection of oc_objectActedOn that are altered or affected by each activity.

The actionRole predicate can be defined to place specific constraints on particular classes or

engineeringActions. For example, actions that belong to the type ‘design mechanical part

structures’ can be constrained to use concrete kinds of CAD programs as Tools. Also the

responsibility for approving a change in the configuration of a product can be specified as per-

taining to a change authority (a group or an individual).

Following the above example, a given company may undertake an oc_Project in which the

main of the oc_outputs is a new seal (an instance of ArtifactType). This is the highest

possible abstraction level, and it is compatible with a refinement of the project as a complex

activity into more concrete actions.

3.6 The results: artifacts

Artifacts are the main products of engineering, but it is important to clearly differentiate engineering

artifacts. The basis of our model of artifacts is the OpenCyc definition for the concept: ‘Each instance

of oc_Artifact is an at least partially tangible thing which was intentionally created by an

oc_Agent (or a group of oc_Agents working together) to serve some purpose or to perform some

function. In order to create an instance of oc_Artifact, it is not necessary that an Agent creates

the matter out of which the Artifact is composed; rather, an oc_Agent can create an instance of

oc_Artifact by assembling or modifying existing matter.’ That definition is actually a superset for

the category of EngineeringArtifacts, which are defined as those artifacts coming from

engineering actions.

Non-essential characteristics from artifacts are the following:

> Identifiability; the capability of uniquely identifying the elements produced in engineering.
> Traceability; that is, recording the history of relations of input–output between engineering

artifacts.
> Identification of functionality; the capability of tracking any artifact back to the requirement

that originated it.

Identity (Welty & Guarino, 2001) of engineering artifacts is essentially dependent on the

engineering process that devises or creates them. This entails the introduction of particular

engineering processes (horizontal knowledge) in the model.

The traceability in the production of artifacts is an important element in engineering models,

for which the transitive tracesTo property can be used. The following rules in SWRL provide

two examples for such property in which ?x can be used as a parameter with the artifact that we

want to trace, including identification of functionality.

Artifact-EngineeringProduct(?x)

and Artifact-EngineeringProduct(?y)
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and Artifact-EngineeringProduct(?z)

and tracesTo (?x, ?y)

and tracesTo (?y, ?z)

then tracesTo(?x, ?z)

Artifact-EngineeringProduct(?x)

and Artifact-EngineeringProduct(?y)

and UserRequirementSpecification (?r)

and tracesTo(?x, ?y)

and tracesTo(?y, ?r)

then tracesTo(?x, ?r)

The structural model defined by Lin et al. (1996) corresponds to this mereology of parts that is

generically realized by the oc_properParts predicate. The predicate can be extended for more

specific meanings in different engineering contexts. Furthermore, proper parts predicates can be

refined to model both structural and functional knowledge. Structural knowledge, for instance, is

captured in the case of physical artifacts by the oc_properPhysicalParts specialized predicate.

Another important concept is specifications, which are pervasive at the normalization level

(standards, recommendations and the like) as well as a way to interface different activities in the

project life cycle. Specifications at the normalization level are modeled by the general Standard

concept, which can be specialized into different sub-concepts such as ISOStandards (those

definedBy the ISO organization), and product standards (those defining an ArtifactType,

which in OWL is expressed as the restriction oc_thingSpecified some ArtifactType).

Specifications, in general, relate to any thing through the oc_thingSpecified predicate. The

term oc_ModelArtifact provides the appropriate semantics for the concept of model: ‘a collection

of artifacts; a subset of oc_VisualInformationBearingThing. Each element of oc_Mode-

lArtifact is a tangible object designed to resemble and/or represent some other object, which may

or may not exist tangibly.’

