

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

TESIS DOCTORAL

Improving IT Service Management using an Ontology-Based and Model-
Driven Approach

Autora:

María Cruz Valiente Blázquez

Directores:

Dr. Daniel Rodríguez García
Dra. Cristina Vicente Chicote

Alcalá de Henares, abril de 2011

To my parents, my husband Alfonso and our daughter Natalia

Cheshire Puss,' she began, rather timidly, as she did not at all know whether it

would like the name: however, it only grinned a little wider. `Come, it's pleased

so far,' thought Alice, and she went on. `Would you tell me, please, which way I

ought to go from here?'

`That depends a good deal on where you want to get to,' said the Cat.

`I don't much care where--' said Alice.

`Then it doesn't matter which way you go,' said the Cat.

`--so long as I get somewhere,' Alice added as an explanation.

`Oh, you're sure to do that,' said the Cat, `if you only walk long enough.

Lewis Carroll, Alice's Adventures in Wonderland

(Illustration by Sir John Tenniel)

Resumen

La adopción de marcos de trabajo de mejores prácticas que permiten la integración

de las Tecnologías de la Información (TI) con el negocio, ayuda a las organizaciones a

crear y compartir procesos de gestión de servicios de TI. Sin embargo, las guías y

modelos publicados suelen especificarse en lenguaje natural o con representaciones

gráficas que carecen de la semántica computacional necesaria para poder automatizar su

validación, simulación e incluso su ejecución.

En esta tesis se presenta Onto-ITIL, una propuesta basada en ontologías y en el enfoque

de desarrollo de software dirigido por modelos que captura las mejores prácticas

ofrecidas por ITIL (del inglés Information Technology Infrastructure Library), y

destinada a facilitar la prestación de servicios de TI. El objetivo de Onto-ITIL es ayudar

a los expertos del dominio a modelar e implementar procesos de gestión de servicios de

TI evitando ambigüedades semánticas y contradicciones. La formalización de los

procesos de gestión de servicios de TI en términos de ITIL constituye un primer paso

para cubrir la brecha que se da entre el negocio y las TI.

Para definir las ontologías se ha utilizado OWL (del inglés Web Ontology Language).

Adicionalmente, se ha definido un conjunto de reglas basadas en SWRL (del inglés

Semantic Web Rule Language) que permiten enriquecer la ontología con una serie de

restricciones semánticas y de reglas de inferencia de conocimiento. Por último, la

definición de un conjunto de consultas basadas en SQWRL (del inglés Query-Enhanced

Web Rule Language) permite recuperar conocimiento obtenido con OWL e inferido a

través de las reglas SWRL.

Además de formalizar los procesos de gestión de servicios de TI en base a las buenas

prácticas consideradas por ITIL, Onto-ITIL también permite compartir, reutilizar e

intercambiar las especificaciones de dichos procesos a través de mecanismos

automatizados que proporcionan ciertos marcos de trabajo de comercio electrónico,

como por ejemplo, ebXML.

Mediante la adopción del enfoque MDE (del inglés Model-driven Engineering), se ha

utilizado un DSL (del inglés Domain Specific Language) basado en la ontología Onto-

ITIL que sirve para implementar sistemas de información basados en flujos de trabajo

que dan soporte a los Sistemas de Gestión de Servicios de TI (SGSTI). Los modelos que

se obtienen a partir de este lenguaje de modelado se pueden considerar modelos de alto

nivel que han sido enriquecidos con conocimiento ontológico, y que están definidos

exclusivamente en términos de lógica de negocio, es decir, que no presentan ningún

aspecto arquitectónico o de plataforma de implementación. Con lo cual, de acuerdo con

la arquitectura en cuatro capas propuesta por el OMG (del inglés Object Management

Group), estos modelos se encontrarían a nivel CIM (del inglés Computation

Independent Model).

En resumen, la propuesta presentada en esta tesis permite: (i) formalizar el

conocimiento asociado a los sistemas de gestión de servicios de TI en base a ontologías

que recogen las buenas prácticas consideradas por ITIL; (ii) modelar la semántica de las

actividades que definen los procesos de gestión de servicios de TI en forma de flujos de

trabajo; (iii) generar de manera automática modelos de requisitos de alto nivel para

implementar sistemas de información que se necesitan para dar soporte a dichos

procesos; y (iv) a partir de los modelos anteriores, obtener modelos de más bajo nivel

(llegando incluso al código de las aplicaciones) a través de transformaciones

automáticas de modelos.

La investigación llevada a cabo en esta tesis se ha validado mediante de la

implementación de un caso de estudio real proporcionado por una compañía española

que ofrece servicios de TI.

Abstract

Best practice frameworks, focused on the integration of business and Information

Technology (IT), help organizations create and share effective IT Service Management

(ITSM) processes. However, service management guidelines and models are commonly

specified using natural language or graphical representations, both lacking the

computational semantics needed to enable their automated validation, simulation or

execution.

This thesis proposes Onto-ITIL, an ontological and model-driven approach that captures

the best practices provided by the IT Infrastructure Library (ITIL) framework. Onto-

ITIL aims to help domain experts to model and implement ITSM processes avoiding

semantic ambiguities, uncertainties and contradictions. Formalizing ITSM processes in

terms of ITIL is as a first step towards bridging the current gap between business and

IT.

Onto-ITIL has been defined using the Web Ontology Language (OWL) and has been

enriched with a set of rules defined using the Semantic Web Rule Language (SWRL) to

provide semantic constraints and knowledge inference. The definition of a set of queries

based on the Semantic Query-Enhanced Web Rule Language (SQWRL) enables the

retrieval of knowledge from OWL and inferred by the SWRL rules.

Onto-ITIL not only enables the formal specification of ITSM processes, but also to

share, reuse, and interchange these specifications by automated means using e-business

frameworks such as ebXML.

Adopting a Model-driven Engineering (MDE) approach, a Domain Specific Language

(DSL), based on Onto-ITIL, is used in order to implement workflow-based information

systems that underpin ITSM Systems (ITSMSs). The resulting high-level models

enriched with ontological knowledge are defined just in terms of the business logic,

without any architectural or platform-specific consideration. That is, according to the

OMG's four-layered architecture, the ontology-based workflow models could be placed

at a Computation Independent Model (CIM) level.

In summary, the approach presented in this thesis aims: (i) to formalize the knowledge

associated to ITSMSs in terms of ontologies that gather ITIL best practices; (ii) to

model the semantics of the activities associated to ITSM processes in terms of

workflows; (iii) to automatically generate the high-level requirements models of the

information systems needed to support these processes; and (iv) from the latter, to

obtain lower-level models (and eventually code) by means of automated model

transformations. The proposed approach has been validated using a real case study from

a Spanish IT service provider.

Acknowledgements

When I started to write this section I realized the number of people that one way or

another made it possible to write up and complete this thesis and I would like to thank

them. First and foremost, I would like to thank Alfonso and my parents for their

constant support, understanding and patience, throughout the process of elaborating this

thesis as well as throughout my life in general. To be honest, without them I would not

have been able to finish it (despite the fact that they have no clue what ontology or

metamodel mean), especially towards the final stage of the thesis, in moments of work

frustration. I thank Natalia, my ‘little rascal’, for making my life joyful and showing me

(even though she is only 3 years old) how to value the things that are really important.

Upon reaching the milestone in this phase in my life as a researcher, I think it is best to

only think about the good things and this is why I would like to thank my thesis

advisors, Daniel and Christina, for supervising my thesis and for motivating me to start

this process. Thank you for your collaboration and for your effort.

I also wish to thank the IE Research Unit at the University of Alcalá for welcoming me

into their group and making me feel part of the team. I highly appreciate Rosmary and

Luis for their advice on certain aspects on implementing the thesis. I would especially

like to express all my gratitude to Miguel Ángel Sicilia for the amount of work and time

he has spent on the development and updates on the ontologies presented in this thesis.

I would like to thank María Ángeles Ponce and Emiliano Fernández (CISET), Carlos

Manuel Fernández (AENOR) and Antonio Folgueras (Assistant Manager for itSMF

España - at the time of writing this thesis) for introducing me to ITSM and for all the

training and documentation on ITIL and ISO/IEC 20000.

As to the case study presented in this thesis, my most sincere gratitude, once again, to

Mª Ángeles Ponce (CISET); and also to Diego Pérez (University of Almería) for the

STIC UAL Incident Management Model. Without their help the implementation of the

prototype would not have been possible.

I also want to give special thanks to Beatrice Alzona for all the times she has selflessly

helped me out with my English.

I cannot forget to thank all those who have provided me with helpful feedback and

suggestions in my academic career, especially, Juan Llorens, Jesús Carretero and

Antonio Izquierdo (Department of Informatics at Carlos III University of Madrid), and

Ivan Porres and Marcus Alanen (Department of Information Technologies at Åbo

Akademi University).

Last but not least, I would also like to express all my deep and sincere gratitude to my

friends Susana, Alicia, Mª Carmen, Sara and Ruth. Thank you so much for always being

there, for wanting to share the good moments but for also being by my side during the

bad times I have gone through until actually finishing this thesis. Thank you. I will

never forget you.

I

Contents

1. Introduction .. 1

1.1 Problem Statement ... 1

1.2 Thesis Objectives ... 5

1.3 Research Method .. 8

1.4 Thesis Outline .. 9

2. State of the art .. 11

2.1 Ontologies .. 11

2.2 The Business Process ... 16

2.2.1 Workflow ... 18

2.2.2 Business Process Modeling ... 19

2.2.3 Ontologies for Business Process Modeling ... 25

2.3 The Software Development Process .. 29

2.3.1 Software Process Modeling ... 30

2.3.2 Model-Driven Engineering .. 31

2.3.3 Model-Driven Architecture .. 44

2.3.4 Matching Ontologies and Conceptual Models with Metamodels 45

2.4 IT Service Management ... 48

2.4.1 The Information Technology Infrastructure Library 50

2.4.2 ITSM Processes ... 53

2.4.3 Ontologies for ITSM .. 55

3. Onto-ITIL: An Ontology-based and Model-driven Approach for ITSMSs 59

3.1 Introduction .. 59

3.2 Onto-ITIL Principles .. 60

3.3 The Onto-ITIL Ontology.. 63

3.3.1 The Service Lifecycle .. 65

3.3.2 Specifications ... 65

3.3.3 Applications ... 66

3.3.4 Events .. 67

3.3.5 Roles .. 74

3.3.6 The ITSM Metrics Model .. 76

3.3.7 Service Level Agreements ... 80

3.3.8 The Onto-BPMN Ontology ... 83

II

4. Evaluation .. 89

4.1 Implementation of the Prototype .. 89

4.1.1 Stage 1: Service Portfolio .. 90

4.1.2 Stage 2: ITIL-compliant and Ontology-based IT Service Management 91

4.1.3 Stage 3: Business Process Modeling.. 91

4.1.4 Stage 4: Workflow Model Transformation .. 91

4.2 Case study: Implementation of an Incident Management System 92

4.2.1 The ITIL Incident Management Process .. 92

4.2.2 The Incident Management Metrics Model ... 97

4.2.3 The Incident Management Activity ... 99

4.2.4 XSL Transformation .. 104

4.2.5 Ontology Queries, Rule-based Constraints and Knowledge Inference 108

5. Conclusions and Future Research .. 115

References ... 118

Appendix I. ITSM Ontology Concepts .. 136

Appendix II. Glossary ... 288

III

List of Figures

Figure 2.1 The software development process .. 30

Figure 2.2 Basic MDE principles .. 32

Figure 2.3 Models and systems (adapted from [Bézivin, 2004]) .. 34

Figure 2.4 OMG’s four-layers architecture (adapted from [Bézivin, 2004]) 35

Figure 2.5 Model transformations ... 42

Figure 2.6 MDA and the OMG’s four-layers metamodeling pyramid as depicted in [Vicente-

Chicote & Alonso, 2007] .. 45

Figure 2.7 IT Service Management pyramid as depicted in [ISACA, 2008] 51

Figure 2.8 The ITIL service lifecycle .. 53

Figure 3.1 Onto-ITIL principles .. 61

Figure 3.2 UML class diagram representing an overview of the ITSM model defined by the

Onto-ITIL Ontology .. 64

Figure 3.3 UML class diagram representing the Onto-ITIL event knowledge 69

Figure 3.4 UML class diagram representing the Onto-ITIL IT service knowledge 71

Figure 3.5 UML class diagram representing the Onto-ITIL role knowledge 74

Figure 3.6 UML class diagram representing the Onto-ITIL metrics knowledge 77

Figure 3.7 UML class diagram representing the Onto-ITIL SLA knowledge 81

Figure 3.8 UML class diagram representing the Onto-BPMN Ontology 83

Figure 3.9 UML class diagram representing the Onto-BPMN Ontology (cont.) 84

Figure 3.10 UML class diagram representing the BPMN Metamodel as depicted in [Eclipse -

BPMN Modeler, 2011] ... 86

Figure 4.1 Architecture of Onto-ITIL ... 90

Figure 4.2 The itil:ICTD_IM_Process instance .. 96

Figure 4.3 Workflow representing the Incident Management Business Process 100

Figure 4.4 The itil:ICTD_IM_Activity instance ... 101

Figure 4.5 The itil:ICTD_Pool_IncidentManagement instance .. 102

Figure 4.6 The itil:ICTD_IncidentManagementSystem instance .. 103

Figure 4.7 ITIL Activities Selection ... 104

Figure 4.8 Excerpt of the ICTD_IM_Activity.onto_itil (Eclipse Text Editor) 105

Figure 4.9 Excerpt of the ICTD_IM_Activity.bpmn (Eclipse Text Editor) 106

Figure 4.10 BPMN model of the IM activity (Eclipse Bpmn Diagram Editor) 107

file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483675
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483676
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483677
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483678
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483679
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483680
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483680
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483681
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483682
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483683
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483684
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483684
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483685
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483686
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483687
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483688
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483689
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483690
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483691
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483692
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483692
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483693
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483694
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483695
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483696
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483697
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483698
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483699
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483700
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483701
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483702

IV

V

List of Tables

Table 2.1 Related work about Ontology-based business process modeling 26

Table 2.2 Key differences in ITIL ... 52

Table 2.3 RACI Matrix ... 55

Table 2.4 Related work about Ontologies in association with ITSM .. 55

Table 3.1 Mapping between ebXML constructs and Onto-ITIL constructs 82

Table 4.1 RACI matrix for the Incident Management process ... 94

Table 4.2 Operational metrics for the Incident Management process ... 97

Table 4.3 KPIs for the Incident Management process .. 97

Table 4.4 KPI objectives ... 98

Table 4.5 CSFs for the Incident Management process .. 98

Table 4.6 Evalutation of the KPIs for the Incident Management process in the pilot project 99

Table 4.7 Mapping of Onto-ITIL Activity and BPMN constructs .. 105

file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483703
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483704
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483705
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483706
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483707
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483708
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483709
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483710
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483711
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483712
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483713
file:///C:/Maricruz/Tesis_Alcala/Docs/PhD_Ontologies-and-MDE_2011_04_12.docx%23_Toc290483714

1

Chapter 1

Introduction

In this chapter we identify the problems that we want to solve. Then we describe

motivations and objectives of this work, and the research method. Finally, we outline

the structure of the thesis.

1.1 Problem Statement

Nowadays, IT Service Management (ITSM) is considered a fundamental and

competitive task in organizations. The interest in ITSM has been motivated not only

because of competition amongst companies, but also due to the interest organizations

have in integrating Information Technology (IT) with the business they belong to as a

corporative strategy. The best practices documented in several ITSM frameworks have

motivated many companies to move from a product-oriented organization to a service-

oriented one. A process-based approach has been considered the most efficient and

effective way to achieve this [itSMF, 2008]. An adequate process-based ITSM will

allow the companies: (i) to continuously improve their processes; (ii) to achieve a

significant improvement in perceived quality by customers; and (iii) to improve their IT

strategy.

Information is one of the most important assets for all organizations. Thus, IT services

are decisive for good knowledge management, efficient decision making, and planning

actions for the company [de Pablos et al., 2008].

“Human beings obtain the most of their capacity when they are

completely conscious of their circumstances.” Meditaciones del

Quijote

José Ortega y Gasset (1883-1955), Spanish philosopher

2

IT services are generating a cultural change in organizations since they allow integrating

information systems in the business. IT services are required to evolve and rapidly adapt

to the different companies’ new needs and technologies, even more taking into account

the proliferation of shared IT services and outsourcing. However, the strategic

opportunity that new technologies bring to companies is simultaneously the cause of the

difficulties that arise in their management.

A recognized solution to this problem is to implement an ITSM System (ITSMS) based

on the ISO/IEC 20000:2005 Information technology – Service management standard.

An ITSMS is a collection of interrelated and coordinated rules, principles and activities,

structured in term of processes [Nextel, 2010]. The ISO/IEC 20000 standard [ISO/IEC,

2005a] [ISO/IEC, 2005b] establishes a rule for all of the organizations that offer IT

services, not only to external customers but internal customers as well. Through the

ISO/IEC 20000 standard, the internal and external suppliers for IT services are

challenged to prove that their Service Management processes guarantees the quality

their customers demand. ISO/IEC 20000 consists of two parts, under the general title

‘Information technology — Service Management’:

 Part 1 – Specification [ISO/IEC, 2005a]. This part defines the requirements for

IT service providers to implement an ITSMS in order to deliver managed IT

services of an acceptable quality for their customers.

 Part 2 – Code of Practice [ISO/IEC, 2005b]. This part represents an industry

consensus on quality standards for ITSM processes. These service management

processes deliver the best possible service to meet business needs of customers,

within agreed resource levels (i.e. service that is professional, cost-effective and

with risks which are understood and managed).

IT service providers tend to find many difficulties to implement the ISO/IEC 20000

standard, especially Small and Medium-sized Enterprises (SMEs), which count on

limited resources. However, there exist easier-to-adopt best practices, such as those

defined in the Information Technology Infrastructure Library (ITIL) [ITIL website] or

in the Control Objectives for Information and related Technology (COBIT) [ISACA,

2007].

3

Currently, ITIL is the de facto standard for ITSM which allows integrating the business

with IT by applying a process-oriented method. ITIL offers a detailed description of the

most important processes to be carried out by IT service providers, including

procedures, responsibilities, and task verification lists. Organizations can (wholly or

partially) adopt ITIL, taking from it whatever they find of interest, and adapt it to their

specific circumstances and needs. Since ITIL (especially the version 3) is strongly

aligned with ISO/IEC 20000 [ISO/IEC, 2005a] [ISO/IEC, 2005b], ITIL can help

companies guarantee the recognition of their capacities and can even become a key tool

for ISO/IEC 20000 certification. Although the ISO/IEC 20000 standard does not depend

on any specific business framework, it is based on the concepts and best practices

defined in ITIL, offering a way to explore the guide of best practices.

Meanwhile, COBIT is an IT governance framework and a set of supporting tools that

allows IT service providers to bridge the gap between control requirements, technical

issues, and business risks [ISACA website]. That is, COBIT provides best practices for

the management of IT processes harmonizing practices and standards such as ITIL and

the Project Management Body of Knowledge (PMBOK) [PMI website]. In this vein,

COBIT provides guidance for executive management to govern IT within the enterprise

[ISACA, 2009]. A detailed mapping of ITIL V3 with COBIT 4.1 is documented in

[ISACA, 2008].

As mentioned earlier, the implementation of an ITSMS is a complex task for any

organization. To address it, companies can start using ITIL to manage the IT services

included in their Service Catalog to support their business processes. The Service

Catalog, which is part of the Service Portfolio, comprises the main IT services provided

by a company, individually described. The documents gathering these descriptions must

follow a reference framework for enabling a fluent dialogue between the IT service

provider and its potential and actual customers. However, these documents are

commonly written using natural language or informal notations, frequently leading to

ambiguities, contradictions, and misinterpretations. In addition, most IT service

providers do not know what should be actually measured for each ITSM process in

order to demonstrate its value or to operate in a cycle of continuous

improvement [Steinberg, 2006]. Thus, the definition of metrics that can be used to

measure and monitor the health and state of each ITSM process in order to demonstrate

4

the impacts and effects of ITSM practices is of major importance. Following the

guiding principles of “If you do not measure it, you cannot manage it” [DeMarco,

2009] and “If you do not measure it, you cannot improve it”, without metrics,

organizations cannot monitor the IT services they are trying to manage, and this should

be unacceptable in any business organization [Steinberg, 2006]: any business unit, even

IT, cannot operate without learning how to effectively govern itself.

ITSMS is also closely related to information systems, as business information (and its

automation) is essential for good service management. Information automation changes

the way companies work, affecting its organizational model and business processes,

more and more based on collaboration than on competition. According to their

possibilities (available resources), organizations will sort the tasks involved in their IT

processes and will automate the most crucial ones (i.e., those having a greater impact on

their service improvement). There are several computer tools that allow automating the

tasks or specific processes of a company (e.g., accounting, inventory management,

payrolls, product design, financial simulation, etc.). In general, all these applications

tend to work independently, although in some organizations it is necessary to integrate

some of them [de Pablos et al., 2008]. Organizations can choose either to buy ‘standard’

applications available in the marketplace that meet their generic needs, or develop (or

customize) applications that respond to the company’s specific needs. In this context,

there are commercial Enterprise Application Integration (EAI) platforms (e.g., TIBCO
1

or Websphere
2
), which enable the integration of business information and the generation

of information systems. In the concrete area of ITSM based on ITIL, there exist several

commercial tools that can help with the implementation of an ITSMS. The following

list gathers some of them:

 EasyVista
3
 (Staff&Line)

 FrontRange ITSM Software
4
 (FrontRange Solutions)

 OTRS ITSM
5

1 http://www.tibco.es/
2 http://www-01.ibm.com/software/websphere/
3 http://www.staffandline.es/Front/inicio_3.php
4 http://www.frontrange.com/software/service-management/itsm/
5 http://www.otrs.com/en/products/itsm/

http://www.tibco.es/
http://www-01.ibm.com/software/websphere/

5

 Remedy
6
 (BMC)

 Service Manager software
7
 (HP)

 Service Desk Manager
8
 (CA)

 Tivoli
9
 (IBM)

For an effective implementation of ITSM processes, organizations need to use computer

tools. However, these tools should not be acquired or implemented hastily. Nowadays,

the problem is not the lack of tools, but the lack of an adequate and clear tool selection,

adoption and integration policy. The main reason for these is the lack of precise

knowledge about the actual ITSM processes carried out by each company. Therefore,

the first thing an organization must do is to understand and analyze the maturity of the

processes that manage their different services and the relations among them. This is as

important or even more, that the choice of the computer tools. Furthermore,

organizations need to know which assets are providing value to them, and how.

In Spain, more than 70% of IT service providers do not know the level of maturity of

their ITSM processes [OZONA website]. A formal definition of these ITSM processes

and their analysis can help organizations [OZONA website]: (i) know how their IT

services are; (ii) define a list of deficiencies; and (iii) obtain part of the requirements

that help them select or develop the most appropriate computer tools to support them.

Finally, it is worth noting that the formal definition (conceptual modeling) of ITSM

processes can serve as a base for their later implementation or adoption. This

formalization can help in the analysis of ITSM processes, allowing IT service providers

to establish the priorities when it comes to implement an ITSMS.

1.2 Thesis Objectives

This thesis proposes an Ontology Engineering (OE) and Model-Driven Engineering

(MDE) approach for representing ITSMSs that formalizes the ITSM domain according

6 http://www.bmc.com/products/product-listing/53035210-143801-2527.html
7 https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-

85^12473_4000_100__
8 http://www.ca.com/us/service-desk.aspx
9 http://www-01.ibm.com/software/tivoli/

6

to the ITIL V3 service management model. The proposed approach aims to allow IT

service providers to implement ITSM processes related to an ITSMS, and help them to

understand and manage the associated knowledge to improve the quality of their IT

services. Our ontology-based and model-driven approach includes a basis for business

decision making defining a set of ITSM Key Performance Indicators (KPIs) associated

with ITIL processes. Also, through the tasks associated to the ITSM processes,

companies can control both manual and automated activities with computer tools.

Thus, the main objective of this thesis is to give a formal definition of ITSM best

practices that allow IT service providers to obtain and manage the knowledge associated

to their ITSM processes through an ITIL-based semantic model. This will facilitate the

management and automatic generation of the software specifications associated to the

information systems that support them.

This main objective is composed of the following specific objectives:

O1: To propose and justify representation systems that allow us:

 to formalize the knowledge associated to ITSM best practices based on ITIL,

 to formalize the definition of an ITSM metrics model,

 to formalize the definition of the tasks associated to each ITSM process. The

definition of the process tasks makes up the computer semantics of the

information system that can give it support, and

 to indicate the computer tools (applications) that have already been implemented

or integrated to give support to each ITSM process.

This will lead to the achievement of the following sub-objectives:

o O1.1: Offer higher quality services to customers and users with the agreed

costs (both in the new and the modified services).

o O1.2: Obtain a formal ITSMS model that enables organizations to

understand and analyze the maturity of each of their ITSM processes.

Modeling ITSM processes can offer IT service providers with a perspective

on the organization that expands the current business views, towards more

collaboration between the interested parties [Ould, 1995]. For example, as

7

part of our ITSMS semantic model, the ITSM metrics model measures the

quality and effectiveness of each ITSM process, providing a basis for its analysis

and for business decision making in a well-defined manner. It is worth noting that

the ITIL/ITSM terminology used throughout these work is aligned with the one

adopted by the Spanish Association for Standardization and Certification,

AENOR
10

.

o O1.3: Obtain new knowledge about the ITSM processes offered by the

company (added value).

o O1.4: Assure that the IT services cover customer and user’s needs, reaching

the objectives of satisfaction.

o O1.5: Improve the communication between the staff that takes part of the IT

services and the customers and users of these services.

o O1.6: Increase the effectiveness and the efficiency of the internal processes

associated to each IT service.

O2: To define a metamodel of the DSL that allows us obtaining models of ITSM

process tasks (i.e., workflows).

O3: To process the analysis models obtained from the ITSM process tasks in order to

automatically generate the high-level software requirements of the information systems

supporting the management of IT services.

This will lead to the achievement of the following sub-objectives:

o O3.1: To obtain conceptual models of the information systems that support

the ITSM processes associated with an ITSMS.

o O3.2: From the former, to select or develop the most appropriate computer

tools in order to help organizations improve their competitiveness.

10 http://www.aenor.es/

http://www.aenor.es/

8

1.3 Research Method

This research carried out as part of this thesis has been developed through the

following phases:

1. Approach to the Problem

As stated previously, the current difficulties to deal with ITSM give way in this

research to posing a modeling approach for ITSMSs. The proposed approach aims

to allow IT service provides to adopt ITSM best practices in a formal manner,

independently, and with a common knowledge. It also aims to help them defining

in a formal, automated and flexible way, the requirements of the information

systems needed to automate certain tasks associated to their ITSM processes. For

this purpose, the following steps were taken:

 To identify the existing alternatives for knowledge representation.

 To identify the existing alternatives for representing business information

(namely, business processes).

 To review the related works in the field of knowledge representation and process

modeling for ITSM best practices.

 To integrate the ITSM metrics model presented in [Steinberg, 2006] with the

proposed modeling approach for ITSMSs based on ITIL.

 To review the related works in the field of MDE in order to generate high-level

requirements models of the information systems that support the ITSM

processes associated with an ITSMS.

 To identify the existing alternatives for model transformation.

2. Research Background

A study on the technical state and related tasks is carried out. It is necessary to be

able to understand and define the proposal of this thesis.

9

3. Analysis and Design of the Approach

A formal approach for ITSMSs is proposed following ITIL best practices

complementing it with an ITSM metrics model.

4. Implementation of a Prototype

A prototype is implemented that will allow to validate the approach designed in the

previous point.

5. Evaluation of the Objectives

Making use of the previous prototype, necessary tests are carried out. These tests

will allow checking if and up to what point they abide to the objectives defined in

this thesis.

6. Conclusions

Finally, the conclusions reached are detailed after the evaluation of the objectives

covered through the prototype, and which future tasks that can be carried out are

outlined.

1.4 Thesis Outline

The remaining of this document is structured as follows:

 Chapter 2 overviews the current state-of-the-art, providing basic concepts,

theory and technologies related to ontologies, business process modeling,

software modeling, and ITSM. In addition, it also reviews a number of existing

ontology-based approaches related to the different domains of interest integrated

into the proposed modeling approach for ITSMSs.

 Chapter 3 describes the foundations of Onto-ITIL: the proposed ontology-based

and model-driven approach for ITSMSs based on the ITIL V3 Service

Management Model.

 Chapter 4 details the implementation of the prototype that supports our

modeling approach. It also describes the case study used to validate both the

proposal and the prototype implemented to support it.

10

 Finally, Chapter 5 draws the conclusions of the thesis. The chapter also outlines

some areas for future research.

 In addition to the chapter structure described above, this document also includes

two appendices: one describing the concepts included in the proposed ITSM

Ontology, and the other including a Glossary of Terms.

11

Chapter 2

State of the art

In this chapter we describe the background information and fundamental issues

about ontologies, model-driven software development, business processes, and ITSM,

all related to our research. The complexity associated to performing quality services is

of major importance. The adoption of a process-based ITSM approach has appeared to

be a major challenge for many IT organizations that use it to organize themselves

around technology. Integrating ontologies with a model-driven software development

approach opens a window for the establishment of a systematic method in order to

implement ITSMSs in a straightforward and well-defined manner.

2.1 Ontologies

The term 'ontology' arose from the branch of philosophy known as metaphysics,

which deals with the nature of what exists (i.e., the real-world). The traditional goal of

ontological inquiry is to divide the real-world into concepts (terms) in order to discover

those fundamental categories or kinds that define the objects of the real-world. There

are vast human-designed and human-engineered systems (e.g., manufacturing plants,

businesses, military bases, universities, etc.), in which ontological inquiry plays a key

role. In these human-created systems, ontological inquiry is primarily motivated by the

need to understand, design, engineer, and manage such systems effectively.

Consequently, it is useful to adapt the traditional techniques of ontological inquiry in

the natural sciences to these domains as well [KBSI, 1994]. In this context,

ontologies are explicit representations of a shared conceptualization [Gruber,

“Innovation is created by an unprecedented disposition of old

things.”

Jacques Monod (1910-1976), French biochemist

12

1995] [Uschold & Grüninger, 1996]. The term ‘shared’ indicates that an ontology

captures some consensual knowledge, and the term ‘conceptualization’ means an

abstract, simplified view of a shared domain of discourse (i.e., the real-world) [Gašević

et al., 2006]. There may be several conceptualizations of the same domain and therefore

several ontologies [Olivé, 2007].

More formally, an ontology defines the vocabulary of a problem domain and a set of

constraints (axioms or rules) on how terms can be combined to model specific domains.

A ontology is typically structured as a set of concept definitions and relations between

them. Ontologies are machine-processable models that provide the semantic context,

enabling natural language processing, reasoning capabilities, domain enrichment,

domain validation, etc.

Ontology Engineering (OE) is sometimes seen as the next silver bullet in knowledge

modeling, aiming at avoiding conceptual ambiguities, advocating reuse and

standardization, and serving as building blocks for more complex automated-reasoning

systems [Chandrasekaran et al., 1999] [Gruber, 1991]. OE has shown to be useful

for [KBSI, 1994]: (i) consensus building; (ii) object-oriented design and programming;

(iii) component-based programming; (iv) user interface design; (v) enterprise

information modeling; (vi) business process reengineering; and (vii) conceptual schema

design. In addition, OE provides several benefits to organizations [KBSI, 1994]:

7. Enhanced understanding of a domain. The insights of ontological analysis are

useful for: (i) problem identification (diagnosis); (ii) identification of problem

causes (causal analysis); (iii) identification of alternative solutions (discovery

and design); (iv) consensus and team building; and (v) knowledge sharing and

reuse.

8. Business-IT alignment. The ontologies that result at the end of an ontology

development effort can be used for: (i) information systems development, as

ontologies provide a blueprint for developing more intelligent and integrated

information systems; (ii) system development, as ontologies can be used as

reference models for planning, coordinating, and monitoring complex

product/process development activities; (iii) business process reengineering, as

13

ontologies provide clues to identify focus areas for organizational restructuring

and they suggest potential high-impact transition paths for restructuring.

According to the level of generality, the following types of ontology are suggested in

[Guarino, 1998]:

 High-level (upper) ontologies. This kind of ontologies describes very general

concepts like space, time, matter, object, event, action, etc., which are

independent of a particular problem or domain.

 Domain ontologies. This kind of ontologies describes the vocabulary related to a

generic domain (e.g., ITSM or business processes), by specializing the terms

introduced in the top-level ontologies.

 Task ontologies. This kind of ontologies describes a generic task or activity

(e.g., monitoring or measuring), by specializing the terms introduced in the top-

level ontologies.

 Application ontologies. This kind of ontologies describes concepts depending on

both a particular domain and task, which are often specializations of both related

ontologies. These concepts often correspond to roles played by domain entities

while performing a certain activity.

Since the inception of the Semantic Web, in which ontologies are the principal resource

to integrate and deal with online information, a new set of standards have been

proposed. The Web Ontology Language (OWL) is one of such standards that belong to a

family of knowledge representation languages prepared for the Semantic Web (although

this language can be adopted in other domains, as we propose in this thesis). OWL has

reached the status of World Wide Web Consortium (W3C) recommendation. From a

technical point of view, OWL extends the Resource Description Framework (RDF) and

RDF Schema (RDF-S), allowing us to integrate a variety of applications using the

Extensible Markup Language (XML) as interchange syntax. Therefore, due to its RDF

basis, OWL ontologies can be associated to any other form of information expressed on

the Semantic Web, and it allows the integration of the resulting specifications with a

variety of e-business frameworks (e.g., the electronic business using

14

XML (ebXML
11

) [OASIS, 2001]) and business modeling languages (e.g., Business

Process Model and Notation (BPMN) [OMG, 2010a], both using the XML as

interchange syntax in order to match organizations with the same business processes.

An e-business framework is a standard for e-business that uses a data format to define

data structures and data elements in a business context [Nurmilaakso, 2008]. The main

objective of e-business frameworks is to standardize the exchange of electronic business

data.

The OWL Description Logics (OWL DL) [Baader et al., 2003] is a sublanguage of

OWL. OWL DL is a family of logics for concept definitions and it is used to describe

domain knowledge. OWL DL enables concept specification by rich and precise logical

definitions [Baader et al., 2003]. One of the key capabilities of OWL DL is its ability to

define all these classes in terms of necessary and sufficient conditions. New concepts

can be defined by specifying property restrictions on existing concepts. Then, an

inference engine can execute the ontology and compute the new inferred ontology class

hierarchy, remarking inconsistent classes (e.g., a reasoner can test whether one class is

subclass of another class or not). It is important to notice that reasoning in OWL DL is

based on the Open World Assumption (OWA). This means that “(negative) conclusions

drawn from a knowledge base must be based on information explicitly present in the

knowledge base” [Knorr et al., 2011]. That is, it cannot be assumed that a piece of

knowledge does not exist until it is explicitly stated in the knowledge base. In the

Closed World Assumption (CWA), all non-provable expressions are assumed to be

false. Because of the absence of a piece of knowledge should not be taken as an

indication that the piece of knowledge is false, the decision to rely on the OWA appears

to be natural in the World Wide Web domain. However, when an ontology-based

reasoning is done in conjunction with data stored in a database, the CWA seems to be

the better assumption. In a database, the data are usually considered to be complete in

such a way that statements that are not present in the database should be taken as false.

In some domains, the combination of open and closed world assumption is required. For

example, in a clinical domain, OWA is needed in radiology and laboratory data (e.g.,

unless a tab test asserts a negative finding, we cannot make arbitrary assumptions about

the results of the test). In this case, we can only be certain that some patient does not

11 http://www.ebxml.org/

http://www.ebxml.org/

15

have a specific kind of cancer if the corresponding test has a negative result [Knorr et

al., 2011]. However, CWA should be used with data about medical treatment to infer

that a patient is not on a medication unless otherwise stated. Similar situations occur in

other domains that have been explored in [Grimm & Hitzler, 2008].

OWL ontologies are composed of: (i) classes, as sets of individuals, (ii) individuals, as

instances of classes (i.e., objects of the domain), and (iii) properties as binary relations

between individuals. It is possible to specify property domains, cardinality ranges, and

reasoning on ontologies. Also, some reasoners (e.g., Pellet
12

) can be used to infer

additional facts about the knowledge that has been explicitly stated in OWL ontologies.

Reasoning in OWL can be performed at a class, property, or instance level, and

reasoning examples include class membership, equivalence of classes, consistency,

classification of the information, obtaining additional properties using transitiveness or

equivalence, etc.

A related specification, the Semantic Web Rule Language (SWRL) [Horrocks et al.,

2004], is based on RuleML
13

. The SWRL extends the OWL, providing logic-based rules

and, in consequence, providing more expressiveness. Rules together with stored facts

(knowledge base) are executed as inputs by the rule engine, which infers new facts as an

output. In addition, if the rule engine infers new knowledge using forward chaining, this

knowledge can be used for further inference. A combination of rules and ontologies

would clearly yield a combination of the OWA and the CWA. However, rules are

usually limited in their applicability to the different objects explicitly appearing in the

knowledge base [Knorr et al., 2011].

Finally, the Semantic Query-Enhanced Web Rule Language (SQWRL) is a query

language that enables to extract information from OWL ontologies [O'Connor & Das,

2009]. SQWRL is based on the SWRL and it uses the SWRL's semantic foundations as

its formal support. SQWRL includes a set of operators that allow the definition of

negation as failure, disjunction, counting, and aggregation functionality in the

construction of retrieval specification.

12 http://clarkparsia.com/pellet/
13 http://ruleml.org/

http://clarkparsia.com/pellet/
http://ruleml.org/

16

Ontology Development Environments

Graphical ontology editors allow us to build formal ontologies. Graphical ontology

development environments integrate an ontology editor with other tools and usually

support multiple ontology representation languages. They are aimed at providing

support for the whole ontology development process and for the subsequent use of the

ontology [Corcho et al., 2002].

The open source Protégé
14

 tool is an example of a widespread ontology development

environment. The Protégé-OWL editor is an extension of Protégé that provides support

to OWL. The Protégé-OWL editor enables users to load and save OWL and RDF(S)

ontologies, edit and visualize classes, properties, taxonomies and several restrictions, as

well as class instances (i.e., the actual data in the knowledge base). It also includes the

SWRLTab which is an extension for editing and executing SWRL rules in conjunction

with the Jess
15

 rule engine.

2.2 The Business Process

The Compact Oxford English Dictionary defines process as “a series of actions or

steps towards achieving a particular end.” In a business context, a process is the way

for an organization “to organize work and resources (people, equipment, information,

and so forth) to accomplish aims” [Sharp & McDermott, 2001] or the way for an

organization “to achieve its business objectives” [Ould, 1995]. Different definitions

about what is a business process are provided by several authors, although they are

variations of the same issues. A business process is defined in [Hammer & Champy,

1993] as “a set of activities that, together, produce a result of value to the customer.”

Another definition is found in [Sharp & McDermott, 2001], where a business process is

defined as “a collection of interrelated work tasks, initiated in response to an event,

achieving a specific result for the customer and other stakeholders of the process.” The

event represents a specific request for the output generated by the process. The customer

of the process is the recipient or beneficiary of the output produced by the business

14 http://protege.stanford.edu/
15 http://www.jessrules.com/

17

process. The customer does not just refer to a customer purchasing goods or services

but it may be a person, and organization, or even a broad marketplace. The customer of

the process may be internal to the organization (e.g., the department that receives a

newly hired employee). The flow of information and control of a business process may

be arranged with a workflow. Develop Product, Hire Employee and Resolve Incident are

examples of business processes. In [Marshall, 2000], a business process is “a set of

tasks arranged to form workflow structures which define how an organization achieves

its purpose.”

Jacobson et al. [1995] provide another definition: “[...] a business process is the set of

internal activities performed to serve a customer. The purpose of each business process

is to offer each customer the right product or service (i.e., the right deliverable), with a

high degree of performance measured against cost, longevity, service and quality.”

Again, the term customer should be taken in a broad sense.

The Workflow Management Coalition (WfMC) established in August 1993 is a non-

profit international body for the development and promotion of workflow standards

(including a workflow reference model). The WfMC defines a business process as “a

set of one or more linked procedures or activities which collectively realize a business

objective or policy goal, normally within the context of an organizational structure

defining functional roles and relationships. [...] a business process may consist of

automated activities, capable of workflow management, and/or manual activities, which

lie outside the scope of workflow management” [WfMC, 1999].

In short, we can define a business process as a way to organize work and resources

which enables to achieve the aims through a set of activities that will be performed in

certain order (i.e., workflow representation). The workflow of an actual process defines

What (process’s purpose), How (activities), Who (resources) and When (activities’

order).

On the other hand, Ould [1995] categorizes processes into three groups:

 Core processes. Processes that are concerned with addressing external requests

from an organization. Core processes directly add value in a way perceived by

the customer of the business.

18

 Support processes. Processes that concentrate on satisfying internal customers.

Support processes might add value to the customers indirectly by supporting a

core business process, or they might add value directly to the business by

providing a suitable working environment.

 Management processes. Processes that manage both core and support processes,

or manage planning at the business level.

The idea of core processes is to enhance customer satisfaction; the idea of support

processes is to enhance the organization efficiency; and the idea of management

processes is to enhance the organization structure [Mili et al., 2010].

2.2.1 Workflow

A workflow can be defined as “the automation of a business process, in whole or

part, during which documents, information or tasks are passed from one participant to

another for action, according to a set of procedural rules” [WfMC, 1999]. Workflow

models can help defining the information systems needed to support the business

[Eriksson & Penker, 2000].

Eshuis and Wieringa [2001] define a workflow model as a specification of an ordering

on activities performed in an organization. Sharp and McDermott [2001] state that a

workflow represents the flow of information and control in a business process. The

workflow model depicts the three Rs, that is: (i) Roles: actors or process performers

who participate in the process (that is, the resources); (ii) Responsibilities: individual

tasks that each resource is responsible for; and (iii) Routes: flows of control that connect

the tasks together and, therefore, define the path that each individual work item will take

through the process.

As every model, a workflow model is a simplified representation of the actual

workflow. The following subsection briefly reviews some of the current approaches to

business modeling.

19

2.2.2 Business Process Modeling

Different modeling techniques have been used for years to assess and improve

business processes [Recker et al., 2009] [Mili et al., 2010]. Business process models

provide a simplified view or description of the business structure and capture the

business core functions [Eriksson & Penker, 2000]. A business process model defines

how work is to be done. Furthermore, business models provide a suitable

communication means for all the stakeholders involved in the business process, helping

them to detect and incorporate innovations and improvements. Since information

systems are aimed at supporting the business, their development may be greatly

improved if an appropriate business modeling support is provided.

Business models do not necessarily include any detail about software systems.

However, when a software system is designed to automate (part of) the business

process, its requirements can be derived from (part of) the business model. That is, the

requirements of the information systems needed to support the business can be derived

from (part of) the business model [Kleppe et al., 2003]. Just as Kent [2002] points out,

if we have not defined the process within which the artifacts of a particular project are

intended to be used, it will be difficult to identify them. Therefore, we believe that

success in software system development is difficult to obtain without appropriately

supporting the business process (or processes) it will be integrated in.

According to Ould [1995], Business Process Modeling (BPM) (also known as Business

Process Management) is also useful for three basic purposes:

1. To describe a business process. A descriptive business process model acts as a

work instruction to people in the organization. A descriptive business process

model enables us:

 to define a business process (“this is how we shall together handle

customer complaints”),

 to communicate it to others (“this is how your work contributes to the IT

department's goals”),

20

 to share it across a group of people (“so, this is how we do things round

here”), and

 to negotiate around it (“if you could do this, my life would be made

much easier, in return I can...”).

2. To analyze a business process. The properties of a business process model can

be explored for further analysis. Such analysis is a common precursor to

improving the organization by:

 changing the ordering of activities,

 changing responsibilities for activities or decisions,

 changing scheduling mechanisms,

 increasing or decreasing the amount of parallel activity,

 removing or adding buffers or stores between steps in a business

process,

 restructuring functions to align them better with the business process,

 etc.