In OpenCyc, Information Bearing Things (IBTs) are defined as ‘a collection of spatially-localized

individuals, including various actions and events as well as physical objects [y] each instance of

oc_InformationBearingThing (or ‘‘IBT’’) being an item that contains information (for an

agent who knows how to interpret it)’. As information bearing objects, engineering models are IBTs as

well, so that their contents can be represented in a propositional form, through the predicate

oc_containsInfoPropositional-IBT IBT Propositional Information Thing (PIT), that links

to a PIT. PITs can be in themselves microtheories (internally consistent sub-ontologies in OpenCyc),

thus allowing the definition in logical terms of the actual contents of the model. In OWL, this relation

can be represented by subclasses of the model outside of the upper ontology for engineering. These

subclasses provide full representational capabilities for specific kinds of artifacts and are connected to

some oc_Artifact or ArtifactType by a hasModel predicate. This could, for example, be

applied to develop systems that represent UML (Unified Modeling Language) diagrams10 through

logics, which will enable a degree of increased automation. This also holds for specifications. Figure 2

depicts an example of this kind of mapping, in which two models with different viewpoints are

attached to the same product.

The separation of models and the actual artifacts or artifact types support incompleteness in the

design process, which is a key characteristic of abstraction-intensive activities as engineering.

Indeed, model-driven engineering is seen as a way to tackle with complexity in some disciplines

(Schmidt, 2006), and this entails progressive refinement of models. As a consequence, attribute

constraints, such as those proposed by Lin et al. (1996), can be associated to models and enables:

(a) checking the consistency of different views (partial models on the same product), by checking

that the constraints are compatible; and (b) checking the compatibility of the models produced

10 http://www.uml.org/
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during engineering work, and final attributes of the artifacts. This latter case is useful for auto-

mating the control on design and production.

3.7 The way of doing: techniques and methods

Specifications and models capture an important portion of the way engineers work. An ontolo-

gically different concept related to activities in engineering is that of ‘methods’ for activities, that

is, the specification of ‘blueprints’ for potential courses of activity or ‘ways of doing’. These

specifications have an intrinsically prescriptive character, so they should not be specified as

actions, but rather as specifications. Figure 3 depicts the definition of techniques and skilled

activity types in relation to OpenCyc definitions.

The oc_Actions are particular kinds of oc_Events that can be related to oc_Specifi-

cations by oc_conformingToASpecification instances. The conformance of events or

any other kind of situation is a common pattern in engineering, since normalization and reuse of

engineering artifacts is a key characteristic of engineering work in modern industry.

Techniques are usually considered specific applications of a method, or more specific

ways of carrying out some courses of action. Methods can then be specified as subsumed by

Figure 2 Requirements, functions and artifacts

Figure 3 Techniques, technique specifications and engineering actions
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oc_SkilledActivityType and be subject to contain or mandate some techniques. Specifi-

cations and the relation to engineering actions can be modeled in the same way as techniques

depicted in Figure 3.

The oc_competentAtSkill predicate allows us to relate individuals to competencies. This

can be used to link human resource management to the engineering ontology, but it is outside the

scope of the latter. Ontologies of competencies, as the one discussed by Monceaux et al. (2007),

could be used in this context.

The Methods are considered collections of techniques plus some additional elements as common

notations or principles. The difference between technique and method resides in that the latter are

of a finer grain and concrete, while the former may contain several techniques. Methods may share

some techniques, and they might also share notational frameworks or common principles.

3.8 The contrast: indicators and criteria

Many aspects in engineering deal with contrasting the quality of either the artifacts produced or

the methods used, which is in the scope of competency question q9. Some of them are part of

specific engineering activities, often called testing or evaluation. However, there are others that fall

into the category of normative knowledge such as principles and measurement.

Principles can be classified as those specific to the supporting sciences, and those specific to the

activities and products of engineering. The former include any mathematical or physical principle

used during design. For instance, the bending moment principle for building strong structures in

civil engineering. However, the representation of these kinds of knowledge is outside the intended

competency of the ontology discussed here, and existing ontologies can be used for that purpose

(Stahovich et al., 1993; Gruber & Olsen, 1994). Principles in engineering disciplines take the form

of general rules on ways of doing, and their practical formulation requires the use of measures and

their interpretation. This is the rationale for introducing indicators as a key characteristic of

engineering contrast.