3. To enact a process. Given a data model, it is possible to store it in a database

and automate it to generate forms and reports that the organization can use to

add, modify or present data. That is, the data model can be 'executed'. In the

same way, a computer system can receive a business process model and enact it

that is, run the model, supporting the agents that participate in the business

process, handling their agendas, supporting their interactions and, perhaps,

playing its own part in the process. These enactment systems require a business

process model which 'meaning' is sufficiently well defined as to allow them to

enact the process without further human intervention to define it.

The next motivations for choosing BPM are given in [Havey, 2005]:

 Formalize existing process and identify needed improvements. Adopting BPM

forces a business to think about and formalize its understanding of current

business processes. This may help organizations identify certain improvements,

21

such as the removal of certain steps, the automation of others, or the

reengineering of (part of) a business process.

 Facilitate automated, efficient process flow. Given that a process spans multiple

activities, it is better when the time spent between them is significantly reduced.

When BPM software drives the process flow, downtime between activities is

almost zero, unless the software itself is down. BPM supports process

parallelism, so that independent sequences of work can be performed

concurrently in isolation of each other, with their results merged and

synchronized later in the flow. A process controlled by phone calls or e-mails,

for example, is bound to be significantly slower and prone to getting lost or

stuck.

 Increase productivity and decrease head count. Recent BPM case studies point

out that it is possible to get work done faster with fewer people. For example, a

financial service department was able to reduce staff while decreasing

processing time and increasing customer satisfaction [Plesums, 2002].

 Allow people to solve hard problems. Although BPM is often about removing or

decreasing human participation in a business process, one of its benefits is its

flexibility to use people to help fix problems.

 Simplify regulations and compliance issues. BPM helps business build auditable

business processes that help organizations comply with several regulatory

requirements. For example, in the IT sector, the implementation of the

ISO/IEC 20000 standard [ISO/IEC, 2005a] [ISO/IEC, 2005b] has forced IT

service providers to build new processes (or to improve existing ones) in order

to manage the services they deliver to their customers.

There are several modeling languages that can be used to describe business processes.

An up-to-date review of business process modeling languages can be found in [Mili et

al., 2010]. According to the authors, business process modeling languages are classified

in the next groups:

 Traditional process modeling languages. Languages that mostly come from the

Management Information System (MIS) tradition of Information Engineering

22

(IE) and from work on Business Process Engineering (BPE). The most known

languages that fall in this category are Petri nets [Silva, 1985] [Jensen, 1996],

IDEF
16

, Event-driven Process Chain (EPC) [Scheer, 2000] and Resource Event

Agent (REA) [McCarthy, 1982].

 Object-oriented languages. Languages that introduce a single abstraction (i.e.,

the object) which encapsulates both the static and dynamic views that

characterize the analysis and design of information systems. The connection

between the structure and the behavior of a system is also more natural in an

object-oriented solution, where the notion of change of state is central [Pastor &

Molina, 2007]. The most known language that falls in this category is the

Unified Modeling Language (UML) [OMG, 2010c].

 Dynamic process modeling languages. Languages that are focused on the

dynamic view of business processes. In terms of usage, they cover the full

spectrum, from describing business processes for human consumption to

enacting/executing business processes. All the dynamic process modeling

languages emphasize a serialization format for model interchange, typically

XML [Mili et al., 2010]. The most known languages that fall in this category are

Business Process Model and Notation (BPMN) [OMG, 2010a] and the Web

Services Business Process Execution Language (WS-BPEL) [Jordan &

Evdemon, 2007] [OMG, 2010a].

 Process integration languages. Languages that are focused on the interactions

between partners within the context of multientity business processes, as for

example, within the context of business-to-business (B2B) commerce. For

electronic interorganizational commerce to take place, the business partners

need to have a shared understanding of the business messages and documents

that need to be exchanged, the sequence of exchanges, and the expected results

from each of the partners [Mili et al., 2010]. These languages typically focus on

integration mechanisms in terms of abstract, technology-independent,

programming interfaces and data exchange formats. Languages in this category

may also capture different semantics levels of the underlying processes [Mili et

16 http://www.idef.com/

23

al., 2010]. The best-known languages that fall in this category are the electronic

business using XML (ebXML) [OASIS, 2001] and RosettaNet
17

. The ebXML

framework is an example of an e-business framework that has been standardized

by means of the XML format. The vision of ebXML is to reuse predefined

business process in such a way that organizations of any size and in any

geographical location can meet and do electronic business with each other

through the exchange of XML-based messages, where e-mail is used as the

primary communication tool for collaboration. To do this effectively, ebXML

provides an infrastructure for data communication interoperability, a semantic

framework for commercial interoperability, and a mechanism that allows

enterprises to find, establish a relationship, and conduct business with each

other [OASIS, 2001]. In addition, ebXML provides a shared repository where

businesses can discover each other’s business offering by means of partner

profile information, a process for establishing an agreement to do business, and

a shared repository for company profiles, business process specifications, and

relevant business messages [OASIS, 2001].

BPMN

Nowadays, OMG’s Business Process Model and Notation (BPMN) is considered

the de facto standard notation for business processes modeling, and it is possible to find

several workflow management systems described using this notation. BPMN represents

many years of effort by the Business Process Management Initiative (BPMI
18

) Working

Group. The OMG has brought forth expertise and experience with many existing

notations (e.g., EPCs, UML activity diagrams, UML EDOC business processes, IDEF,

RosettaNet, and ebXML, among others) and has sought to consolidate the best ideas

from these divergent notations into a single standard notation in terms of BPMN.

Therefore, BPMN represents the amalgamation of best practices within the business

modeling community to define the notation and semantics of collaboration, process, and

choreography diagrams. The intent of BPMN is to standardize a business process model

17 http://www.rosettanet.org/
18 http://www.bpmi.org/

http://www.bpmi.org/

24

and notation in the face of many different modeling notations and viewpoints. Doing so,

BPMN provides a simple means of communicating process information to other

business users, process developers, customers, and suppliers [OMG, 2010a].

BPMN provides businesses with the capability of understanding their internal

procedures in a graphical notation, and give organizations the ability to communicate

these procedures in a standard manner. Furthermore, the graphical notation facilitates

the understanding of the performance collaborations and business transactions between

the organizations. This ensures that businesses will understand themselves and the

participants in their business [OMG/BPMI-BPMN website]. The primary goal of

BPMN is to provide a notation readily understandable by all business users,

including [OMG, 2010a]: (i) business analysts, who create the initial draft of the

processes; (ii) technical developers, responsible for implementing the information

systems aimed at supporting those processes; and (iii) business people, who manage and

monitor those processes. Thus, BPMN helps bridging the gap between the business

process design and their implementation. Another goal of BPMN is to ensure that XML

languages, designed for the execution of business processes (e.g., WS-BPEL) can be

visualized with a business-oriented notation.

BPMN is provided with an internal model, which enables the generation of WS-BPEL.

BPMN defines a Business Process Diagram (BPD), which is based on a flowcharting

technique, tailored for creating graphical models of business process operations. A

Business Process Model, then, is a network of graphical objects, which are activities

(i.e., tasks) and the control flows that define their execution order.

The lack of a standard metamodel associated to the BPMN graphical notation, has

hindered the shared integration of formal BPMN models into different model-driven

approaches. For example, formal model-to-model (M2M) transformations require that

both the source and the target models are defined in terms of formal metamodels, since

they are defined as mappings between the concepts included in both metamodels. To

overcome this limitation, the OMG has adopted a specification of BPMN that includes a

formal metamodel, which is currently in the finalization phase (at the time writing this

thesis, BPMN 2.0 is in the beta phase). Also, the OMG has recently released the first

version of the Business Process Definition Metamodel (BPDM) [OMG, 2008]. BPDM

25

defines the abstract syntax (metamodel) of a modeling language, which associated

concrete syntax is BPMN. However, the BPDM specification has not been yet

extensively proved in real-world projects and, as a consequence, it is liable to change in

the near future or even to fall into oblivion in favor of the BPMN metamodel. The last

survey by BPTrends regarding the ‘State of Business Process Management 2010’ [Wolf

& Harmon, 2010], reflects that, in addition to general standards such as ISO 9000 [ISO,

2005a] and the Capability Maturity Model Integration (CMMI) [CMMI, 2009],

organizations are more interested in the adoption of BPMN (51%) and UML (24%) as

notations for business process management/modeling. On the other hand, BPDM has

very little or no interest to organizations and, as a consequence, BPDM support has

been reduced since 2005 (from 10% to 7%). It is worth noting that WS-BPEL (the

standard approach for moving from a process description to code) has hardly gained any

additional support since 2005, while BPMN, which is sometimes considered a way of

preparing to use WS-BPEL, has become very popular. The lack interest in WS-BPEL

could be a result of the fact that this standard is incomplete and it cannot handle

workflow problems appropriately, while nearly all process modeling vendors have

adopted BPMN, which works well for analyzing and designing either business process

models or software process automation designs [Wolf & Harmon, 2010]. The BPTrends

BPM 2010 Market Survey report [Wolf & Harmon, 2010] summarizes information

provided by 264 respondents who participated in BPTrends survey in the fall of 2009.

The report analyzes the responses and compares them with the responses from the two

previous BPTrends surveys conducted in 2007 and 2005, respectively. In all cases, the

respondents represent a broad cross section of industries from around the world.

2.2.3 Ontologies for Business Process Modeling

The research efforts related to the definition of business processes in terms of ontologies

have been summarized in Table 2.1. For example, the REA enterprise ontology [Geerts

& McCarthy, 1999] [Geerts & McCarthy, 2000] is an evolution of the REA

framework [McCarthy, 1982] in a shared data environment. In other words, the

ontology is about understanding organizations by identifying operational-level resource

categories, events and agents that form a basic ontology. The aim of the REA ontology

26

is to provide an expressive language that allows users to capture and share enterprise

knowledge [Sedbrook & Newmark, 2008]. The REA ontology defines the value chain

as a set of business processes through which resources flow. This assumes that customer

value is added to the resources within each business process. The value chain is

intended to show total value and consists of value activities and margin. Value activities

are the physical and technological activities performed by an organization [Dunn et al.,

2005]. The value chain level of the REA ontology is constructed based on two concepts:

duality and stockflow. Duality is an association between two or more events that

coordinate an exchange of resources. Economic events represent either an increment or

decrement in the value of economic resources. Stockflow is defined as the inflow or

outflow of a resource. Stockflow relationships exist between events and resources. The

REA ontology can provide a basis for service systems ontology, as it represents value

transfer appropriately and has the potential of accommodating the characteristics of

services. In this vein, Sicilia and Mora [2010] propose a REA enterprise ontology for

service systems by means of extensions or refinements of the REA ontology[Sicilia &

Mora, 2010].

Walter and Ebert [2009] propose the Business Entities Domain-Specific Language

(BEDSL). BEDSL is a Domain-Specific Language (DSL) aimed at business entity

Table 2.1 Related work about Ontology-based business process modeling

Author and Year Feature

[Abramowicz et al., 2007] sBPMN ontology

[Berztiss, 1999] Ontological approach to business modeling

[Belhajjame & Brambilla, 2009]
Discovery of business processes by means of abstract

business processes

[Born et al., 2007]
Semantic annotation in business process modeling based on

sBPMN ontology for supporting modeling tools integration

[Di Francescomarino et al., 2011]
Semantic annotation in business process modeling based on

a proposed BPMN ontology

[Geerts & McCarthy, 1999]

[Geerts & McCarthy, 2000]
REA enterprise ontology

[Green et al., 2005] Ontological evaluation of ebXML BPSS

[Joukhadar & Al-Maghout, 2008] Ontological approach to business modeling

[Prieto & Lozano-Tello, 2009] Ontological approach to workflow modeling

[Sicilia & Mora, 2010] REA enterprise ontology for service systems

[Shangguan et al., 2007]
Ontology-based business process modeling using eTOM

and ITIL

[Thomas & Fellmann, 2009] Semantic annotation in business process modeling

[Walter & Ebert, 2009] Integrated metamodel of BEDSL+OWL

27

modeling. BEDSL is platform independent, focusing on representing business objects,

like entities, their attributes and relationships. Since ontologies support the definition of

constraints, rules and semantics, BEDSL is enriched by the integration with the

ontology language OWL [Smith et al., 2004].

For semantic annotations in business process modeling, Thomas and Fellmann [2009]

and Di Francescomarino et al. [2011] propose extensions of process modeling

languages, such as BPMN [OMG, 2010a], using concepts of a formal ontology. The

semantic process modeling proposed in [Thomas & Fellmann, 2009] uses the Suggested

Upper Merged Ontology (SUMO) [Niles & Pease, 2001] for the ontology construction

and OWL DL as the ontology language. The semantic annotation consists of connecting

the process models and the model elements with other elements in the same ontology.

The proposed information model is language independent and it is possible to use it for

different modeling languages, although specific mapping and extensions should be

defined. In [Di Francescomarino et al., 2011], the authors propose a framework for the

collaborative specification of semantically annotated business processes. The proposed

framework is based on the notion of a shared workspace aimed at obtaining annotated

BPDs specified using BPMN, where each BPD element is considered as an instantiation

of an element specified in their BPMN ontology [DKM website].

In the same context, Born et al. [2007] proposes an approach for integrating semantics

in modeling tools in order to support the graphical modeling of business processes with

information derived from domain ontologies. For this purpose, the authors propose the

use of an extended BPMN ontology (Semantic Business Process Modeling Notation –

sBPMN –) [Abramowicz et al., 2007] to augment and annotate business process models.

The sBPMN ontology adds meaning to each of the process elements and make then

machine-processable. The proposed ontology also allows reasoning on the process

description. The sBPMN ontology was created within the SUPER project
19

 .

Prieto and Lozano-Tello [2009] propose a workflow model based on ontologies to

represent management processes defined in terms of workflows. The authors remark

that the application of ontologies in this field can provide several advantages such as

exchange of tasks and workflow model reuse.

19 http://www.ip-super.org/

http://www.ip-super.org/

28

Another approach is presented in [Shangguan et al., 2007]. In this case, they use

ontologies to combine the Enhanced Telecom Operations Map (eTOM) and ITIL

processes to analyze composite business processes. ITIL is used to improve the

soundness and robustness of the eTOM-based business processes. This approach is

focused on the application of the eTOM process framework for business process

modeling for Telecommunication service providers.

Belhajjame and Brambilla [2009] use ontologies to describe actual business processes in

terms of abstract business processes. This approach is aimed at easing business process

discovery in order to increase their reuse and, therefore, the overall design productivity.

The authors model a business process by means of a workflow model specified using

BPMN. They also use the terminology defined by WfMC [WfMC, 1999] and BPMI,

and the concepts specified by BPDM [OMG, 2008].

The approaches presented in [Berztiss, 1999] and [Joukhadar & Al-Maghout, 2008]

share the idea of adopting an ontological approach for the conceptualization of a

business domain. Bertziss [1999] builds a discussion around a flexible generic domain

model that can serve all enterprises performing similar functions. According to Berztiss,

domain modeling can provide a general framework (i.e., the ontology) that then can be

adapted to the specialized needs of individual enterprises. In [Joukhadar & Al-Maghout,

2008], the authors present a cost- and time-effective multilingual solution that improves

agility in business application by enabling the domain expert to specify business rules

directly in natural language. Different natural languages are supported thanks to the

adopting of a novel approach to natural business rules understanding, based on the

business models and enriched metadata provided by Elixir MDA Framework
20

. In order

to understand a sentence written in natural language, it is necessary to count on a real-

world model (i.e., the ontology) that represents the particular context in which the

sentence is going to be evaluated.

In another line of research, Green et al. [2005] show the potential utility of the Bunge-

Wand-Weber (BWW) [Wand & Weber, 2003] representation model to evaluate business

process specifications for enterprise interoperability. The BWW representation model is

a set of ontological constructs used to describe the real-world that allows users to

20 http://www.el-ixir.com/en/index.php

http://www.el-ixir.com/en/index.php

29

represent a conceptual model of a specific information system domain. To validate their

approach, they map the BWW representation model constructs to the ebXML BPSS

constructs [UN/CEFACT and OASIS, 2001].

2.3 The Software Development Process

Sommerville defines the Software Development Process (SDP) or simply software

process as “the set of activities and associated results that produce a software

product” [Sommerville, 2010]. The goal of this set of activities is the development or

evolution of software, that is, a software process produces software. According

to [Raistrick et al., 2004], the software development process is “the means by which we

characterize and structure the practice of software production.” On the other hand,

Humphrey defines the software process as “the set of tools, methods, and practices we

use to produce a software product” [Humphrey, 1989]. In this respect, the software

process must consider the relationships of all required tasks, the generated artifacts, the

technologies, tools and methods used, and the skill training, and motivation of the

people involved in the project.

The application of the software process to the development domain (i.e., instantiation or

enaction of the software process) is usually called the ‘process instance’ or a ‘software

development project’ [Graham et al., 1997].

There are different types of software processes, but all of them produce or modify

tangible ‘things’, such as documentation, design artifacts, source code, tests suites, etc.

The execution of a software process produces two kinds of artifacts: a) Internal results;

and b) Deliverables (i.e., results delivered to the customers).

Software processes are defined in order to improve the way the work is done. If we

think about the software development process in an orderly manner, it must be possible

to anticipate problems and to devise ways either to prevent or to resolve them.

According to [Humphrey, 1989], some of the major software process issues concern

quality, product technology, requirements, instability, and complexity. Therefore, a

software process must define the problem in such a way that it is easy to understand and

30

to design a solution. Thus, as shown in Figure 2.1, the software system is the result of

transforming the user’s requirements into code.

The activities associated to a software process are mostly carried out by software

engineers. According to Sommerville [2010], there are four fundamental process

activities that are common to all software processes:

 Software specification. The software functionality and the constraints on its

operation are defined.

 Software development. The software meeting the specification is produced.

 Software validation. The software is validated to ensure that it does what the

customer wants.

 Software evolution. The software must evolve to meet changing customer needs.

These generic activities may be arranged in different ways and may be described at

different levels of detail for different types of software systems. For each project, a

different development process can be selected, depending on the type of the system to

be developed. The use of an inappropriate software process may lead to reduce software

quality and usefulness and to increase its development costs.

2.3.1 Software Process Modeling

A software process model is “a simplified description of a software process that

presents one view of that process” [Sommerville, 2010]. That is, a model of a software

process (also known as process definition) is a simplified representation of an actual

SDP. Although a model is a simplification (abstraction) this is one of its main

Figure 2.1 The software development process

31

advantages: a model of a SDP should be easy to understand and follow by all the

developers involved in a given project.

Humphrey [1989] defines the software process model as “one specific embodiment of

software process architecture. [...] Software process architecture is a framework within

which project-specific software processes are defined. [...] While software process

models may be constructed at any appropriate level of abstraction, the process

architecture must provide the elements, standards, and structural framework for

refinement to any desired level of detail”.

Some examples of software process models that can be extended and adapted to create

specific Software Engineering (SE) processes in order to enable dynamically certain

adjustments to own particular needs and constraints can be found in [Sommerville,

2010] (e.g., the waterfall model, the evolutionary development, the incremental

delivery, or the spiral development). These process models are widely used in current

SE practice. They are not mutually exclusive and are often used together, especially for

large systems development.

2.3.2 Model-Driven Engineering

The emerging Model-Driven Engineering (MDE) addresses the inability of third-

generation languages to cope with increasing software complexity, allowing designers

to describe domain concepts effectively [Schmidt, 2006]. MDE revolves around models

(defined in terms of formal metamodels), and model transformations, which provide a

powerful mechanism for incremental and automatic software development.

A model in MDE is a “graph-based structure representing some aspects of a given

system and conforming to the definition of another graph called a metamodel”

[Bézivin, 2005]. Therefore, the basic set of MDE principles is based on two concepts

and two basic relations. The two concepts are system (the OMG's information layer) and

model (the OMG's model layer) and the relations are conformance and representation: a

model is said to represent the system and a model is said to conform to its metamodel.

These principles can be seen in Figure 2.2.

32

2.3.2.1 Software Modeling

Over the last decade, models and software modeling are becoming one of the most

important flagships of software development. Developers raise the level of abstraction

thanks to the use of models for specifying software solutions (i.e., the final system

implementation). Models are part of the software and they do not constitute only

documentation. Models are considered equal to code, as their implementation is

automated by a sequence of model transformations that can be accomplished in several

ways. In this way, models have the exact meaning of the final application code (i.e., the

implementation can be generated from them) and, therefore, models can be used for

more than just documenting the software development process [France & Rumpe,

2007]. Models allow us to specify the required functionality and architecture of a

system [Atkinson & Kühne, 2003].

Although the notion of model is very old, there is a need for a more rigorous definition

in the context of this thesis.

A model is “a simplification of the reality” [Booch et al., 2005]. A model of a system is

“a description or specification of that system and its environment for some certain

purpose” [OMG, 2003]. According to the definition given by Bézivin and Gerbé [2001]

a model is “a simplification of a system built with an intended goal in mind. The model

should be able to answer questions in place of the actual system. The answers provided

by the model should be the same as those given by the system itself, on the condition

that questions are within the domain defined by the general goal of the system.” Finally,

 Figure 2.2 Basic MDE principles

System

Metamodel

Model

conforms to

represents

Graph

based on

based on

System

Metamodel

Model

conforms to

represents

Graph

based on

based on

33

Seidewitz defines a model as “a set of statements about some system under study

(SuS)” [Seidewitz, 2003]. According to Seidewitz [2003], a model is interpreted as “a

mapping of elements of the model to elements of the SuS such that the truth-value of

statements in the model can be determined from the SuS, to some level of accuracy.

Colloquially, an interpretation of a model gives the model meaning relative to the SuS.”

For example, a kind of model in cereal factory management might describe agricultural

business, which would be the SuS in this case. Such a model makes statements on the

quality and quantity of the grain, the weight of trucks, etc. We can similarly use a UML

model to describe the structure of the software system. In this case, if the SuS is an

object- oriented software system, then we could use a UML class model to make

statements about the classes of the system and how they are related [Seidewitz, 2003].

Then, for this thesis, we can state that a model is an abstraction or simplification of a

system that provides information about it within the context of the intended goals (i.e., a

model focuses on important aspects and hide irrelevant ones). An example showing

different models describing a software system at different abstraction levels is shown in

Figure 2.3. Here, in the case of a software system, the source code is considered to be

both the real-world that is being modeled in terms of a UML class diagram, and a low-

level model that represents the business.

However, for more complex systems, trying to solve the problem with a single model

may result in an extremely voluminous and unmanageable specification. That is, with a

single model the system as a whole cannot be understood. Therefore it is better to

represent the system through a group of interconnected models, where each model

offers a different view of the system to be implemented (thus, each view is focused on a

specific part of the system). The different views will allow developers to specify the

structure and behavior of the system (in other words, its static and dynamic aspects).

Moreover, each model also can be expressed in the same language or in different

languages, which will provide adequate flexibility.

Thus, in every system, different types of models can coexist, being detailed at different

levels of abstraction. These models can be analyzed and transformed into other models,

and it is even possible to generate the final application code from them. Furthermore,

these models can be useful to direct the development process and to document a large

part of the decisions taken during the project, as well as the resulting implementation.

34

For this purpose, diagrammatic languages are often used. However, textual models,

such as the XML Metadata Interchange (XMI) specification [OMG, 2007], are also

widely used nowadays. Typically, these kinds of models are transformed into code in

order to enable compilation and execution

In order to correctly and formally define models it is essential to count on metamodels.

Metamodels define the abstract syntax of the modeling languages used to define the

models. Metamodel define concepts, attributes and relationships that help a model

conform more closely to the system that it represents. Metamodels will be further

discussed in section 2.3.2.2.

2.3.2.2 Metamodeling Approach for Software Modeling

As mentioned earlier, building metamodels that allow to support and formalize the

modeling languages in which the models are based on is essential in MDE. Metamodels

enable the definition of a language for expressing a model (i.e., metamodels describe

Figure 2.3 Models and systems (adapted from [Bézivin, 2004])

represents

represents

Truck

driver
weight

Field

surface

Grain

quantity
quality

System

Model

represents

35

language constructs for modeling). In general, the metamodel, through the abstract

syntax, describes the vocabulary concepts, and the relationships and constraints for

family models (note that the term family is used here to group models that share

common syntax). That is, the abstract syntax consists of “a definition of the concepts,

the relationships that exist between them and well-formedness rules that state how the

concepts may be legally combined” [Clark et al., 2008].

The OMG’s classical framework for metamodeling is based on a four-layer architecture

(see Figure 2.4). In the OMG terminology, these four layers are called M0, M1, M2, and

M3 [ISO, 2005b].

M0: The Information Layer

The information layer is comprised of the data that we want to describe, that is, what is

to be modeled [Seidewitz, 2003]. When we are modeling a business, the instances at M0

layer are the items in the real-world business itself (e.g., the IT services, the actual

people, the invoices, and the products). When we are modeling software, the instances

at M0 layer are the software representations of the real-world items (e.g., the

computerized version of the invoices or the orders, the product information, and the

 Figure 2.4 OMG’s four-layers architecture (adapted from [Bézivin, 2004])

Meta-metamodel

Metamodel

Model M1

M2

M3

M0System

M0

conformsTo

conformsTo

conformsTo

repOf

the System

//Client.java

class Client {

private String _name = null;
} /* end class Client */

36

personnel data) [Kleppe et al., 2003]. Thus, this layer holds the actual data, which the

software is designed to manipulate [Atkinson & Kühne, 2003].

M1: The Model Layer

The model layer is comprised of the metadata that describes data in the information

layer. Metadata is informally aggregated as models (e.g., UML models). This is the

layer at which models reside and it holds a ‘model’ of the data [Atkinson & Kühne,

2003]. The concepts at the M1 layer are all categorizations or classifications of

instances at the M0 layer. Likewise, each element at the M0 layer is always an instance

of an element at the M1 layer [Kleppe et al., 2003].

M2: The Metamodel Layer

The metamodel layer is comprised of the descriptions that define the structure and

semantics of the metadata (i.e., meta-metadata). Meta-metadata is informally aggregated

as metamodels, which describe different kinds of data without a concrete syntax or

notation (for example, UML). This layer holds a ‘model’ of the information at M1 (i.e.,

a model of the models at M1) [Atkinson & Kühne, 2003]. The elements that exist at the

M1 layers (classes, attributes, and other model elements) are themselves instances of

elements at M2. An element at the M2 layer specifies the elements at the M1 layer. M1

contains the concepts needed to reason about instances at M0, and M2 contains the

concepts needed to reason about concepts from layer M1 [Kleppe et al., 2003].

M3: The Meta-Metamodel Layer

The meta-metamodel layer is comprised of the descriptions that define the structure and

semantics of the meta-metadata. In other words, it is the abstract language for defining

different kinds of metadata. This layer holds a model of the information at M2 and, for

historical reasons, it is also referred to as the Meta Object Facility (MOF) [OMG,

2006b], the OMG’s standard M3 language [Atkinson & Kühne, 2003]. Therefore, every

element at M2 is an instance of a M3 element, and every element at M3 categorizes M2

elements. M3 defines the concepts needed to reason about concepts from layer

M2 [Kleppe et al., 2003].

There are several definitions for metamodels provided by different sources in the model

engineering field. MOF [OMG, 2006b] defines a metamodel as “a model used to model

37

modeling itself.” In this way, metamodels provide a platform-independent mechanism

to specify [OMG, 2006b]: (i) the shared structure, syntax, and semantics of technology

and tool frameworks as metamodels; (ii) a shared programming model for any resultant

metadata (for example, using Java, IDL, etc.); and (iii) a shared interchange format

(e.g., XML). Mellor et al. [2004] define a metamodel as “a model of a modeling

language.” In [Bézivin, 2005], a metamodel is defined as “a graph composed of

concepts and relationships between these concepts. [...] a metamodel acts as a filter to

extract pertinent elements from a system in order to build the corresponding model. Any

feature (concept or relationship) not present in the metamodel will be ignored when

building the model representing system.” Finally, in the context of the Model-Driven

Development (MDD), Stahl and Völter [2006] claim that a metamodel defines “the

constructs of a modeling language and their relationships, as well as constraints and

the modeling rules, but not the concrete syntax of the language.” In other words, a

metamodel defines “the abstract syntax and the static semantics of a modeling

language.”

The concrete syntax or notation of a language facilitates the presentation and

construction of models in the language to humans. Different concrete syntax forms may

have a common abstract syntax. For example, a metamodel can be expressed in

different notations (e.g., in a graphical-based notation or in a textual-based notation), or

even many different graphical-based notations may use the same metamodel. Thus, the

concrete syntax may be defined by a modeling language but is not part of the

metamodel. In addition, the distinction between abstract syntax and concrete syntax is

very important in our context, because the metamodel (and not the concrete syntax) is

the basis for automated, tool-supported processing of models [Stahl & Völter, 2006].

In summary, the abstract syntax of a modeling language deals with the structure of

concepts in a language without taking their presentation and meaning into account. It is

important to remark that the static semantics is quite different from the semantics that is

included in the abstract syntax of a metamodel. The static semantics is the definition of

concepts in the language providing constraints and rules, which dictate whether or not

an expression of the language is well-formed. Conversely, the semantics that is part of

the abstract syntax of a model conveys little or even no information about the meaning

38

of the concepts in the language. For example, in the Eclipse platform
21

, there is no mean

to add a description stating the meaning of a concept included in the abstract syntax

represented by metamodel.

On the other hand, the metamodel semantics is embedded in the transformation

definition of a metamodel. In other words, the metamodel semantics states how each

concept in the metamodel should be interpreted and in what thing the concept is

transformed. Then, since the metamodel semantics enables to be clear about what the

language represents and means, it is essential to communicate the meaning of models

among stakeholders in a software project. Otherwise, assumptions may be made about

the language that leads to its incorrect use [Clark et al., 2008]. That is, all

transformations from one source model to other target models must keep the same

meaning of the metamodel of which the source model conforms to.

Therefore, it must be noted that the metamodel semantics is not part of the abstract

syntax of a language although the abstract syntax model is a pre-requisite for defining

the metamodel semantics, as the metamodel semantics adds a layer of meaning to the

concepts defined in the abstract syntax [Clark et al., 2008]. Then, the metamodel

semantics could be considered a meaning in the sense of an interpretation of the model

as explained by Seidewitz [2003]: “Because a metamodel is a model of a modeling

language, an interpretation of a metamodel is a mapping of the metamodel elements to

the modeling language elements, such that we can determine the truth value of

statements in the metamodel for any model expressed in the modeling language.

Because a metamodel is a specification, a model in the modeling language is valid only

if none of these statements are false.” That is, there may be several interpretations of the

same model. For example, a logical class model could be interpreted as the design for

multiple platforms or technologies. Therefore, throughout this thesis, we will use the

term ‘metamodel semantics’ to refer to the interpretation of the model that defines the

model transformation operation.

Finally, we agree with Bézivin [2004] and Favre [2004] in that a model ‘conforms to’

its metamodel rather than being an ‘instance of’ it. Both authors recommend the

relationship ‘conform to’ instead of ‘instance of’ in the context of relating models to

21 http://www.eclipse.org/

http://www.eclipse.org/

39

each other in order to distinguish the conformance relationship between models from

the instantiation relationship known from OO technology (i.e., between objects and

classes) [Kühne, 2006] [Stahl & Völter, 2006]. The importance of using the relationship

'conform to' rather than 'instance of' is also stressed by Gašević et al. [2007]. In this

way, in order to be valid, models have to conform to its metamodel. Models conformant

to common metamodels can be used as reusable artifacts for future software projects.

2.3.2.3 Domain-Specific Modeling

Different concerns within the software modeling need to use and integrate different

specialized languages in order to be effective in tackling a development project. Unlike

general purpose programming languages, Domain-Specific Languages (DSLs) are

oriented towards a particular domain. Examples of DSLs are the HyperText Markup

Language (HTML), used as the mark-up language for hypertext on the Web, and

Backus-Naur Form (BNF), used for describing grammars. By making the notations and

concepts of a problem domain available and understandable to all stakeholders in a

development project, DSLs allow domain experts to recognize its 'domain language' and

allow software systems to be expressed more concisely and directly than in general

purpose languages [Stahl & Völter, 2006].

In this respect, Domain-Specific Modeling (DSM) is an approach that raises the level of

abstraction beyond programming by specifying the software application directly using

domain concepts [DSM Forum website]. DSM allows developers to work with

graphical models of the problem to solve, and helps to hide the implementation

concepts from the models. In DSM, models can be tailored to accurately match the

domain’s vocabulary. In DSM, metamodels describe the domain concepts and their

relationships, as well as the semantics and constraints associated with the concepts.

In the context of MDD, DSLs are composed of a metamodel, including its statics

semantics, and a corresponding concrete syntax [Stahl & Völter, 2006], specially

designed for the MDD solution. Instead of using a general purpose modeling language

for software development, a DSL is used that is itself designed to define the specific

problem. Eclipse and Microsoft’s Domain Specific Language Tools (DSL Tools) [Cook

et al., 2007] are environments that enable us to create our own graphical domain

40

specific modeling language and editor where the complexity to create them is greatly

reduced.

Cook [2004] defines DSLs as “languages that instead of being focused on a particular

technological problem such as programming, data interchange or configuration, are

designed so that they can more directly represent the problem domain which is being

addressed.” A DSL is “a custom language that targets a small problem domain, which

it describes and validates in terms native to the domain” [Cook et al., 2007]. In other

words, DSLs enable us to work within a particular area of interest.

Due to their proximity of the concepts of a particular domain, DSLs make it much

easier to discuss the software at the requirements level, and to manage changes in an

agile way. DSLs may also be considered as a form of ontological metamodeling since

they are concerned with describing what concepts exist in a certain domain and what

properties they have (similarly, ontologies capture the knowledge of real-world

domains, independently from specific application needs) [Atkinson & Kühne, 2003].

2.3.2.4 Model Transformations

In the context of MDE, a development process can be modeled as a set of model

transformations that take source models as input and produce target models as output

using a set of transformation rules (transformation definition) [Sendall & Kozaczynski,

2003]. A transformation (or mapping) implicitly or explicitly defines a relationship

between the source and the target models [Stahl & Völter, 2006], where the

transformation itself is also a model. This relationship may represent a model translation

(relationship between models in the same language) or a language translation

(relationship between models that are expressed in different languages) [Kent, 2002].

Model transformations are usually based on a source metamodel and the transformation

rules can only be based on the metamodel constructs.

According to Czarnecki and Helsen [2006], model transformations may have different

applications:

 Generating lower-level models, and eventually code, from higher-level models.

41

 Mapping and synchronizing among models at the same level or different levels

of abstractions.

 Creating query-based views of a system.

 Model evolution tasks, such as model refactoring.

 Reverse engineering from lower-level models or code into higher-level models.

In order to perform a model transformation, we must have a clear understanding of the

abstract syntax and semantics of both models, that is, source and target models. When

defining transformations, there are three different architectural approaches [Sendall &

Kozaczynski, 2003]:

 Direct model manipulation. It defines the access to an internal model

representation and the ability to manipulate the representation using a set of

procedural Application Programming Interfaces (APIs). The language used to

access and manipulate the APIs is commonly a General Purpose

Language (GPL) such as Visual Basic or Java. However, UML models and the

UML’s action language (xUML) [Raistrick et al., 2004] could be used as well.

 Intermediate representation. It defines the exporting of the model in a standard

form (typically XML) that may be transformed by external tools. For example,

many UML tools can export and import models to and from XMI (the XML-

based standard for interchange of UML models).

 Transformation language support. It defines a language that provides a set of

constructs for explicitly expressing, composing, and applying transformations.

The desirable characteristics for model transformation languages would be:

(i) Preconditions. They describe the conditions under which the transformation

produces a meaningful result; (ii) Composition. Since it is usually easier to

compose components than to build ‘things’ from basic parts, combining existing

transformations to build new composite ones is a desirable feature; (iii) Form.

The accessibility and acceptance of a language depends on its form, and the

graphical representations of models are preferred to fully textual representations;

and (iv) Usability. Strongly affected by whether the language is declarative (i.e.,

makes the language more concise, making implicit a number of issues of the

42

transformation algorithm) or imperative (i.e., offers a familiar paradigm for

composing transformation rules, that is, sequence, selection, and iteration), and

involving language’s purpose and the preferences and backgrounds of its users,

who might balance ease-of-understanding, precision, concision, and ease-of-

modification differently.

In MDE, there are two different kinds of model transformations (see Figure 2.5):

Model-to-Model transformation (M2M) and Model-to-Text transformation (M2T).

A M2M transformation creates another model based on the target metamodel. Here we

have different models at different levels of abstraction. In M2M, we can specify

transformations horizontally and vertically. On the one hand, horizontal transformations

describe relationships between different views of a problem domain: the models

describe different aspects of the system, but at the same level of abstraction. On the

other hand, vertical transformations relate models at different levels of abstraction: the

models are refined from higher to lower levels of abstraction, and at the lowest level,

models consider implementation technology issues [Sendall & Kozaczynski, 2003].

Mapping between a specification and a design, and between design and implementation

are examples of vertical transformations. It is important to remark that vertical

transformations may also go in the reverse direction (reverse engineering), for example,

from implementation to design [Clark et al., 2008]. The Extensible Stylesheet Language

 Figure 2.5 Model transformations

Model0

Model1

ModelN

Code

M2M

M2M

M2T

Model’1
M2M

Model0

Model1

ModelN

Code

M2M

M2M

M2T

Model’1
M2M

43

Transformations (XSLT) [Clark, 1999], Medini QVT
22

 and the Atlas Transformation

Language (ATL
23

) are examples of M2M approaches.

A M2T transformation (also known as model-to-platform or model-to-code

transformation) generates the code (i.e., just strings) that is based on a platform. For this

type of transformation we do not need a target model, because usually we are dealing

with simple text replacements of a programming language. JET
24

, MOFScript
25

 and

OLIVANOVA
26

 are examples of M2T approaches.

On the other hand, model transformations can be also categorized depending on the

scope of their effect on a given model [Alanen, 2007]: (i) a mapping transformation:

this approach translates each element from a source model into zero, one or more

elements of a target model. The source and target models may be described in the same

of in different modeling languages. In a mapping translation, the source model is not

modified; and (ii) an update transformation: this approach modifies a model in place; it

adds, deletes and updates elements in one model. The source and target models are the

same and the effects of the transformation are visible while performing the

transformation. There can be two kinds of update transformations: to modify and

already existing element or to create a new element of the same type followed by the

deletion of the initial element.

XSLT

The Extensible Stylesheet Language Transformations (XSLT) is a language for

transforming XML documents into other XML documents [Clark, 1999], widely used in

the development of data-intensive applications. An XSLT stylesheet is composed of a

set of rule templates. Each rule template matches elements in the source model, and

produces output elements to the target model.

The benefits of using XSLT have been explored in [Li et al., 2011]: (i) All major

Computer-Aided Software Engineering (CASE) tools can import and/or export models

22 http://projects.ikv.de/qvt/
23 http://www.eclipse.org/gmt/atl/
24 http://www.eclipse.org/modeling/m2t/?project=jet#jet
25 http://www.eclipse.org/gmt/mofscript/
26 http://www.care-t.com/

http://www.eclipse.org/gmt/atl/
http://www.care-t.com/

44

as XMI files; (ii) XSLT is the most common and powerful language for XML

transformation; (iii) XSLT (Xpath) has strong support to complex pattern matching; (iv)

XSLT has many industrial strength implementations, including commercial and open

source tools; (v) XSLT can also be embedded in Java; and (vi) XSLT can be easily

executed and integrated into different system environments and platforms, without

additional packages and libraries.

2.3.3 Model-Driven Architecture

The Model-Driven Architecture (MDA) approach [OMG, 2003], defined and supported

by the OMG, defines a particular MDE process aimed at separating the business logic

from the technological platforms. Thus, organizations can use MDA to meet the

integration challenges posed by new platforms, while preserving their investments in

existing business logic. MDA is a model-driven approach for software system

development in which models direct the course of understanding, design, construction,

deployment, maintenance and modification of systems. MDA is built on the solid

foundation of well-established OMG standards, including: UML [OMG, 2010c], MOF

[OMG, 2006b] and XMI [OMG, 2007], among others.

MDA proposes three modeling layers specified as MOF metamodels, namely, ordered

from highest to lowest levels of abstraction: Computation Independent Models (CIMs),

Platform Independent Models (PIMs), and Platform Specific Models (PSMs). Different

M2M transformations among these abstraction layers can be defined either top-down,

bottom-up or horizontally. Commonly, each CIM (model gathering high-level system

requirements) is transformed into one or more PIMs (platform-independent architectural

models). Similarly, each PIM is transformed into one or more PSMs (one for each target

platform). PSMs are commonly low level models, enabling the definition of direct M2T

transformations for automatically generating the final system implementation (including

code, documentation, etc.).

A model of a system in MDA is defined as “a description or specification of that

system and its environment for some certain purpose. A model is often presented as a

combination of drawings and text. The text may be in a modeling language or in a

natural language” [OMG, 2003]. All metamodels must be written in the MOF language

45

to be MDA compliant (Figure 2.6). That is, in MDA, all modeling languages are

defined either using the standard MOF metamodeling language or an extension of an

existing UML metamodel defined as a profile. Andrew Watson [2008], OMG’s Vice-

President and Technical Director, states that “MDA uses MOF-defined models to create

and manipulate precise, detailed, machine-readable descriptions of application

structure and behavior that are independent of what programming languages, operating

systems or database may be used to implement them.” Therefore, we could conclude

that the key MDA standard is MOF and not UML, like some people still believe.

We can use MDA to gain control over and systematically improve the whole lifecycle

of IT solutions: from modeling the overall business (facilitating effective

communication between business analysts and IT members and capturing specific

solutions requirements) to developing, deploying, integrating, and managing many

kinds of software artifacts [Guttman & Parodi, 2007].

2.3.4 Matching Ontologies and Conceptual Models with Metamodels

As stated previously, metamodeling is one of the most important concepts of MDE.

In the context of MDE, we must be clear about the structure of a domain (that is, the

Figure 2.6 MDA and the OMG’s four-layers metamodeling pyramid as depicted in [Vicente-Chicote & Alonso, 2007]

M0

M3

MMCIM MMPIM MMPSM

CIM PIM PSM

+ Abstraction -

M2

M1

MOF

repOf

conformsTo

conformsTo

conformsTo

System

Model

Metamodel

Meta-metamodel

46

ontology) related to the system to build, so that we can formalize this structure or its

relevant part in terms of a metamodel for any attempt of automation in the SDP [Stahl

& Völter, 2006]. According to MDE, ontologies (that is, the OE part) would cope with

the ‘repOf' (representation of) relation that exists between models (i.e., the M1 layer in

the OMG’s four-layer architecture) and systems (i.e., the real-world, which means the

M0 layer in the OMG’s four-layer architecture) [Bézivin, 2005]. However, we note a

continuous confusion between the terms ‘metamodel’ and ‘ontology’. Several authors

have tried to compare ontologies and metamodels, for example Ruiz and Hilera [2006]

and Henderson-Sellers [2011]. In this thesis, just like the approach of [Ruiz & Hilera,

2006], we consider that ontologies and metamodels have different purposes: ontologies

are descriptive and they belong to the structure of a domain (that is, the real-world),

whereas metamodels are prescriptive and they belong to the MDE solution. However,

conceptual modeling of information systems that represents the structure perspective is

comparable with ontologies, because they share some modeling principles. As

mentioned earlier, a conceptual model captures the semantics for a given application

domain, and ontologies are supposed to capture semantics about real-world domains,

independently from specific application needs. Similarly to the approach of Bézivin

[2009], we also consider a metamodel as a simplified ontology in the sense that it is a

set of concepts and relations between these concepts. Therefore, ontologies can act as

the basis for defining DSLs in terms of a metamodel in order to generate conceptual

models for the implementation of specific information systems. Since a DSL describes

domain knowledge it requires detailed knowledge about the domain (that is, the

ontology). Just as remarked by Devedžić [2002], if ontologies are not used in this stage

of the model-driven software development process, different conceptual models of the

same domain could be incompatible, even if they use the same DSL for the

implementation of the related information systems.

In this vein, Henderson-Sellers [2011] establishes a formal relationship between

metamodels and ontologies in order that the adoption and integration of ontological

thinking and theory into SE will result in theoretically sound software development

methodologies that are also practical for industry usage. Because of ontologies can be

understood by both human beings and computers, they can be used to mediate

communication within an information system, between people themselves or between

47

people and software systems. For example, Wand [1996] uses an ontology to model

information system concepts. The proposed ontology use concepts from the Bunge’s

Ontology [Bunge, 1977] [Bunge, 1979]. The author identifies three aspects of

information systems: (i) Deep structure (meaning): it represents the aspects of the

information system that reflect the represented domain; (ii) Surface structure (interface):

it represents the user interface characteristics of the information system; and (iii)

Physical structure (technology): it represents the technical means employed in the

implementation.