Indicators are models purposefully prepared to evaluate parts of processes or products.

They involve the Measurement of one or several attributes that may be later aggregated into a

contrastable value. While measurements directly relate to attributes, indicators do not.

Since indicators are very specific of concrete kinds of artifacts or activities, the upper model

does not provide further additional detail. The computing from measures to indicators, if needed,

is modeled through rules, and measurement can be expressed by reusing existing measurement

ontologies (Kim et al., 2005).

3.9 Other elements

Another important characteristic of engineering is that of being tool-intensive. This concept is

captured by the oc_Tool term, representing ‘user controlled devices that help to manipulate or

alter other objects or the immediate environment in some way’. However, contemporary engi-

neering is increasingly based on software tools, and they do not fit in the oc_Tool definition, tied

to solid, rigid things. A Tool concept subsuming this and a SoftwareTool category has been

used to cover the spectrum of tools used in engineering.

4 The ontology of Software Engineering: concepts and structure

Many engineering definitions emphasize the disciplined and systematic artifact creation. However,

the material object produced by every engineering discipline is not necessarily of a similar nature.

The case of SE is particularly relevant in the illustration of such differences, since software as an

artifact is acknowledged as a very special piece of human work. The special nature of software was

attributed by Brooks (1987) to ‘complexity’ as an essential characteristic.

This section provides a case study on how ontologies for particular engineering disciplines can

be built by extension to the upper engineering ontology discussed so far. The idea of disciplinary
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extensions is that of producing modular ontology fragments. Figure 4 depicts the concrete

arrangement for the SE extension.

The principles of the decomposition are two-fold. On one hand, SWRL rules are separated

from OWL definitions to allow for versions that support or not the SWRL reasoning. On the

other hand, there should be a separation of the domain-specific part that follows some kind of

standard convention. Consensus-reaching approaches to ontology engineering are deemed

appropriate for the crafting of representations of the concepts of some concrete domain. None-

theless, in some domains the engineer can find pre-existing processes of consensus-reaching on

conceptual frameworks. This is the case of SE, in which the Guide to the SWEBOK project is the

result of a considerable effort on the collaborative production of a subset of the knowledge of the

discipline that is, as of today, subject to little controversy in the community of researchers. The

SWEBOK project aims at defining the boundaries of SE, which motivates the fundamental

organization of the Guide. The material that is recognized as being within this discipline is

organized into Knowledge Areas (KAs), including requirements, construction and configuration,

among others. In what follows, the principal aspects of the upper engineering ontology presented

so far are discussed as applied to the field of SE.

4.1 Software requirements

Typically, user-prescribed functionality is mapped in design time to software components, which

expose functionality to other components. Then, required functionality can be defined as the functions

at the level expressed in functional requirements, emphasizing that we stay at the level of final user

functionality. Even in the case that functional requirements are expressed for a software without a user

interface (e.g. a software framework), the distinguishing characteristics of required functionality in the

sense provided herein is that it was stated as functional requirements in the context of engineering.

That is, user requirements are performative, in the sense that they trigger development activities.

Requirements are concerned with several kinds of engineering actions, namely: elicitation,

analysis, specification and validation. These four classes apply to any engineering domain and are

yet identified at the level of the upper ontology for engineering discussed. In fact, elicitation

techniques such as use cases (Bittner & Spence, 2002) can be used in other engineering areas, even

though they were developed as specific to software systems.

A SoftwareRequirementSpecification is a UserRequirementSpecification

that specifies a property that must be exhibited by a software system to solve a problem in the real

world. The differentiation of requirements in different disciplines can be expressed in terms of

OWL class constraints. In the case of SE, such constraint would be the following.

Figure 4 Arrangement of ontology fragments for reusability
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eng:tracesTo only swebok:SoftwareEngineeringArtifact

Where swebok:SoftwareEngineeringArtifact is subsumed by the generic eng:Arti-

fact-EngineeringProduct. Since traces are transitive, any software requirement will finally

trace to a SE artifact.