In recent years, there are works that discuss the contributions of ontologies to the

model-driven software development approach [Decker et al., 2005] [Goknil &

Topaloglu, 2005] [Silva Parreiras & Staab, 2010]. In this vein, for example, the OMG’s

Ontology Definition Metamodel (ODM) [OMG, 2009] is a proposal for ontology

modeling that enables capabilities for MDA-based SE. From a SE perspective,

ontologies are considered CIMs. According to [OMG, 2009], ODM provides MDA with

“the formal grounding for representation, management, interoperability, and

application of business semantics.” ODM defines a metamodel for OWL, and

describes, for example, mappings from ODM OWL models to UML models. Therefore,

it seems that the application of the MDA approach in conjunction with ontologies may

help software engineers developing and managing complex systems. On the one hand,

the use of models and metamodels for software development is an established practice

in SE, and on the other hand, the use of ontologies as modeling and reasoning

frameworks for the management of models has been successfully reported and

promoted by researchers over the last decade. Furthermore, as remarked previously,

ontologies provide shared domain conceptualizations representing knowledge that

enable software engineers to model the problem domain as well as the solution domain.

Most studies related to the integration of ontologies into the model-driven approach use

ontologies to define DSLs and domain conceptual modeling, as for example, the works

presented by Walter et al. [2009], Durak et al. [2006] and Garrido et al. [2007], among

others. In this research area, a DSL could be considered as the joint use of a metamodel

and an ontology in which ontologies provide the semantic context (i.e., knowledge

modeling) for the models providing reasoning capabilities, model enrichment, model

validation, etc.

48

Another common approach is to use ontologies as a basis for model transformations. As

stated previously, model transformations are a fundamental mechanism in the model-

driven approach and these transformations rely on semantics that is not part of a

metamodel (that is, the metamodel semantics). The metamodel semantics necessary to

support model transformations at the metamodel level (i.e., metamodel mappings) can

be added and expressed in terms of ontologies. In this way, the ontological model

definitions may be used, for example, to transform from CIMs to PIMs or from PIMs to

PSMs by using query statements, transformation rules and models defined in ontology

languages such as OWL. Ontology-based transformations allow the seamless and

coherent transition from one development focus to another [Pahl, 2007].

Finally, ontology-aware MDE is a research area presented as a new architecture where

ontologies and automatic reasoning play a key role in MDA and its generalization MDE

[Assmann et al., 2006] [Živković et al., 2008]. The idea of ontology-aware MDE is to

benefit from semantic technologies (the ontology aspect). Thus, MDE is extended to be

considered as ontology-aware. As an extension to models on different levels of the

MDE architecture (i.e., models, metamodels and the meta-metamodel), in ontology-

aware MDE architecture, an ontology repository serves as a store of the semantics of

each level in form of descriptive analysis models. The semantics is formally described

in terms of ontologies, and reasoning on ontologies is part of the ontology-aware

mechanisms. Model and ontology editors are used for the management of models,

metamodels and ontologies.

2.4 IT Service Management

The concept of service is understood differently depending on the domain or

application area, involving a certain confusion that has been explored by Jones [2005]

and Ferrario and Guarino [2009]. For example, The Service Oriented Architecture

(SOA) is an approach to structure software systems by grouping functionalities into

manageable services with well-defined interfaces that can be invoked remotely, where a

service represents how its consumers wish to use it [Jones, 2005]. Within ITSM, and

throughout this paper, the term ‘service’ should be understood as an overall IT service,

such as software distribution or server support [Black et al., 2007]. Therefore, the term

49

does not refer to Web services in the SOA context since this approach is outside of the

scope of our work. However, it is possible to use SOA and principles to develop

flexible, re-usable IT services that are common and can be shared and exploited across

many different areas of the business [OGC, 2007a].

The IT Service Management Forum (itSMF
27

) is an independent organization dedicated

to promoting a professional approach to ITSM. The itSMF defines an IT service as “a

service provided to one or more customers by an IT service provider. IT services are

based on the use of information technology and supports the customer's business

processes. IT services are made up from a combination of people, processes and

technology and should be defined in a Service Level Agreement (SLA)” [itSMF, 2007a].

A SLA represents a formal agreement between an IT service provider and a customer.

The SLA describes a level of assurance or warranty with regard to the level of service

quality for each of the services delivered to the business (customer). In this context, IT

services can be considered as commitments just like the approach of Ferrario and

Guarino [2009].

According to the ISO/IEC 20000 standard [ISO/IEC, 2005a], an ITSMS must include

“policies and a framework to enable the effective management and implementation of

all IT services”:

 Management Responsibility: Through leadership and actions, IT service

providers must prove its commitment to developing, implementing and

improving its ITSM capability within the context of the organization’s business

and customers’ needs.

 Documentation: IT Service providers must provide documents and records to

ensure effective planning, operation and control of ITSM.

 Competence, awareness and training: All ITSM roles and responsibilities must

be defined and maintained together with the competencies required to execute

them effectively. Also, staff competencies and training needs must be reviewed

and managed to enable staff to perform their role effectively. Finally, IT service

providers must ensure that its employees are aware of the relevance and

27 http://www.itsmfi.org/

50

importance of their activities and how they contribute to the achievement of the

ITSM objectives.

There are several well established good practice frameworks to create an effective

ITSMS such as ITIL. Nowadays, ITIL is the best known and most widely accepted

guidance and it has become the de facto standard for ITSM, providing “a detailed

description of a number of important IT practices, with comprehensive checklists, tasks,

procedures and responsibilities which can be tailored to any IT organization” [OGC,

2007d].

ITIL version 3, also known as ITIL V3, is an enhanced and consolidated framework that

proposes a new approach to ITSM by considering the lifecycle of a service. Provided

that ITIL V3 is the most complete and up-to-date version of this ITSM framework, and

since the Office of Government Commerce (OGC) has announced its plans for the

withdrawal of publications and qualifications of ITIL version 2 (complete in the middle

of 2011)
28

, we selected ITIL V3 for our ontology approach.

2.4.1 The Information Technology Infrastructure Library

The Information Technology Infrastructure Library (ITIL) was originally

developed by the Central Computer of Telecommunications Agency (CCTA, later to

become part of the OGC), and started by the late 1980s and early 1990s by documenting

an approach to the ITSM needed to support business users. The library originally

consisted of approximately forty books providing guidance to all areas of local and

central UK government. It ware subsequently adopted and used by many organizations

within the private sector as well. In 1991, a user forum, the Information Technology

Information Management Forum (ITIMF), was created to bring ITIL users together to

exchange ideas and learn from each other, and would eventually change its name to the

itSMF. A formal standard for ITSM, The British Standard 15000 (BS15000), largely

based on ITIL practices, was established and followed by several national standards in

different countries. Since then, the ISO/IEC 20000 standard was introduced and gained

rapid recognition globally [OGC, 2007d]. ISO/IEC 20000 specifies a set of interrelated

28 http://www.ogc.gov.uk/itil_ogc_withdrawal_of_itil_version2.asp

51

management processes and differs only in minor ways from BS15000. In this vein, the

ITSM structure can be seen as a pyramid with the international standard ISO/IEC 20000

at the summit (Figure 2.7). Below the summit we can find the layer of ITIL best

practices, which helps to ensure and demonstrate that the requirements of the standard

are being met. At the lowest level is the layer of the customization of ITIL to meet the

particular needs of an organization, which is the broad base of ITIL implementation.

ITIL V2 began in the mid 1990s, until 2004. This version was a targeted product

explicitly bridging the gap between technology and business, and with guidance focused

strongly on the processes required to deliver effective services to the business customer

[OGC, 2007d].

In 2004, the OGC began the second major refresh initiative of ITIL, that is, ITIL V3, in

recognition of the massive advancements in technology and emerging challenges for IT

service providers. ITIL V3 was published in 2007 offering best practice guidance

applicable to all types of organizations that provide services to a business. ITIL V3

provides a recognized set of standards for bringing improvements to our IT application

support services. In this way, ITIL can be used to integrate, manage, measure and

Figure 2.7 IT Service Management pyramid as depicted in [ISACA, 2008]

52

therefore improve application support. By using ITIL, organizations may reduce costs

and improve service performance in a well-defined manner.

The Table 2.2 shows the key ITIL V2 to V3 concept differences [itSMF, 2006]. First,

the term alignment has been replaced with the concept of integration. Second, value

chain management in V2 means a business customer being supported by a single

internal IT service provider whereas value service network integration in V3 means: (i)

a business customer being provided service by internal IT service providers; (ii) those

provided by a shared service model to multiple business units; (iii) the option of using

different external outsourcing options; and (iv) leveraging a software as a service

model. Third, linear service catalog in V2 means a brochure of IT services where IT

publishes the services it provides with their default characteristics and attributes where

as dynamic service portfolio in V3 means the product of a set of process where service

strategy and design conceive of and create services that are built and transitioned into

the production environment based on business value. Forth, ITIL V3 core books core

books are structured around a service lifecycle. This new structure organizes the ITIL

V2 processes with additional content and processes [DuMoulin, 2007].

The service lifecycle of ITIL V3 contains five elements that are depicted in Figure 2.8.

Each element relies on service principles, processes, roles and performance measures.

Furthermore, each part of the lifecycle exerts influence on the other and relies on the

other for inputs and feedback. Thus, a constant set of checks and balances throughout

the service lifecycle ensure that as business demand changes with business need, the

services can adapt and respond effectively to them. Furthermore, all services must

provide measurable value to business objectives and outcomes, and this principle could

be seen as the heart of the service lifecycle.

Table 2.2 Key differences in ITIL

ITIL V2 ITIL V3

Business and IT Alignment Business and IT Integration

Value Chain Management Value Service Network Integration

Linear Services Catalogues Dynamic Service Portfolios

Collection of integrated processes Service Management Lifecycle

53

To fully benefit from ITIL best practices, business stakeholders should model their own

processes from ITIL perspective (i.e., ITIL can be adopted, but it can be adapted

according with our own interests) and share this view with all IT stakeholders in order

to develop information systems that support these processes. In this way, organizations

might reach their objectives that include the next five essential elements: objectives

have to be Specific, Measurable, Appropriate, Realistic and Time-bound (SMART)

[itSMF, 2007a].

2.4.2 ITSM Processes

ITIL describes a process as “a structured set of activities designed to accomplish a

specific objective. A process takes one or more defined inputs and turns them into

defined outputs. A process may include any of the roles, responsibilities, tools and

management controls required to reliably deliver the outputs. A process may define

policies, standards, guidelines, activities, and work instructions if they are needed”

[itSMF, 2007a]. Therefore, processes and functions co-exist alongside each other, but

we have to be clear of the distinction between the two terms [Ferris, 2008].

With this definition of a process, we can identify the following qualities:

 It should be able to change a group of inputs into a group of outputs.

 Figure 2.8 The ITIL service lifecycle

54

 It should provide an added value.

 It is made up of a group of coordinated internal activities.

 The activities are carried out by resources: people, individually or in groups

(areas, departments, organizational units, etc.), and computer tools. The

resources require a lot of knowledge and information, and are closely related

with the people, systems, processes and technologies of an organization [itSMF,

2007a].

 The group of activities can graphically be represented in the form of a workflow.

The processes should also have the following characteristics:

 Repetition: the processes are created to produce a result that can be repeated.

 Variability: each time a process is repeated small variations in the activities can

be produced, which at the same time generate variations in the results obtained

(in the characteristics of the outputs).

This characteristic of variability is the one that can affect the level of satisfaction of the

customers and users of the service as to the exit of the process. This is why, it is

necessary to establish a system of measurement and of control, ITSMS, which allows

knowing this variability and determining the acceptable margins. This way, the result of

the process is kept delimited and its success is guaranteed. An ITSMS must be able to

generate a series of records that make up the evidence that the processes work, so that

these records can be evaluated and contrasted with the objectives that the organization

wants.

Finally, the RACI matrix is a model used to help define roles and responsibilities in the

activities that are part of an ITSM process. The RACI matrix (see Table 2.3) is a formal

way of establishing the role for each stakeholder that participates in a specific process.

RACI stands for Responsible, Accountable, Consulted and Informed [OGC, 2007d].

ITIL supports the RACI model [OGC, 2007b]. The responsible is attributed to the

person who gets a process activity done (i.e., the stakeholder that is responsible for

actually doing it). Accountable means ‘the buck stops here’ (i.e., this is the stakeholder

that provides direction and authorizes an activity). The other two roles, consulted (a

stakeholder that has needed input about the activity) and informed (a stakeholder that

55

needs to be kept informed about the activity), ensure that everyone who needs to be is

involved and supports the process.

2.4.3 Ontologies for ITSM

Recently, there has been an increasing interest in the use of ontologies to various

aspects of ITSM. The importance of using OE to automate and validate service process

models is remarked by Verma and Sheth [2007] and Talantikite et al. [2009]. As

stressed by Mizoguchi and Ikeda [1996], OE can provide “a basis of building models of

all things in which computing is interested”. A formal description of the functionality of

a service process is crucial for service process reuse [Verma et al., 2005], whereas a

formal description of the data that the service management processes exchange is a key

requirement for interoperability [Nagarajan et al., 2006]. Also, if IT service providers

define formally SLAs and quality-of-service attributes, they could different themselves

from their competitors [Cardoso et al., 2004] [Oldham et al., 2006].

Table 2.4 Related work about Ontologies in association with ITSM

Author Feature

[Bartsch et al., 2008] Ontology-based hierarchical service decomposition

[Black et al., 2007] ITSM integration model

[Freitas et al., 2008] UML-based ontology for IT Services

[Ghedini & Gostinski, 2008] Ontology-based framework for business-IT alignment

[Goeken & Alter, 2009] 'Ontological metamodeling' approach to IT governance

[Graupner et al., 2009]
Ontological approach to template-based framework to enable

making processes, from best practice frameworks, actionable

[Paschke & Bichler, 2008] Ontological approach to SLA management

[Savvas & Bassiliades, 2009]
OWL ontology for administrative procedures and OWL-S

service models

Table 2.3 RACI Matrix

Acronym Description

R Responsibility: correct execution of

process and activities

A Accountability: ownership of quality,

and end result of process

C Consulted: involvement through input of

knowledge and information

I Informed: receiving information about

process execution and quality

56

Several ontology-based approaches to IT service quality improvement are given in

Table 2.4. For example, a proposal of an ontology for ITSM can be found in [Freitas et

al., 2008]. This work describes a generic ontology for IT services in terms of UML

models, where the Object Constraint Language (OCL) [OMG, 2010b] is used for the

constraints. Savvas and Bassiliades [2009] propose an ontology in OWL that provides

specific knowledge for administrative procedures, which are mapped into OWL-S

models.

Bartsch et al. [2008] propose an ontology-based hierarchical service decomposition and

identification approach to support service providers in managing their operation service

processes. The authors propose three layer process model hierarchy which uses

structured knowledge about the respective service process domain to decompose a

service process into elemental service process steps and subsequently identify

alternative services.

Ghedini and Gostinski [2008] propose a framework using ontologies to provide

business-IT alignment. In order to build the ontologies, they use ITIL V2 to obtain

concepts related to ITSM using a subset of vocabulary of a business domain ontology

related to the biggest public bank of Brazil. The proposed framework helps the concrete

realization of governance models in the sense of understanding the effects between

business and IT purposes, but their work is not focused on implementations of the ITIL

processes.

Graupner et al. [2009] present an approach to bridge the gap between the abstractions

available in best practice framework, such as ITIL, and actions that have to be

performed by humans or systems. An ontology-based approach is used to represent ITIL

processes so that they can be enriched with actionable information.

Goeken and Alter [2009] propose an 'ontological metamodel' of COBIT framework

[ISACA, 2007] to IT governance improvement. According to the authors, ontological

metamodels deal with the classification of model elements according to their content

providing theoretical foundation, and analysis, comparison and integration capabilities.

In the context of SLAs, Paschke and Bichler [2008] propose ContractLog, a derivation

rule-based language of knowledge representation concepts for SLA management. The

rule-based service level management tool (RBSLM) has been implemented to help

57

designers representing SLA rules. Their proposal is a XML-based language that

provides high levels of extensibility and support for contractual agreements definitions,

although they do not consider ITIL to implement it.

Finally, Black et al. [2007] propose an integration model that tries to cover the entire

ITSM space. The model shows how to develop and describe IT solutions, but does not

prescribe a specific solution or technology. The model provides a structure that allows

users to describe what the service is and how it is delivered. Ontologies provide

expressive depth and potential for inference or tool-assisted realization of facets of the

proposed integration model.

58

59

Chapter 3

Onto-ITIL: An Ontology-based and

Model-driven Approach for ITSMSs

In this chapter we introduce the approach followed to build Onto-ITIL, an

ontology-based and model-driven approach for ITSMSs based on the ITIL V3 Service

Management Model. Onto-ITIL formalizes the ITSM domain knowledge following best

practices provided by the ITIL V3 framework. Onto-ITIL also provides the necessary

mechanisms for managing interoperability and consistency checking to serve as a

knowledge base for ITIL process implementations. This approach enables IT service

providers to add semantics and constraints to the data associated with the different ITIL

processes in order to share and reuse information in a homogeneous way.

3.1 Introduction

In an increasingly technology-driven world, organizations must assess the

efficiency and quality of their services in order to enhance their competitiveness and

performance. Business is what defines the requirements of the information systems

needed to automate business activities and, therefore, such systems must be designed to

support business processes [Eriksson & Penker, 2000]. However, the integration

between business needs and existing technologies is still a challenging issue [Liu &

Zhu, 2009]. More frequently than desired, information systems do not meet business

requirements and, as a result, many organizations perceive IT as a limitation rather than

a benefit for their business growth [Telefónica, 2010]. In other words, generally,

business and IT do not share challenges and goals required to achieve a Sustained

Competitive Advantage (SCA) [Wade & Hulland, 2004]. In order to address this

problem, ITSM aims to ease the integration of business and IT in terms of services that

“Marco, you should not worry about reaching the target. Just

concentrate on the process of reaching it.” La cena secreta

Javier Sierra (1971-), Spanish writer

60

can be managed as another business unit. IT services are recognized as crucial, strategic,

organizational assets that must be managed for business success [Black et al., 2007].

Nowadays, the complexity of service management remains a challenge, even when

adopting best practices for ITSM. The main reason is that ITSM guidelines and models

are commonly specified using natural language or graphical representations, both

lacking clearly defined semantics. In fact, natural language specifications can lead to

different representations and interpretations [Thomas & Fellmann, 2009], making it

difficult to obtain equivalent machine-readable specifications. For example, what should

be classified as incident in the ITSM domain?; what specific information and tasks are

associated with the incident management process?; which of these tasks could be

automated using a computer tool?; what metrics (name and description) should be

included in the incident management process in order to measure it?; what are the

different categories for ITSM metrics?; what are the critical success factors (CSFs) in

the incident management process for a specific IT service provider?; and how those

metrics are related to each CSF in the incident management process?

To overcome this issues, the proposed approach presented in this thesis relies on:

(i) OWL, which provides automated and efficient reasoning facilities; (ii) SWRL, which

enables the definition of semantic constraints and knowledge inference rules;

(iii) SQWRL for knowledge retrieval; and (iv) MDE for the formalization of a domain

or its relevant part in terms of a metamodel for any attempt at automation. The open

source Protégé-OWL tool has been selected in this thesis as an ontology editor to create

the required ontologies. We use UML class diagrams to present the proposed ontology

in a graphical way. In this vein, UML classes represent OWL concepts, UML

associations correspond to object properties, UML attributes represent datatype

properties, and UML inheritance is used for subclass relationships.

3.2 Onto-ITIL Principles

The ITSM model proposed in this work is based on the structure illustrated in

Figure 3.1, which relies on five concepts (IT service, Process, Metric, Activity and

Application) and the four relations defined among them (managedBy, measures,

coordinatedBy and implements). IT services are managed by Processes which are

61

measured using appropriate Metrics. In turn, Processes coordinate a set of Activities,

which can be (fully or partially) implemented by Applications. In our context, an

Application is a piece of software that provides the functionality required by an IT

service. Each Application may support one or more IT services.

In order to further detail the most relevant concepts related to the Onto-ITIL principles,

some formal definitions are included next.

Definition 1. Let nSSSS ,,, 21 be the Service Portfolio, that is, the complete set of

IT services that are managed by an IT service provider. The service portfolio is a key

element of ITSM and it is used to manage the entire lifecycle of each service Ssi . It

includes three categories: (i) Service Pipeline P with SP (proposed or in

development); (ii) Service Catalog C with SC (live or available for deployment);

and (iii) Retired Services R with SR . The service portfolio represents the current

contractual commitments, the new service development, and the ongoing service

improvement plans initiated as part of a Continual Service Improvement (CSI) process.

Definition 2. IT service is defined as a tuple iiiiiis ,,,, , where i

represents the lifecycle of is ; i represents the set of people (customers, IT service

providers, suppliers, etc.) involved in is ; i represents the set of processes required to

 Figure 3.1 Onto-ITIL principles

62

manage is ; i represents the set of metrics that help manage is ; and i represents the

set of applications that support is . Similarly as in (Ferrario & Guarino, 2009), we

consider IT services to be events based on agreements and modeled by a layered set of

interrelated activities (events), each one with its own participants and spatiotemporal

location. Therefore, IT service providers do not deliver the IT service itself, but its

content, that is, “the actions to be performed in the interest of the customer.”

Definition 3. Service Lifecycle iniii ,,, 21

represents the different stages in

which an IT service is can be associated.

Definition 4. Service Stage output

ji

input

jiiij ,,

represents each of the stages

included in the i lifecycle of an IT service is , where ii P is the finite set of

processes that support the management of is . Since the strength of the ITIL service

management model relies on the continual feedback obtained at each service stage,

input

ji represents the set of input stages that are a feedback for ij , and
output

ji represents

the set of output stages that receive feedback from ij . This feedback ensures that

service optimization is managed from a business perspective.

Definition 5. Process iiiiik YOITp ,,,, , with ik Pp , represents a structured set

of activities (iT) designed to accomplish a specific objective in the management of an

IT service is . Each process takes one or more inputs iI and produces one or more

outputs iO . Each process may have one or more interfaces (iY) with other processes,

and may include any number of metrics (ii M) that help to measure its quality and

effectiveness.

Definition 6. Activity ini Taaat ,,, 21 represents the set of actions designed to

achieve a particular result of a process in the management of an IT service is .

Definition 7. Metric ini Mrrrm ,,, 21 represents a set of measurements designed

to manage an IT service is . A metric is a scale of measurement ir defined in terms of a

standard, for example, in terms of a well-defined unit. The quantification of an event

63

through the process of measurement relies on the existence of explicit or implicit

metrics, which are the standard to which measurements are referenced.

Definition 8. Application represents a piece of software that provides the

functionality required to manage an IT service is . Applications implement activities

and each application may support one or more IT services.

Definition 9. Application Functions iN define the mapping between each activity

ii Tt and the application ii A that supports an IT service is .

3.3 The Onto-ITIL Ontology

In this section, we formalize the proposed ITSM model using OWL. This model

relies on the ITIL V3 Service Management Model and on the Onto-ITIL principles

formerly described in Section 3.2. It is worth highlighting that some of the Onto-ITIL

concepts have been defined in terms of other existing ontologies that gather interesting

domain-independent knowledge [Guarino, 1998]. This allows us to relate ITIL-based

service management information to other data in the Semantic Web. Among the existing

upper ontologies useful for defining some of the Onto-ITIL concepts, we have selected

OpenCyc
29

, the public version of the Cyc technology [Lenat, 1995] one of the most

complete general knowledge base and reasoning engine available. OpenCyc provides us

with the mechanisms to define the core elements of the ITIL V3 Service Management

Model and assertions on these elements. Model elements in ITIL-based specifications

are provided by separate parts of the ontology. This enables a clear separation of the

different ITSM concerns and improves the understanding and reusability of Onto-ITIL

concepts. From here on, we use the prefixes ‘oc’ and ‘itil’ to refer to the namespaces of

OpenCyc and Onto-ITIL respectively. Figure 3.2 shows a general overview of the

ITSM model defined by the Onto-ITIL ontology.

29 http://www.opencyc.org/

64

 Figure 3.2 UML class diagram representing an overview of the ITSM model defined by the Onto-ITIL Ontology

65

3.3.1 The Service Lifecycle

An itil:Lifecycle represents the various stages (itil:Stage class) in the life of any

ITSM model element (IT service, incident, problem, etc.). The itil:Lifecycle defines the

categories for status and status transitions that are permitted using the itil:hasStage

property. The architecture of the ITIL V3 Service Management Model is based on a

service lifecycle (itil:ServiceLifecycle class, subclassing from itil:Lifecycle). The

itil:ServiceDesign, itil:ServiceTransition and itil:ServiceOperation stages are

progressive phases of the itil:ServiceLifecycle class that represent change and

transformation. The itil:ServiceStrategy stage represents policies and objectives.

Finally, the itil:CSI stage represents learning and improvement (see Definition 3 in

Section 3.2). The stages of a service lifecycle (itil:ServiceStage class) are comprised of

itil:Process(s), modeled using the itil:hasProcess property. As stated previously (see

Definition 4 in Section 3.2), the strength of the ITSM model relies on the continual

feedback obtained at each service stage [OGC, 2007d]. We use the itil:isFeedback and

itil:receivesFeedback properties to express the inputs and outputs provided and required

at each stage.

3.3.2 Specifications

An oc:Specification is the super class for all concrete specification types that

constitute the underlying ITSM model. We use this class to classify the ITIL concepts

that are considered specifications, such as itil:Process (subclassing from

oc:ProgramSpecification). In OpenCyc, specifications are defined as “an abstract work

that constitutes a description of the properties of a oc:Situation or a

oc:SomethingExisting, and sometimes even entire collections of such things.” In our

ontology, oc:Specification(s) are composed of itil:Activity(s) that describe the

specification in terms of workflows enriched with ontological knowledge (modeled

using the itil:specifiesActivity property). The oc:ProgramSpecification concept is a

subclass of oc:Specification.

66

The oc:ProgramSpecification concept represents the specification that “is not a

computer program itself (i.e. lines of code), but an abstract characterization of how a

program should behave. [...] A notable example of a oc:ProgramSpecification is UNIX

- which is not (contrary to popular belief) an operating system per se, but a specification

to which many different operating systems (instances of oc:UnixOS, subclassing from

oc:ComputerProgram-CW) conform.” Since one of our final objectives is to automate

the tasks contained in ITIL processes, we consider itil:Process a subclass of

oc:ProgramSpecification.

An itil:Process is an structured set of activities designed to accomplish a specific

objective (see Definition 5 in Section 3.2). For example, in our pilot project, an

itil:ICTD_IM_Process element (modeling the concrete incident management process

designed by our IT service provider) was created as an instance of the

itil:IncidentManagement concept. An itil:Process may define any number of

input/output interfaces from/to other itil:Process(s) belonging or not to the same service

management lifecycle stage. We define the next concepts in order to model the process

interfaces: itil:InterfaceRelation, itil:InterfaceRelationType, itil:hasInterfaceRelation,

itil;hasInterfaceRelationType and itil:interfaceValue.

3.3.3 Applications

The oc:ComputerProgram-CW concept is “a deliberately created abstract object

composed of propositions that together constitute a list of instructions for computers to

execute. [...] The instructions that comprise an instance of oc:ComputerProgram-CW

can be expressed as abstract computer code (see oc:ComputerCode), but no list of

instructions expressed in code constitutes an instance of oc:ComputerProgram-CW.

Rather, the code in which an instance of oc:ComputerProgram-CW is expressed

constitutes an instance of oc:AbstractInformationStructure that can be related to the

program it expresses using the predicate oc:programCode.” Also, the

oc:programSpecifications property is used to relate the oc:ComputerProgram-CW to

the oc:ProgramSpecification that represents the specification for how the computer

program should behave (i.e., the oc:ProgramSpecification represents the expected

behavior of the related oc:ComputerProgram-CW(s)).

67

The oc:ComputerCode concept is “a specialization of oc:ComputerAIS. Each instance

of oc:ComputerCode is an abstract list of instructions expressed in some computer

language including executable binary code.” The OpenCyc concept oc:ComputerAIS is

a specialization of oc:AbstractInformationStructure where each instance represents the

abstract information structure of an abstract work whose instantiation in computer

memory is intended to have meaning. In our approach, we consider itil:Application a

subclass of oc:ComputerCode.

An itil:Application is a piece of software that provides the functionality required by an

itil:ITService (see Definition 8 in Section 3.2). According to the Definition 9 in Section

3.2, each itil:Application implements an itil:Activity (modeled using the

itil:implementsActivity property), and it may be part of one or more itil:ITService

(modeled using the itil:supportsITService property). For example, in our pilot project,

an itil:HEAT_Help_Desk_Software element was created as an instance of the

itil:Application concept that currently implements itil:ICTD_IM_Activity and supports

the service itil:Access3G (among others).

3.3.4 Events

The event concept is “a dynamic situation in which the state of the world changes.”

The oc:subEvents property is the most general instance of oc:SubEventPredicate. This

predicate relates a given oc:Event to the oc:Event(s) that are its parts. The oc:Action

concept is the subclass of oc:Event.

An oc:Action is the super class for all the concrete action types defined in Onto-ITIL. In

OpenCyc, actions are defined as “the collection of oc:Event(s) that are carried out by

some doer. Instances of oc:Action include any event in which one or more actors effect

some change in the (tangible or intangible) state of the world, typically by an

expenditure of effort or energy.” All oc:Action(s) are performed by an oc:Agent-

Generic, i.e. the actor who is responsible for (modeled using the oc:performedBy

property). The oc:PurposefulAction concept is a subclass of oc:Action.

An oc:PurposefulAction (subclass of oc:Action) is used in our approach to classify the

activities involved in an ITIL workflow process (i.e., the set of events, the order in

68

which they must be performed, and the actors that participate in the process) and to

classify service events associated with the ITIL V3 Service Management Model. In the

Onto-ITIL Ontology, the wf:BpmnDiagram and oc:ServiceEvent concepts are

subclasses of oc:PurposefulAction.

An oc:ServiceEvent represents the super class for all concrete events. In OpenCyc,

service events are defined as “events in which one or more agents (related to the event

via the predicate oc:providerOfService) do something for one or more other agents

(related to the event via the predicate oc:recipientOfService).” An oc:ServiceProduct is

an itil:ServiceEvent done for payment. In our approach, itil:Event and itil:ITService are

subclasses of oc:ServiceProduct.

An itil:Event (see Figure 3.3) is any detectable or discernible occurrence that has

significance for the management of the IT infrastructure or the delivery of an IT service

and evaluation of the impact a deviation might cause to the services. In our approach,

itil:Event(s) have a lifecycle and there are three different types of itil:Event(s) (modeled

using the itil:EventType enumeration class): Informational, Warning and Exception. We

use the itil:Event class to specify all the events that are included in an IT service for

proactive and reactive event management (modeled using the itil:ManagedEventType

enumeration class). According to ITIL, some events could be part of different processes,

or even a combination of two or more of them. Therefore an itil:ITServiceProvider must

decide and indicate what itil:Process (or processes) is going to manage a specific

itil:Event (modeled using the itil:managesEvent property). Also, activities undertaken to

manage a specific itil:Event are included using the itil:undertakesActivity property. In

our proposal, itil:Incident, itil:ServiceRequest, itil:RFC, itil:Change and itil:Problem

are the subclasses of itil:Event. In our pilot project, each itil:Event has a type of

intervention depending if they are managed by an agent or not (modeled using the

itil:TechnicalManagementType class); and there are four types of events depending on

the business area where the event must be resolved (modeled using the

itil:EventCategoryCode class): (i) Teaching; (ii) Systems and users; (iii) Development;

and (iv) Communications. Also, activities undertaken to manage a specific itil:Event are

included using the itil:undertakesActivity property. For example, an instance of

itil:Incident (subclass of itil:Event), itil:AppServerFailure, defines the characteristics of

this kind of managed event in the organization, the actions to be performed in order to

69

resolve it (modeled using the itil:AppServerFailure_Activity instance and the

itil:undertakesActivity property), and since it is an incident, the incident is related to the

itil:ICTD_IM_Process instance.

An itil:Incident is an unplanned interruption to an itil:ITService or reduction in the

quality of an itil:ITService that must be managed by the corresponding

itil:ITServiceProvider. Each itil:Incident may be associated with one or more

itil:IncidentRecord(s). The itil:IncidentRecord is the class that contains the details of

each occurrence of a specific itil:Incident and they are related through the

itil:hasIncidentRecord property. Each itil:Incident may have links to the itil:Event(s)

concerned (oc:subEvents property) (for example, relationship with other itil:Incident(s),

itil:Problem(s), itil:Change(s) or itil:KnownError(s)), and to the itil:Activity undertaken

to resolve the itil:Incident (modeled using the itil:undertakesActivity property). Also, in

our pilot project, an itil:Incident is allocated to different support groups/persons that

could resolve the itil:Incident (oc:performedBy property). In this project, each

itil:IncidentRecord includes the responsible (IT service provider side) of the occurrence

of the itil:Incident (in this case, the person or group recording the incident), the status of

a specific itil:Incident and the user or group (customer side) that reported the occurrence

of the itil:Incident.

 Figure 3.3 UML class diagram representing the Onto-ITIL event knowledge

70

An itil:ServiceRequest is a request from an itil:User for information or advice, or for a

standard change or for access to an itil:ITService. For example to reset a password, or to

provide standard itil:ITService(s) for a new itil:User. To be an itil:ServiceRequest, it is

normal for some prerequisites to be defined and met (e.g., needs to be proven,

repeatable, pre-approved, proceduralized). The itil:ServiceRequest(s) do not require an

itil:RFC to be submitted. In our pilot project, each itil:ServiceRequest is allocated to

different support groups/persons that could deal with the itil:ServiceRequest (modeled

using the oc:performedBy property).

A Request for Change (RFC) is a formal proposal for a change to be made. An itil:RFC

includes details of the proposed itil:Change (related through the itil:proposesChange

property), and may be recorded on paper or electronically. Authorized itil:RFC(s)

should be passed to the relevant technical groups for building of the changes. The

details of a change are included in itil:ChangeRecord using the itil:hasChangeRecord

property. The itil:ChangeRecord(s) reference the itil:CI(s) that are affected by the

requested change (modeled using the itil:affectsCI property).

An itil:Change represents the addition, modification or removal of authorized, planned

or supported service or service component and its associated documentation. In our pilot

project, changes are considered urgent when they must be introduced as soon as

possible in order to restore a service after the identification of a problem and to

minimize the impact on the business; and changes are considered pre-approved when

the change represents a standard change where the intervention of the Change Advisory

Board (CAB) is not required.

An itil:Problem is the cause of one or more incidents. In our pilot project, each

itil:Problem is allocated to an specific support group/person that could resolve the

itil:Problem (modeled using the oc:performedBy property). The itil:Problem(s) are

detailed in itil:ProblemRecord(s) using the itil:hasProblemRecord property. In our

ontology, itil:KnownError is the subclass of itil:Problem.

An itil:KnownError is an itil:Problem that has a documented root cause and a

workaround. The workaround describes how to reduce or eliminate the impact of an

itil:Problem for which a full resolution is not yet available. For example, by restarting a

failed itil:CI. An itil:CI is an asset, service component or other item that is, or will be,

71

under the control of itil:ServiceAsset_and_ConfigurationManagement process. The

details of an itil:CI are included in itil:ConfigurationRecord using the

itil:hasConfigurationRecord property.

IT Services

An itil:ITService (see Definition 2 in Section 3.2) is an oc:ServiceProduct provided

to one or more customers by an IT service provider as shown in Figure 3.4. That is,

itil:ITService(s) represent the means of delivering value to customers by facilitating

outcomes, and since they are based on agreements, they have to be defined in a SLA.

The itil:CoreService and itil:SupportingService concepts are the subclasses of

itil:ITService.

An itil:CoreService represents an itil:ITService that delivers the basic outcomes desired

by the itil:Customer. The itil:CoreService(s) represent the value that the itil:Customer

wants and for which they are willing to pay. The itil:CoreService(s) anchor the value

proposition for the itil:Customer and provide the basis for their continued utilization

and satisfaction. For example, in our pilot project, itil:Access3G, itil:DNS_Service,

itil:Staff_email, itil:HW_Management and itil:Software_Licensing are examples of

instances of itil:CoreService. An itil:SupportingService is an itil:ITService that enables

 Figure 3.4 UML class diagram representing the Onto-ITIL IT service knowledge

72

or enhances an itil:CoreService. For example, itil:Backup and itil:Mailing_Lists

instances. These two classes (itil:CoreService and itil:SupportingService) are related

using the itil:hasSupportingService property.

Each itil:ITService defines a set of itil:Metric(s) whose purpose is to measure the

quality and effectiveness of that service in order to take timely actions that make sure

service are delivered in line with business needs. These are the metrics that really matter

in order to demonstrate the value of the service and for the operation in a cycle of

continuous improvement. Also, itil:ITService(s) are managed according to an

itil:ServiceLifecycle and they are composed of itil:Application(s) and other itil:CI(s)

necessary to support the provision of the itil:ITService to the business.

On the other hand, an itil:ITService is based on the use of information technology and

supports the customer’s business processes (in fact, many business processes rely on IT

services). A pattern of business activity (PBA) defines dynamics of a business and

includes interactions with customers, suppliers, partners and other stakeholders in an

itil:ITService (modeled using the itil:supportsPBA property). An itil:PBA represents a

workload profile of one or more business activities, where workload is the resources

required to deliver an identifiable part of an itil:ITService.

A user profile (UP) is a pattern of user demand for itil:ITService(s). The itil:UP(s) are

constructed using one or more predefined itil:PBA(s) (modeled using the

itil:includesPBA property). Pattern matching using itil:PBA and itil:UP ensure a

systematic approach to understanding and managing demand from customers.

As customers and suppliers become the direct users of IT services, the expectations and

service level requirements (SLRs) have become more demanding, requiring a value net

approach. An itil:SLR is a customer requirement for an aspect of an itil:ITService. A set

of targets and responsibilities should be documented and agreed within an itil:SLR for

each proposed new or changed itil:ITService. An itil:SLR is based on business

objectives and it is used to negotiate agreed itil:ServiceLevelTarget(s) (modeled using

the itil:usedForNegotiation property).

An itil:ServiceLevelTarget is a commitment that is documented in an itil:SLA. The

itil:ServiceLevelTarget(s) are based on itil:SLR(s) (modeled using the itil:basedOnSLR

property), and they are needed to ensure that the itil:ServiceDesign is fit for purpose

73

(i.e., it meets customer expectations). The itil:ServiceLevelTarget(s) should be smart,

and are usually based on itil:KPI(s) (modeled using the itil:basedOnKPI property). For

example, in our pilot project, itil:SLT_IncidentResolution is an instance of

itil:ServiceLevelTarget based on itil:SLR_Incident_and_Problem_Management

(instance of itil:SLR) and it is also based on the KPI

itil:Average_Incident_Resolution_Hours (instance of itil:KPI).

Service Portfolios

The itil:ServicePortfolio (see Definition 1 in Section 3.2) is the complete set of

itil:ITService(s) (modeled using the itil:detailsITService property) that are managed by

an IT service provider. The itil:ServicePortfolio is used to manage the entire lifecycle of

all itil:ITService(s), and includes three categories (modeled using the

itil:ServicePortfolioType enumeration class): itil:SERVICE_PIPELINE,

itil:SERVICE_CATALOG and itil:RETIRED_SERVICES. For example, in our pilot

project, itil:ICTD_ServiceCatalog is an instance of itil:ServicePortfolio, where the

itil:hasServicePortfolioType property is equal to itil_SERVICE_CATALOG and is

related to the different instances of itil:ITservice using the itil:detailsITService property.

Service Packages

An itil:ServicePackage is detailed description of an itil:ITService that is available

to be delivered to itil:Customer(s) (modeled using the itil:hasITService property). The

itil:ServicePackage(s) come with one or more itil:SLP(s) (modeled using the

itil:hasSLP property). An itil:ServicePackage is considered a core itil:ServicePackage

(modeled using the itil:corePackage datatype property) when it represents a detailed

description of an itil:CoreService that may be shared by two or more

itil:ServiceLevelPackage(s).

An itil:SLP is a defined level of utility and warranty for a particular itil:ServicePackage.

Each itil:SLP is designed to meet the needs of a particular itil:PBA (modeled using the

itil:meetsPBA property).

74

3.3.5 Roles

To represent role knowledge (see Figure 3.5), we use the oc:IntelligentAgent class

(subclassing from oc:Agent-Generic). In OpenCyc, oc:IntelligentAgent is defined as “an

agent that is capable of knowing and acting, and capable of employing its knowledge in

its actions. An oc:IntelligentAgent typically knows about certain things, and its beliefs

concerning those things influences its actions. As with agents generally, an

oc:IntelligentAgent might either be a single individual, such as a person, or a group

consisting of two or more individual agents, such as a business or government

organization.” The oc:Organization concept is a subclass of oc:IntelligentAgent.

The oc:Organization concept is defined as “the collection of all organizations. Each

instance of oc:Organization is a group whose group-members are instances of

oc:IntelligentAgent.” We use the oc:hasMembers property to relate a particular

organization to the agents who are members of that organization. The ontology

 Figure 3.5 UML class diagram representing the Onto-ITIL role knowledge

75

concepts of itil:Customer, oc:ServiceOrganization and oc:OrganizationOfPeopleOnly

are the subclasses of oc:Organization.

An itil:Customer is someone who buys goods or services. The itil:Customer of an

itil:ITServiceProvider is the person or group who defines and agrees the

itil:ServiceLevelTarget(s) in an itil:SLA.

An oc:ServiceOrganization is “an organization whose main function is to provide some

service or services”. In our approach, the itil:ITServiceProvider concept is the subclass

of oc:ServiceOrganization. An itil:ITServiceProvider is a service that provides

itil:ITService(s) to internal or external itil:Customer(s) (itil:internalProvider datatype

property).

The oc:OrganizationOfPeopleOnly concept is defined as “an organization each of

whose members is a person.” In our approach, the itil:Shift, itil:SupportGroup and

itil:User concepts are examples of subclasses of oc:OrganizationOfPeopleOnly.

An itil:Shift is a group or team of people who carry out a specific role for a fixed period

of time. An itil:SupportGroup is a group of people with technical skills. The

itil:SupportGroup(s) provide the technical support needed by all of the ITSM processes

(itil:Process). An itil:User is a person who uses the IT service on a day-to-day basis.

The itil:User class is distinct from the itil:Customer class, as some itil:Customer(s) do

not use the IT service directly. An itil:SuperUser is an itil:User who helps other users,

and assists in communication with the itil:SERVICE_DESK (instance of itil:RoleType)

or other parts of the itil:ITServiceProvider. The itil:SuperUser(s) typically provide

support for minor itil:Incident(s) and training.

Each oc:IntelligentAgent may have several roles (modeled using the itil:RoleRelation

class). For example, the roles of itil:INCIDENT_MANAGER and

itil:PROBLEM_MANAGER may be carried out by a single agent. The itil:RoleRelation

class (subclassing from oc:ActorSlot) is used to build a RACI chart that is needed to

identify/define, on the one hand, the functional roles (modeled using the itil:RoleType

enumeration class) and, on the other hand, responsibilities of the various roles (modeled

using the itil:RACICode enumeration class). A role represents a set of responsibilities

granted to a person or team that takes part in an oc:PurposefulAction (modeled using

the itil:RoleType enumeration class and itil:roleAction and itil:roleCode properties).

76

One role may have multiple responsibilities, which are defined according to the RACI

matrix in ITIL V3 using the itil:roleRACI property and the itil:RACICode enumeration

class. RACI stands for Responsible, Accountable, Consulted and Informed: (i)

Responsible: the individual who is responsible to perform the actions; (ii) Accountable:

the individual who is ultimately accountable has the power of veto. Only one

accountable can be assigned to an action; (iii) Consulted: the individual(s) to be

consulted prior to a final decision or action being taken; and (iv) Informed: the

individual(s) who needs to be informed after a decision or action is taken. The owner of

an itil:Process, and specific roles and responsibilities are defined for each

oc:IntelligentAgent in an oc:PurposefulAction using the itil:hasRoleRelation property.