Usually, two requirement categories are considered: functional and non-functional. The former

can be mapped to UserFunctionalRequirementSpecification. The latter can be defined

by exclusion through a disjoint axiom with the former, and the constrainsRequirement can

be used to make explicit their connections.

Functional requirements are, in many projects, modeled as use cases, which requires a specific

model schema as depicted in Figure 2. Use cases are thus a unit to check the validity of the

software system built, and as such they can be used to automatically check the coverage of test

cases. The mapToUseCase links UserFunctionalRequirementSpecifications to

UseCaseSpecifications, which are subsumed by the former. In this way, inferences on

traces are enabled. Use cases are in turn specified by scenarios, and these scenarios contain

interactions between objects in the conceptual UML model. The following is a simple SWRL

formulation of such coverage checking.

UseCaseSpecification(?uc)

and hasScenario(?uc, ?s)

and contains(?s, ?o)

and hasClass(?o, ?c)

then eng:tracesTo(?uc, ?c)

eng:tracesTo(?uc, ?c)

and test:hasUnitTest(?c, ?t)

then partiallyCovered(?uc)

Even in the case that the class ?c (a specific type of engineering artifact) does not have the same

name or it is split up into several classes, the transitive trace relationships between classes will

ultimately trigger the coverage inference. More detailed rules could be used to test the particular

calls in use case scenarios.

4.2 Software as an artifact

The view of software that needs to be addressed here is actually that of software specification.

There has been a considerable debate on the formal/informal form of such specifications—a

review of the main original issues can be found in Colburn (2000: 129). However, the discussion

here concerns a given specification, assuming it correctly captures the real world entities being

modeled and the right user needs. In addition, software has a dual nature concerning its form of

expression and its form of execution. But since we only deal with the inputs and expected outputs

of software behavior (to be developed yet, functioning software or only specifications), the dis-

cussion is not relevant. From the viewpoint of the coming discussion, we will start from some

definitions on the OpenCyc ontology. Figure 5 provides a fragment of the OpenCyc ontology

expressed in UML. It depicts a selection of concepts in OpenCyc and their relations (predicates)

relevant to our present discussion.

Figure 5 shows that there is a class of objects—oc_ProgramSpecifications—to deter-

mine the expected behavior of oc_ComputerPrograms. The OpenCyc concept oc_Pro-

gramSpecification is defined as ‘[y] not a computer program itself (i.e. lines of code), but an

abstract characterization of how a program should behave. For instance, a sorting program can be

specified by requiring that the program’s output be a list of the same elements as the input such

that no element follows an element that is greater than it.’ Functional specifications are obviously

subsumed in that category. A problem arises with the granularity of what a ‘program’ is con-

sidered. oc_ProgramSpecification instances are not limited to ‘single, discrete programs’,
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thus, the mapping of computer programs (as conceptual works) and specifications is actually

conventional and covers several cases:

1. A specification covering a number of programs (e.g. in the case of a protocol specification).

2. A specification covering a single program.

3. A specification which is only part of a program functionality.

The OpenCyc concept oc_ProgramStepSpecification serves to cover only a part of a

program to deal with case (3) that is not clearly covered in oc_ProgramSpecification.

There is also a relevant distinction that appears in Figure 5 between those computer programs

considered oc_ConceptualWorks and the oc_ComputerCode (source or binary) that realizes

them. In turn, computer code is actually an abstract information structure—an abstract individual

comprising abstract symbols and relations between them, as defined in OpenCyc—that has as

instantiations IBTs, that is, computer file copies containing the computer code. For example, some

given software like the statistical package StatGraphics 7 can be modeled as an instance of

oc_ComputerProgram-CW (a specific kind of oc_ConceptualWork in the form of a com-

puter program). Then, each of the distributions for different platforms can be specified by the

following: ‘the code in which an instance of oc_ComputerProgram-CW is expressed constitutes

an instance of oc_AbstractInformationStructure that can be related to the program it

expresses using the predicate oc_programCode’. In summary, oc_ComputerCode instances

are realizations of oc_ComputerProgram-CW, but we are concerned with the specifications

of the latter, which in turn are instances of oc_ProgramSpecification. Since conceptual

works are not artifacts, and the upper ontology for engineering is expressed in terms of artifacts,

the configuration of a software product as baseline under configuration management can be

considered a special kind of ArtifactType, which is realized in the copies released.