3.3.6 The ITSM Metrics Model

The itil:Process(s) are measured in terms of itil:Metric(s) (see Figure 3.6). In our

approach, we include a complete metrics model suggested in [Steinberg, 2006] that can

be used with the ITIL V3 Service Management Model. In general, an itil:Metric (see

Definition 7 in Section 3.2) is a scale of itil:Measurement defined in terms of a

standard, i.e. in terms of a well-defined unit, using the itil:includesMeasurement

property. Each itil:Metric has a type (modeled using the itil:MetricType enumeration

class) and they must be designed in line with customer (business) requirements for

ITSM. The Onto-ITIL concepts of itil:OperationalMetric, itil:KPI, itil:Tolerance,

itil:CSF, itil:Dashboard, itil:Outcome and itil:AnalyticalMetric are the subclasses of

itil:Metric, where according to (Steinberg, 2006), itil:KPI(s) and the related

itil:Tolerance, itil:CSF, itil:Dashboard and itil:Outcome are the metrics that "really

matter". That is, as mentioned earlier, the metrics that provide a basis for making

business decisions in the delivery of the itil:ITService.

An itil:OperationalMetric is a basic observation of operational events that provides live

data from ITSM process (i.e., itil:Process) reporting and other infrastructure

measurements and observations. For example, in our pilot project,

itil:Percentage_of_incidents_handled_within_agreed_response_time and

itil:Total_number_of_incidents are examples of instances of itil:OperationalMetric that

help determine the efficiency and effectiveness of the itil:ICTD_IM_Process instance.

77

An itil:Metric is considered as an itil:KPI when it measures the success with the

itil:SLA(s) defined with an itil:Customer. That is, only the itil:Metric(s) that provide a

basis for making business decisions are defined as itil:KPI(s) and they are used to

actively manage and report on the itil:Process. Each itil:KPI is trying to answer a

question. While itil:OperationalMetric(s) are generally historical in nature, itil:KPI(s)

are really the “metrics that matter”. These itil:KPI(s) become the data inputs to analyze

and identify improvement opportunities. For example, in our pilot project, the

itil:Incident_resolution_rate and itil:Customer_satisfaction_level are instances of

itil:KPI for the itil:ICTD_IM_Process instance. In our approach, according to Steinberg,

the itil:KPI(s) are calculated or derived from one or more itil:OperationalMetric(s)

[Steinberg, 2006]. For example, in our pilot project, the itil:KPI of

itil:Incident_resolution_rate is the result of dividing

itil:Number_of_incidents_resolved_within_agreed_service_levels by

itil:Total_number_of_incidents (instances of itil:OperationalMetric). The results of

these calculations are then compared to an itil:Tolerance range to identify whether those

results fall within acceptable levels.

 Figure 3.6 UML class diagram representing the Onto-ITIL metrics knowledge

78

In order to get decisions, we need another type of metric that indicates when to take

actions. The itil:Tolerance is an indicator that identifies, in advance, the boundary in

which the IT service provider expects a KPI to operate and behave. That is, the

itil:Tolerance(s) represent the boundaries for acceptable and non-acceptable itil:KPI

values (i.e., service target and warning level: modeled using the itil:ToleranceType

enumeration class). For example, in our pilot project, if the service target of the

itil:Tolerance boundary for the itil:KPI of itil:Average_Incident_Resolution_Hours is

2.0 it means that the service target for this itil:KPI would be 2.0 hours. On the other

hand, if the warning level of the itil:Tolerance boundary for the itil:KPI of

itil:Average_Incident_Resolution_Hours is 3.5, it means that the performance of this

itil:KPI would be considered acceptable as long as it is not higher than 3.5 hours. If it is

higher, management actions may need to take place to raise the performance back to

acceptable levels.

A Critical Success Factor (CSF) is something that must happen if an itil:Process is to

succeed. The itil:KPI(s) are used to measure the achievement of each itil:CSF. For

example, in our pilot project, itil:Quickly_resolve_incidents is a instance of itil:CSF

measured by the itil:KPI(s) of itil:Incident_reopen_rate,

itil:Average_time_to_resolve_severity1_and_severity2_incidents_hours and

itil:Incident_management_tooling_support_level. In another example, the itil:KPI of

itil:KPI_10_percent_increase_in_customer_satisfaction_rating_for_

handling_incidents_over_the_next_6_months would measure an itil:CSF of

itil:Improving_IT_service_quality, and the itil:KPI of

itil:KPI_10_percent_reduction_in_the_costs_of_handling_printer_incidents would

measure an itil:CSF of itil:Reducing_IT_costs. Also, an itil:CSF can be associated with

an performance indicator (modeled using the itil:PerformanceLevel enumeration class).

In an itil:CSF, to receive the performance level of 'High', all the associated itil:KPI(s)

must have met or exceeded their itil:Tolerance acceptable values. When one of the

associated itil:KPI(s) falls into an itil:Tolerance non-acceptable value, the itil:CSF

performance level might be 'Medium' or 'Low' depending on how the associated itil:KPI

value fell within the specified itil:Tolerance range for it.

An itil:Dashboard is a graphical representation of overall IT service performance and

availability. The itil:Dashboard images may be updated in real-time, and can also be

79

included in management reports and web pages. Therefore, itil:Dashboard(s) can be

considered as key itil:Metric(s) that are represented on a report or graphical interface

that indicates the success, at risk or failure of a business activity. The itil:Dashboard

results are derived from itil:CSF results (itil:CSFRelation class). The itil:CSF(s) can

contribute to one or more dashboards and each dashboard may have one or more

multiple itil:CSF(s). For the purpose of our approach, just like the approach of

Steinberg [2006], we use the Balanced Scorecard originally developed by Kaplan and

Norton [1992]. The Balanced Scorecard was originally developed around the concept

that financial measures alone are not critical for business success. The Balanced

Scorecard has been generally recognized as an acceptable approach for senior

management levels where the scorecard categories recommended for ITSM are

(modeled using the itil:ScorecardType enumeration class): Customer, Capabilities,

Operational, Financial and Regulatory.

The itil:Outcome(s) are key indicators of general business risk areas, that is, they are the

kind of things that IT is trying to protect against. These are associated with performance

indicators that identify the success, at risk or failure of itil:KPI(s) or itil:CSF(s). The

itil:CSF(s) are used to determine itil:Outcome(s) (operational risks). Legal exposure,

service outages, rework, waste, security breaches, unexpected costs, slow response to

business needs and changes, fines and penalties, loss of market share and dissatisfied

customers are examples of itil:Outcome(s). The itil:Outcome(s) can be associated with a

performance indicator: High, Medium or Low (modeled using the

itil:hasPerformanceLevel property) that might reflect the likelihood of risk that the

itil:Outcome will occur. In Onto-ITIL, the risk level is derived from the mean average

of the itil:CSF performance levels. Scoring for an itil:Outcome runs opposite to how the

itil:CSF(s) are calculated. If a itil:CSF scores 'Low', meaning the likelihood of

achieving that itil:CSF is low, then the itil:Outcome would score 'High'. This means that

the risk of the itil:Outcome occurring is high because the itil:CSF achievement was low.

An itil:AnalyticalMetric is a used to separate out certain itil:Metric(s) that are really

more helpful for supporting research into an issue, incident or service problem. The

itil:AnalyticalMetric(s) are metrics that IT service providers may report on only on a

one-time basis or as part of a drill-down (such as for an itil:Dashboard). An

itil:AnalyticalMetric is a subset of subdivision of an itil:Metric (hasAnalyticalMetric

80

property). For example, in our pilot project, the itil:OperationalMetric of

itil:Total_number_of_incidents_for_analytical_purposes has been broken out by the

next itil:AnalyticalMetric(s): itil:Department_of_business_unit,

itil:Physical_Intervention, itil:Expert, itil:IT_service_delivered and itil:Time_of_day.

3.3.7 Service Level Agreements

For Service Level Agreement (SLA) management (see Figure 3.7), we have

included the oc:Contract concept. In OpenCyc, a contract is defined as “a legal

agreement in which two or more oc:agreeingAgents promise to do (or not do)

something. There are legal consequences to breaking the promises made in a

oc:Contract. ” An oc:Contract is composed of one or more oc:ContractDocument

(modeled using the itil:agreesContractDocument property).

The itil:SLA represents the itil:Agreement (subclass of oc:ContractDocument) that

describes a formal understanding of an agreement between itil:Customer(s) and the

itil:ITServiceProvider. That is, an itil:SLA is a written agreement between an

itil:ITServiceProvider and the itil:Customer(s), defining the key service targets and

responsibilities of both parties. Each itil:Agreement defines a business process that

enables the delivery of an itil:ITService (modeled using the itil:definesBusinessProcess

property). An itil:SLA describes the itil:ITService, itil:ServiceLevelTarget(s), and

specifies the responsibilities of the itil:ITServiceProvider (modeled using the

itil:ITServiceProviderRelation class and the itil:hasITServiceProviderRelation property)

and the itil:Customer (modeled using the itil:CustomerRelation class and the

itil:hasCustomerRelation property). An itil:SLA represents the level of assurance or

warranty with regard to the level of service quality delivered by the

itil:ITServiceProvider to the itil:Customer(s) for each of the itil:ITService(s) delivered

to the business. Also, itil:SLA(s) are related to the contracts Operational Level

Agreements (OLAs) and Underpinning Contracts (UCs) which provide support to SLA

fulfillment (modeled using itil:OLA and itil:UC classes, and itil:supportedByOLA and

itil:supportedByUC properties). The itil:OLA is an agreement between an

itil:ITServiceProvider and a third party that assists with the provision of itil:ITService(s)

to itil:Customer(s). However, in this case, the third party is another part of the same

81

itil:Organization. The itil:OLA defines the goods or services to be provided and the

responsibilities of both parties. For example there could be an itil:OLA between the

itil:ITServiceProvider and a procurement department to obtain hardware in agreed

times. Finally, the itil:UC is an itil:Agreement between an itil:ITServiceProvider and a

third party. In this case, the third party (supplier) is another itil:Organization. The

itil:UC defines targets and responsibilities that are required to meet agreed

itil:ServiceLevelTarget(s) in an itil:SLA.

Since suppliers (internal or external) and the management of suppliers and partners are

essential to the provision of quality IT services [OGC, 2007a], we can obtain the

internal and cross-organizational integration of the supporting services through the

management of itil:OLA(s) and itil:UC(s) using ebXML business process specifications.

The itil:OLA and itil:UC concepts represent the Collaboration Protocol Agreements

(CPAs) established between the business parties in the ebXML domain. This means that

both parties do electronic business directly according to a specific CPA (i.e., the IT

service provider and its supplier follow the business process defined in the CPA). For

example, in our pilot project, a new computer tool for incident management was

required in order to implement itil:ICTD_IM_Process. Therefore, the

itil:ICTD_IM_Activity business process, instance of itil:Activity, that specifies the

 Figure 3.7 UML class diagram representing the Onto-ITIL SLA knowledge

82

corresponding process flow needs to be transformed into a ebXML model and

associated with the CPA document (i.e., itil:ICTD_IM_OLA, instance of itil:OLA, that

has been transformed into the ebXML CPA document).

The resulting mapping between the ebXML business process specification constructs

[UN/CEFACT and OASIS, 2001] and Onto-ITIL constructs for supplier management is

summarized in Table 3.1 (ebXML abstract classes and optional classes have been

Table 3.1 Mapping between ebXML constructs and Onto-ITIL constructs

ebXML construct Onto-ITIL construct

ebxml:MultipartyCollaboration wf:Pool, wf:Lane and itil:RoleType

ebxml:BusinessPartnerRole itil:RoleRelation

ebxml:Performs oc:performedBy

ebxml:AuthorizedRole oc:IntelligentAgent, oc:responsibleFor and itil:RoleRelation

ebxml:BinaryCollaboration itil:Activity

ebxml:BusinessTransactionActivity itil:Activity and wf:ActivityType="Subprocess" OR "Task"

ebxml:CollaborationActivity itil:Activity and wf:ActivityType="Subprocess" OR "Task"

ebxml:BusinessTransaction itil:Activity and wf:ActivityType="Subprocess" OR "Task"

ebxml:RequestingBusinessActivity itil:Activity and wf:ActivityType= "Task"

ebxml:RespondingBusinessActivity itil:Activity and wf:ActivityType= "Task"

ebxml:DocumentEnvelope itil:Agreement

ebxml:BusinessDocument itil:Agreement

ebxml:Transition wf:Assocation and wf:SequenceEdge

ebxml:Start

itil:Activity and wf:ActivityType= "EventStartEmpty" OR

"EventStartMessage" OR "EventStartMultiple" OR "EventStartRule" OR

"EventStartTimer" OR "EventStartLink" OR "EventStartSignal"

ebxml:Sucess

itil:Activity and wf:ActivityType= "EventEndEmpty" OR

"EventEndMessage" OR "EventEndCompensation" OR

"EventEndTerminate" OR "EventEndLink" OR "EventEndMultiple"

ebxml:Failure itil:Activity and wf:ActivityType= "EventEndError"

ebxml:Fork

itil:Activity and wf:ActivityType= "GatewayDataBasedExclusive" OR

"GatewayEventBasedExclusive" OR "GatewayDataBasedInclusive" OR

"GatewayParallel" OR "GatewayComplex"

ebxml:Join

itil:Activity and wf:ActivityType= "GatewayDataBasedExclusive" OR

"GatewayEventBasedExclusive" OR "GatewayDataBasedInclusive" OR

"GatewayParallel" OR "GatewayComplex"

83

omitted). In order to validate our approach, we implemented a prototype in Java in the

Eclipse platform that generates the transformation from an Onto-ITIL model to an

ebXML model. Some ebXML constructs are derived from the combination of some

constructs in the Onto-ITIL model, as shown in Table 3.1.

3.3.8 The Onto-BPMN Ontology

As mentioned earlier, oc:Specification(s) may have associated the process flow or

workflow (itil:Activity) which defines how a specification achieves its purpose. To

complete the semantics of workflows, we have developed the Onto-BPMN Ontology as

part of Onto-ITIL Ontology (see wf:BpmnDiagram class in Figure 3.2). The Onto-

BPMN Ontology is a formalization in OWL of the BPMN constructs [OMG, 2006a],

that is shown in Figures 3.8 and 3.9.

 Figure 3.8 UML class diagram representing the Onto-BPMN Ontology

84

In this case, the definition of our ontology was driven by the description of the complete

set of BPMN elements contained in the metamodel of the BPMN modeler subproject

developed for the SOA Tools Platform (STP) project
30

, enabling the integration of our

workflow specifications into the Eclipse platform. The BPMN metamodel is depicted in

Figure 3.10. The BPMN modeler is based on the Eclipse Modeling Framework Project

(EMF
31

) object model bound to a graphical notation via the Graphical Modeling

Framework (GMF
32

). This ontology is kept separate for a better management of the

workflow knowledge of an ITSM model. In this case, we use the prefix 'wf' to reference

the namespace of our Onto-BPMN Ontology.

30 http://www.eclipse.org/bpmn/
31 http://www.eclipse.org/modeling/emf/
32 Graphical Modeling Project (GMP): http://www.eclipse.org/modeling/gmp/

 Figure 3.9 UML class diagram representing the Onto-BPMN Ontology (cont.)

85

The wf:BpmnDiagram concept (subclassing from wf:ArtifactsContainer) is therefore

used for the workflow dimension of our ontology. The wf:BpmnDiagram (subclassing

from oc:PurposefulAction in the Onto-ITIL Ontology) is the workflow representation

(i.e., the workflow model) in form of a BPMN diagram which is composed of pools

(wf:Pool) and messages (wf:MessagingEdge). In our approach, we consider itil:Activity

a subclass of wf:BpmnDiagram in order to model the high level requirements of the

information system that could automate the activities defined as part of a workflow

model associated with an ITSMS.

A complete specification of a BPMN diagram definition in the Onto-BPMN Ontology

consists of the next model elements: Artifacts (Data object, Group and Text

annotation), Graphs (Pool and Subprocess), Lanes, Nodes (Activity) and Edges

(Sequence edge and Messaging edge).

A wf:DataObject is an wf:Artifact that provides provide information about what the

what activities require to be performed and/or what they produce. That is, how

documents, data, and other objects are used and updated during the business process. A

wf:DataObject can represent a singular object or a collection of objects.

A wf:Group is an wf:Artifact that provides a visual mechanism to group elements of a

diagram informally.

A wf:TextAnnotation is an wf:Artifact that provides a mechanism to introduce additional

text information for the reader of a BPMN Diagram.

A wf:Graph is the workflow model graphical element used to define pools (wf:Pool)

and subprocesses (wf:SubProcess). A wf:Graph is composed of vertices (wf:Vertex) and

edges (wf:SequenceEdge).

86

 Figure 3.10 UML class diagram representing the BPMN Metamodel as depicted in [Eclipse - BPMN Modeler, 2011]

87

A wf:Pool (subclassing from wf:Graph and wf:MessageVertex) is the graphical

representation of a participant in a collaboration. A participant represents a specific

partner entity (e.g., a company) and/or a more general partner role (e.g., a buyer, seller,

or manufacturer) that are participants in a collaboration. In Onto-ITIL, a wf:Pool is also

a subclass of the oc:Agent-Generic concept representing the actor that participates in an

itil:Activity. Furthermore, in our approach, using the wf:diagramComposedOf property,

an itil:Activity is associated with an unique wf:Pool (i.e., the IT department responsible

of the itil:Activity), which is also composed of an unique wf:SubProcess that represents

the specification of the information system associated with the itil:Activity that the

wf:Pool is responsible for (modeled using the wf:graphComposedOf and

oc:responsibleFor properties).

A wf:Lane (subclassing from wf:AssociationTarget and wf:NamedBpmnObject) is a

sub-partition within a wf:Pool which extends the entire length of the workflow level,

either vertically or horizontally. Just like a wf:Pool, in Onto-ITIL, a wf:Lane is also a

subclass of oc:Agent-Generic.

A wf:Vertex is a given node in a wf:Graph. A wf:MessageVertex represents nodes that

can send and/or receive messages. A wf:Activity (subclassing from wf:MessageVertex

and wf:Vertex) is work that is performed within a business process. A wf:Activity can be

atomic or non-atomic (compound). The wf:Activity represents points in a process flow

where work is performed. The wf:Activity(s) are the executable elements of a business

process. As a vertex, wf:Activity may have associations. A wf:Association is used to

associate information between artifacts (i.e., wf:Artifact, which is used to obtain the

source of the wf:Association) and flow objects (i.e., wf:AssociationTarget, which is used

to obtain the target of the wf:Association). There are different types of wf:Activity(s)

modeled using the wf:ActivityType enumeration class. For example, wf:Task is an

atomic wf:Activity within a flow. A wf:Subprocess is a composite wf:Activity, i.e., the

specification of parameterized behavior as the coordinated sequencing of subordinate

units whose individual elements are tasks. A subprocess is also modeled as a class

(wf:SubProcess class, subclassing from wf:Graph) which represents a behavior whose

internal details have been modeled using activities, gateways, events, and sequence

flows. As every graph, a wf:SubProcess will have associated the artifacts that are

contained in the graph.

88

A wf:SequenceEdge is used to connect nodes (wf:Vertex) in a wf:Graph. In

wf:SequenceEdge, the wf:objectName datatype property represents the guard of the edge

(i.e., the specification evaluated at runtime to determine if the edge can be traversed). A

wf:MessagingEdge (subclassing from wf:AssociationTarget and wf:NamedBpmnObject)

is used to connect messages nodes (wf:MessageVertex).

Following the approach defined by Ferrario and Guarino [2009] we present an

itil:Activity (subclassing from wf:BpmnDiagram) as the service process that implements

the service, i.e., the actions that ultimately lead to service production performed by the

IT service provider (see Definition 6 in Section 3.2). These activities are carried out and

coordinated by the specifications as part of a business process, during which documents

or information are passed from one participant to another, according to a set of

procedural rules. For example, in our pilot project, an instance of the itil:Activity,

itil:ICTD_IM_Activity, specifies the workflow that defines the tasks to carry out when

an incident is reported and it is related to the corresponding process instance,

itil:ICTD_IM_Process (modeled using the itil:specifiesActivity property).

89

Chapter 4

Evaluation

In this chapter we describe the prototype that we have implemented in order

validate Onto-ITIL. As a proof of concept, we started a pilot project with a Spanish IT

service provider (the Information and Communication Technology Department – ICTD

– of a Spanish company) interested in improving the quality of the services they were

delivering to their customers in order to obtain an optimal level of customer satisfaction

and to become more competitive and efficient.

4.1 Implementation of the Prototype

This section describes the prototype developed in order to validate the proposed

approach. The objectives included: (i) to improve customer satisfaction; (ii) to improve

the quality of their services; (iii) to make use of a framework for: ITI process, activity

and procedure definitions, metric identification and better technology access to service

delivery; (iv) to be responsible for ITSM projects for high availability and reliability;

and (v) to become a proactive organization. Being a SME company, they had limited

time and resources to implement a comprehensive ITSMS. Therefore, the company

decided to start adopting ITIL and to implement the incident management process,

adapting it according to its business requirements using our approach. Figure 4.1

summarizes the process we followed to implement this prototype, consisting in four

phases, briefly described in the following subsections.

“Sennores e amigos, lo que dicho avemos Palabra es oscura, exponerla

queremos: Tolgamos la corteza, al meollo entremos. Prendamos lo de

dentro, lo de fuera dessemos.” Milagros de Nuestra Señora

Gonzalo de Berceo (1197-1264), Spanish poet

90

4.1.1 Stage 1: Service Portfolio

We start with the fact that the IT services are contained within a service portfolio

belonging to an IT service provider. These IT services underpin the business processes

of different organizations.

 Figure 4.1 Architecture of Onto-ITIL

Business

Processes

IT Services

1: underpin

2: managed by

ITIL

Processes

IT Service

Provider

1: provides

2: formalized by

Service Portfolio

IT Service Management

IT Service Management Ontology

(Onto-ITIL + Onto-BPMN + OpenCyc)

OWL + SWRL

OWL Activity

Model JAVA Application3: generates

XMI File

3: workflow instances

Business

BPMN Model

XMI File 4: M2M

(XSLT Transformer)

XSLT File

Model Transformation

91

4.1.2 Stage 2: ITIL-compliant and Ontology-based IT Service

Management

In order to assess the efficiency and quality of the IT services included in the

service portofolio, a complete ITSM is carried out according to Onto-ITIL. We use the

Onto-ITIL Ontology to ease the integration of business information and IT for building

ITSMSs in terms of ITIL processes. It provides mechanisms for semantic analysis

(based on the underlying constraints), new knowledge inference, and SLA management,

among others.

4.1.3 Stage 3: Business Process Modeling

In order to provide support to the implementation of the ITIL processes, we use the

Onto-BPMN Ontology (included as part of the Onto-ITIL Ontology) for defining the

workflows associated to each ITIL process.

4.1.4 Stage 4: Workflow Model Transformation

To manage the knowledge related to the ITIL process that is being automated

through computer tools (itil:Application), those activities (itil:Activity) defined in Onto-

ITIL Ontology can be included in the Eclipse platform for its total (or partially)

automation by means of an information system. To accomplish this, a Java application

is implemented which, (i) shows all of the instances of itil:Activity defined in the

ontology; (ii) allows the user to establish which of these activities will be automated and

implemented in the itil:Application as part of the ITSMS; and (iii) executes an XSLT

script to transform the selected activities into a BPMN model, which conforms to the

BPMN metamodel (obtained from the Eclipse BPMN modeler subproject developed for

the STP project). The resulting BPMN model describes, at a very high-level of

abstraction, the business processes to be implemented as part of the ITSMS.

92

4.2 Case study: Implementation of an Incident Management

System

As previously mentioned, our approach is illustrated using a real case study of a

Spanish IT service provider that wanted to implement the Incident Management process

from the Service Operation stage, as a first step to improve the quality of their services.

We selected this process to validate our work because the Incident Management process

is highly visible to the business and, therefore, it is often one of the first processes to be

implemented in ITSM projects [OGC, 2007d]. Also, this process is a relatively simple

one with a reasonable number of classes and properties associated.

Starting with our pilot project (see Stage 1 in Subsection 4.1.1), an instance of the

itil:ITServiceProvider, itil:ICTD_provider, provides several IT services (instances of

itil:CoreService class), which are contained within itil:ICTD_ServiceCatalog:

itil:Access3G, itil:Backup, itil:MailingLists, itil:DataNetwork, itil:Microcomputing,

itil:SWManagement, itil:SWLicensing, itil:Staff_email...

The next subsections (4.2.1 and 4.2.2) describe the documentation associated to our

Incident Management process model (see Stage 2 in Subsection 4.1.2).

4.2.1 The ITIL Incident Management Process

The ITIL V3 book on Service Operation [OGC, 2007c] describes best-practice

advice and guidance on all aspects of managing the day-to-day operation of an

organization’s IT services. It covers issues relating to the people, processes,

infrastructure technology and relationships necessary to ensure the high quality, cost-

effective provision of IT service necessary to meet business needs. This fourth book in

the ITSM lifecycle is concerned with business as usual activities.

Since Incident Management is the process responsible for managing the lifecycle of all

incidents, it includes incident logging, incident escalation, trend and root cause analysis

and resolution of incidents [ISACA, 2007]. ITIL defines an incident as “an unplanned

interruption to an IT service or reduction in the quality of an IT service. Failure of a

configuration item (CI) that has not yet impacted service is also an incident, for

93

example failure of one disk from a mirror set” [OGC, 2007c]. In this respect, we must

not be confused by the term problem. Some people use either ‘incident’ or ‘problem’

but they are not the same. Incident and problem are not equivalent terms. In ITIL

terminology a problem is defined as “a cause of one or more incidents.” The cause of a

problem is not usually known at the time a problem record is created, and the Problem

Management process is responsible for further investigation [OGC, 2007c].

This process can include failures, questions or queries reported by the customers, by

technical staff, or automatically detected and reported by even monitoring tools. The

primary goal of Incident Management is to restore normal service operation to

customers as quickly as possible (i.e., make sure that IT services are quickly available

as required) and minimize the adverse impact on business operations, thus ensuring that

the best possible levels of service quality and availability are maintained. In this way,

incident resolution priorities with business imperatives must be aligned. Normal service

operation is defined in ITIL as service operation within SLA limits.

There are several mechanisms in which business can benefit from the Incident

Management process [OGC, 2007d], [ISACA, 2007]:

 The ability to detect and resolve incidents which results in lower downtime to

the business, which in turn means higher availability of the service.

 The ability to increase productivity through quick resolution of customer

queries, questions and incidents.

 The ability to address root causes, such as poor user training, through effective

reporting.

 The ability to align IT activity to real-time business priorities. This is because

Incident Management includes the capability to identify business priorities and

dynamically allocate resources as necessary.

 The ability to identify potential improvements to services. This happens as a

result of understanding what constitutes an incident and also from being in

contact with the activities of business operational staff.

 The IT help desk can, during its handling of incidents, identify additional service

or training requirements found in IT or the business.

94

The Incident model is a way of pre-defining the steps that should be taken to handle a

process for dealing with a particular type of incident in a well-defined manner. Support

tools can then be used to manage this process. In this way, we can ensure that all

incidents are handled in a pre-defined path and within pre-defined timescales.

Therefore, the incident model should include [OGC, 2007d]:

 Steps that should be taken to handle the incident.

 Chronological order these steps should be taken in, with any dependences or co-

processing defined.

 Responsibilities, that is who should do what.

 Timescales and thresholds for completion of the actions.

 Escalation procedures, that is, who should be contacted and when.

 Any necessary evidence-preservation activities (particularly relevant for

security- and capacity-related incidents).

Also, Incident models are input to the incident-handling support tools in use and the

tools have to automate the handling, management and escalation of the process.

On the other hand, according to COBIT [ISACA, 2007], the RACI matrix related to the

Incident Management process that maps activities to roles and defines how roles

contribute to an activity is given in Table 4.1.

Table 4.1 RACI matrix for the Incident Management process

Activity Function

CEO CIO BPO HO CHA HD HA CARS IM

Create classification (severity and

impact) and escalation procedures

(functional and hierarchical)

 C C C C C C C A/R

Detect and record incidents/service

requests

 A/R

Classify, investigate and diagnose

queries

 I C C C I A/R

Resolve, recover and close incidents I R R R C A/R

Inform users (for example, status

updates)

 I I A/R

Produce management reporting I I I I I I A/R
CEO: Chief Executive Officer; CIO: Chief Information Officer; BPO: Business Process Owner; HO: Head Operations; CHA: Chief

Architect; HD: Head Development; HA: Head IT Administration; CARS: Compliance, Audit, Risk and Security; IM: Incident

Manager

95

Taking all these aspects related to the Incident Management process into consideration,

we defined the instance of the itil:IncidentManagement class, itil:ICTD_IM_Process,

using the Protégé 3.4.4 ontology editor tool, that is shown in Figure 4.2.

96

 Figure 4.2 The itil:ICTD_IM_Process instance

97

4.2.2 The Incident Management Metrics Model

The objective of the metrics illustrated in Table 4.2, which have been included in

our pilot project (ICTD) from [Steinberg, 2006], is to determine the efficiency and

effectiveness of our Incident Management process, and its operation.

Table 4.3 lists the suggested KPIs and how they are calculated from the previous

operational metrics [Steinberg, 2006].

These KPIs are critical to manage and monitor Incident Management activities.

Table 4.4 lists each KPI and the question is trying to answer [Steinberg, 2006].

Table 4.2 Operational metrics for the Incident Management process

ID Metric

A Total number of incidents

B Average time to resolve severity 1 and severity 2 incidents (hours)

C Number of incidents resolved within agreed service levels

D Number of high severity / major incidents

E Number of incidents with customer impact

F Number of incidents reopened

G Total available labor hours to work on incidents (non-Service Desk)

H Total labor hours spent resolving incidents (non-Service Desk)

I Incident Management Tooling Support Level

J Incident Management Process Maturity

Table 4.3 KPIs for the Incident Management process

ID KPI Calculation

1 Number of incident occurrences A

2 Number of high severity / major incidents D

3 Incident resolution rate C/A

4 Customer incident impact rate E/A

5 Incident reopen rate F/A

6 Average time to resolve severity 1 and severity 2 incidents (hours) B

7 Incident labor utilization rate H/G

8 Incident management tooling support level I

9 Incident management process maturity J

98

The Critical Success Factors (CSFs) associated with the Incident Management process

are listed in Table 4.5. This information provides CIOs, CEOs and BPOs with indicators

from which they can make accurate and timely business decisions and with confidence

that IT is managing itself well [Steinberg, 2006].

Table 4.6 summarized the evaluation of the metrics model related to the Incident

Management process after applying the proposed approach in the ICTD (data were

collected six months after the implementation).

Table 4.4 KPI objectives

KPI Question being answered

Number of incident occurrences
How many incidents did we experience within our

infrastructure?

Number of high severity / major

incidents
How many major incidents did we experience?

Incident resolution rate
How successful are we at resolving incidents per business

requirements?

Customer incident impact rate
How well are we keeping incidents from impacting

customers?

Incident reopen rate How successful are we at permanently resolving incidents?

Average time to resolve severity 1

and severity 2 incidents (hours)
How quickly are we resolving incidents?

Incident labor utilization rate
How much available labor capacity was spent handling

incidents?

Incident management tooling support

level

How well does our current tool set support Incident

Management activities?

Incident management process

maturity
How well do we execute our Incident Management practices?

Table 4.5 CSFs for the Incident Management process

CSF KPI

Quickly resolve incidents 5,6,8

Maintain IT service quality 1,2,3,4,8,9

Improve IT and business productivity 7,8

Maintain user satisfaction 4,8,9

99

As shown in Table 4.6, the results show clear improvements in the Incident

Management process. Now, the ICTD can measure some aspects not taken into account

before the ITIL implementation. However, physical intervention (non-Service Desk)

spent a lot of time resolving customer incidents and thus, it will need further

investigation by the ICTD's Incident Manager.

4.2.3 The Incident Management Activity

In order to manage the computer tools that the organization required for the

Incident Management process, we defined the workflow that describes the Incident

Management process adapted to our pilot project (see Stage 3 in Subsection 4.1.3).

Figure 4.3 shows the workflow representing the business process for Incident

Management.

This business process (itil:ICTD_IM_Activity) was defined in terms of our Onto-BPMN

Ontology (part of the Onto-ITIL Ontology) using the Protégé 3.4.4 ontology editor

(see Figure 4.4.) In this case, as we explained earlier, we only have one pool instance

(itil:ICTD_Pool_IncidentManagement) associated with the subprocess instance

(itil:ICTD_IncidentManagementSystem) that contains all the elements of the workflow

(see Figures 4.5 and 4.6).

Table 4.6 Evalutation of the KPIs for the Incident Management process in the pilot project

ID KPI Before adopting

ITIL

Using our

approach

1 Number of incident occurrences 220 103

2 Number of high severity / major incidents 76 65

3 Incident resolution rate 81.82% 97,31%

4 Customer incident impact rate 81.82% 97,31%

5 Incident reopen rate 12.27% 8,23%

6 Average time to resolve priority 10 and priority 9 incidents

(hours)
Unknown 45 minutes

7 Incident labor utilization rate Unknown 35%

8 Incident management tooling support level Low Medium

9 Incident management process maturity Unknown Managed

100

 Figure 4.3 Workflow representing the Incident Management Business Process

101

 Figure 4.4 The itil:ICTD_IM_Activity instance

102

 Figure 4.5 The itil:ICTD_Pool_IncidentManagement instance

103

 Figure 4.6 The itil:ICTD_IncidentManagementSystem instance

104

4.2.4 XSL Transformation

Once we had defined the workflow related to the Incident Management process in

terms of our Onto-BPMN Ontology, we used this knowledge to obtain the conceptual

model of the ITSMS needed to support it (see Stage 4 in Subsection 4.1.4). For this

purpose, we used a java file (OWL2BPMN_client.java) which: (i) presents to the user

all the itil:Activity instances in the ontology, allowing him to select those to be

automated (see Figure 4.7); (ii) creates an XMI-serialized Onto-ITIL model for each

selected activity (OWL2BPMNTransformer_XSLT.java) (see Figure 4.8); and (iii)

generates a XMI-serialized BPMN models for the resulting OWL models by using an

XSLT script (OWL2BPMNTransformer.xslt) (see Figure 4.9).

Table 4.7 lists the mappings among Onto-ITIL Activities and BPMN constructs. For

example, in an Onto-ITIL Activity diagram, the element Activity associated with the

element graphComposedOf is transformed into the element vertices

xmi:type=“bpmn:Activity” in a BPMN diagram. The resulting BPMN model (in xmi

form) can then be opened and edited using the Eclipse BPMN Modeler (see Figure

4.10).

 Figure 4.7 ITIL Activities Selection

105

 Figure 4.8 Excerpt of the ICTD_IM_Activity.onto_itil (Eclipse Text Editor)

Table 4.7 Mapping of Onto-ITIL Activity and BPMN constructs

Onto-ITIL Activity Type BPMN Model Type

Activity (associated with the

element <graphComposedOf>)
element vertices (with the attribute xmi:type=“bpmn:Activity”) element

Activity (associated with the

element <hasActivities>)
element activities (associated with the element <lanes>) attribute

Association element associations (with the attribute xmi:type=“bpmn:Association”) element

DataObject element artifacts (with the attribute xmi:type=“bpmn:DataObject”) element

elementID element iD attribute

hasActivityType element activityType attribute

Lane (associated with the

element <composedOfLanes>
element

lanes (associated with the element <pools> and with attribute

xmi:type=“bpmn:Lane”)
element

Lane (associated with the

element <inActivityGroup>
element lanes (associated with the element <vertices>) attribute

objectName element name attribute

Pool element pools (with the attribute xmi:type=“bpmn:Pool”) element

SequenceEdge (associated with

the element

<graphComposedOf>)

element
sequenceEdges (with the attribute

xmi:type=“bpmn:SequenceEdge”)
element

SequenceEdge (associated with

the element <incomingEdges>)
element incomingEdges (associated with the element <vertices>) attribute

SequenceEdge (associated with

the element <outgoingEdges>)
element outgoingEdges (associated with the element <vertices>) attribute

SubProcess element vertices (with the attribute xmi:type=“bpmn:SubProcess”)

TextAnnotation element artifacts (with the attribute xmi:type=“bpmn:TextAnnotation”) element

xmi:id attribute xmi:id attribute

workflow element bpmn:BpmnDiagram element

106

 Figure 4.9 Excerpt of the ICTD_IM_Activity.bpmn (Eclipse Text Editor)

107

 Figure 4.10 BPMN model of the IM activity (Eclipse Bpmn Diagram Editor)

108

4.2.5 Ontology Queries, Rule-based Constraints and Knowledge

Inference

Finally, for the ICTD pilot project, we have defined a set of SWRL rules for model

consistency checking, model validation, and business rule analysis. These rules can be

executed on Onto-ITIL Ontology using Protégé and the Jess rule engine, allowing us to

both verify constraints and inconsistencies in the incident model, and to incorporate new

inferred knowledge into the ontology. Also, queries to the ontology and its knowledge

base are performed using SQWRL. These extensions to the ontology demonstrate the

feasibility and benefits of Onto-ITIL, as the combined use of the ontology with queries

and rules provide us with all the relevant aspects of the ITIL specification as well as

dynamic capabilities capable of improving the management of their IT services. The

following subsections further describe the three types of rules we have defined in

SWRL and SQWRL for (i) model consistency, (ii) SLA breaches and (iii) proactive

actions.

Model Consistency Rules

Model consistency rules are applied to all the instances included in Onto-ITIL

models. We now provide examples of model consistency rules. The following rule

states that, although each service process is part of a unique stage, in order to improve

their reusability in the ITIL Service Lifecycle, it is possible to have the same process

related to different stages, but with the same type:

itil:IncidentManagement(?p) itil:ServiceStage(?s1) itil:ServiceStage(?s2)

differentFrom(?s1,?s2) itil:inServiceStage(?p,?s1) itil:inServiceStage(?p,?s2)

itil:ServiceOperation(?s1) itil:hasProcess(?s1,?p)

itil:ServiceOperation(?s2) itil:hasProcess(?s2,?p)

109

This rule states that if an incident management process (p) takes part in different service

stages (s1, s2), then s1 and s2 must represent service operation stages (i.e., instances of

itil:ServiceOperation), and both s1 and s2 must have p as an associated process.

Similarly, the next rule defined states that if a KPI is related to a specific process then,

given that a KPI is a metric that enables business decisions in the delivery of a service it

must be a metric belonging to the IT service associated with the process:

itil:ITService(?serv) itil:ServiceLifecycle(?l)

itil:hasServiceLifecycle(?serv,?l) itil:ServiceOperation(?st)

itil:inServiceLifecycle(?st,?l) itil:OperationProcess(?p)

itil:hasOperationProcess(?st,?p) itil:KPI(?m) itil:measures(?m,?p)

itil:definesMetric(?serv,?m)

In this case, if an IT service (serv) has a service lifecycle (l), and a service operation

stage (st) is part of l, and an operation process is one of the processes included in st, and

m is a KPI that measures p, then serv must have m also as a defined metric.

The next rule shows how it is possible to force the computation of a specific metric in

order to document it and test its results following the metrics model proposed in

[Steinberg, 2006]:

itil:OperationalMetric(itil:Number_incidents_resolved_within_agreed_serv_levels)

itil:OperationalMetric(itil:Total_number_of_incidents)

itil:measures(itil:Incident_resolution_rate,?p)

itil:measures(itil:Number_incidents_resolved_within_agreed_serv_levels,?p)

itil:measures(itil:Total_number_of_incidents,?p)

swrlb:divide(?result, itil:Number_incidents_resolved_within_agreed_serv_levels,

 itil:Total_number_of_incidents)

itil:metricValue(itil:Incident_resolution_rate,?result)

110

where, the KPI k associated with the incident resolution rate, is defined as the ratio

(result) between the number of incidents resolved within the agreed service levels and

total number of incidents.

As a final example, the following SQWRL query extracts the list of incidents associated

with each customer group managed by a specific IT service provider as part of its

Incident Management process. The results of this query can help IT service providers to

decide whether or not the incidents have been properly assigned and managed:

itil:Incident(?i) itil:IncidentManagement(?p) itil:managesEvent(?p,?i)

itil:situationName(?i,?name) itil:hasIncidentRecord(?i,?r)

itil:incidentPriority(?r,?pr) itil:hasIncidentGroup(?r,?gr)

itil:incidentPriority(?r,?pr)

sqwrl:select(?name,?gr,"Number of incidents") sqwrl:count(?r)

sqwrl:columnNames("Name","Priority","Description","Count")

SLA Breaches

SLA breaches are rules that check whether the agreed level of assurance or

warranty regarding the level of service quality achieved by IT service providers for each

of the services delivered to their customers is met. For example, in our pilot project, the

priority of an incident is used to obtain the maximum resolution time agreed. Therefore,

we define the following SWRL rule to assign an agreed resolution time (hours) to a

specific customer:

itil:CoreService(itil:Access3G)

itil:ServiceLifecycle(itil:ICTD_ServiceLifecycle)

itil:hasServiceLifecycle(itil:Access3G, itil:ICTD_ServiceLifecycle)

itil:SLA(itil:SLA_CUSTOMER_1)

itil:coveringITService(itil:SLA_CUSTOMER_1, itil:Access3G)

itil:SLAIncidentResolution(itil:CUSTOMER_1_SLAIncidentResolution_10)

111

itil:hasSLAIncidentResolution(itil:SLA_CUSTOMER_1,

 itil:CUSTOMER_1_SLAIncidentResolution_10)

itil:slaIncidentPriority(itil:CUSTOMER_1_SLAIncidentResolution_10, 10)

itil:slaIncidentResolutionTime(itil:CUSTOMER_1_SLAIncidentResolution_10, 12)

In this case, the SLA itil:SLA_CUSTOMER_1 for a specific customer

(itil:SLA_CUSTOMER_1) in the service itil:Access3G states that for an incident of

priority 10, the maximum resolution time is 12 hours. In addition, the priority of a

specific incident is calculated according to the following rules:

itil:ITService(?serv) itil:serviceImportanceCode(?serv,?code)

itil:ServiceLifecycle(?l) itil:hasServiceLifecycle(?serv,?l)

itil:ServiceOperation(?st) itil:inServiceLifecycle(?st,?l)

itil:IncidentManagement(?p) itil:hasOperationProcess(?st,?p)

itil:Incident(?i) itil:managesEvent(?p,?i) itil:IncidentRecord(?r)

itil:hasIncidentRecord(?i,?r)

itil:incidentUrgency(?r,?code)

(1)

itil:ITService(?serv) itil:serviceUsers(?serv,?usr)

itil:ServiceLifecycle(?l) itil:hasServiceLifecycle(?serv,?l)

itil:ServiceOperation(?st) itil:inServiceLifecycle(?st,?l)

itil:IncidentManagement(?p) itil:hasOperationProcess(?st,?p)

itil:Incident(?i) itil:managesEvent(?p,?i) itil:IncidentRecord(?r)

itil:hasIncidentRecord(?i,?r)

itil:incidentImpact(?r,?usr) (2)

itil:Incident(?i) itil:IncidentRecord(?r)

itil:hasIncidentRecord(?i,?r) itil:incidentUrgency(?r,?u)

itil:IncidentGroupType(itil:GOVERNANCE)

itil:hasIncidentGroup(?r,itil:GOVERNANCE)

itil:incidentLevel(?r,?u)

(3)

112

itil:Incident(?i) itil:IncidentRecord(?r)

itil:hasIncidentRecord(?i,?r) itil:incidentUrgency(?r,?u)

itil:IncidentGroupType(itil:STAFF) itil:hasIncidentGroup(?r,itil:STAFF)

swrlb:equal(?u, 3)

itil:incidentLevel(?r, 2)

(4)

itil:Incident(?i) itil:IncidentRecord(?r) itil:hasIncidentRecord(?i,?r)

itil:incidentLevel(?r,?l) itil:incidentImpact(?r,?imp)

swrlb:equal(?l, 5) swrlb:greaterThan(?imp, 10000)

itil:incidentPriority(?r, 10)

(5)

itil:