4.3 Metrics and principles on software design

SoftwareEngineeringPrinciples are generic statements on the main guiding criteria for

software development. Modularization is considered one of the key principles of software design,

as acknowledged in the SWEBOK Guide. For the principle to become subject to automation, the

use of concrete metrics is mandatory (Fenton, 1991). For example, Martin’s instability11 and

Figure 5 Software and specifications of software

11 http://www.objectmentor.com/resources/articles/stability.pdf
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abstractness metrics can be used to assess the quality of the design. A possible rule for checking

one of the criteria for the category represented by a software package could be:

SoftwarePackage(?p) and AbstractnessMeasure(?am) and measures(?am, ?p)

and InstabilityMeasure(?im) and measures(?im, ?p)

and value(?am, ?x1) and value(?im, x2)

and swrlb:lessThan(?am, 0.1)

and swrlb:lessThan(?im, 0.1)

then isPotentiallyRigidCategory(?p)

The abstracteness measure is computed as number�of�abstract�classes�in�p
number�of�classes�in�p

and the instability requires

counting dependencies between source code elements. oc_ComputerCode-Source can be used

to trace the dependencies in the source code artifacts for the rule above. Since dependencies are a

particular kind of relationship between computer code instances that has a counterpart at the

model-level in the UML language, they can enter the support system via source code analysis

performed at the level of programming tools such as Netbeans12. The outcome of the evaluation

comes in the form of predicates that specialize indicatorInterpretation, so that they can

be clearly distinguished from factual information.

5 Conclusions and future work

Engineering can be characterized as a tool-intensive activity in which scientific and technical

knowledge are used for the production of useful artifacts. As a consequence, a considerable number

of software tools have been developed to support different aspects of concrete engineering domains.

For example, CAD tools typically help in the design process of mechanical artifacts, while CASE

(computer-aided software engineering) tools help the management of software elements.

Formal ontologies are a way to model domains through formal logics that enable rich and

complex models with inference support. As such, the applications of ontologies to engineering are

diverse and may cover many different aspects of engineering activity, supporting both design and

management. Ontologies have started to be used for the purpose of building engineering tools in

different domains. However, to date, no general, upper level model for engineering activity has

been elaborated. This paper reports on a first attempt in that direction, which can be used as a

point of departure for further elaboration, and as a template for ontologies tied to specific

domains. The benefits of having a common model is that it factors out common characteristics,

enabling reuse of knowledge representations. Reuse is a key element in ontology engineering since

it helps in increasing the quality of models that otherwise could neglect important facets of

commonsense knowledge. Physical things, mereology, topology activities and causality are

examples of typical ontological dimensions that can be found in generic upper ontologies (Batres

et al., 2007). In the domain of engineering, some of these concepts are narrowed in more specific

terms, and others are characteristic (but not exclusive) of engineering, such as artifacts, methods

and models. A general ontology for engineering thus becomes a useful tool as a mechanism to

support reuse. The general engineering ontology described in this paper builds on existing open

commonsense ontologies, by mapping upper concepts to concrete ontology elements that could be

used in applications for reusing these large ontologies.

The ontology described can be used for the development of applications supporting different

aspects of the engineering process, for example, configuration management, modeling tools, etc. The

case studies provided include traceability of requirements and inferred information from indicators,

as examples of potential uses that can be generically embedded in the declarative form of rules.

Organizations managing their processes with ontology-enabled tools would benefit from a flexible

infrastructure prepared for inference and partial automation of processes (Sicilia & Lytras, 2005).

12 http://uml.netbeans.org/
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Future work will progress in two main directions, namely refining common semantics and building

engineering domain specific extension for given applications. Eventually, some of the results of the

latter could be re-factored to a generic version useful for several (or all) of the engineering domains.
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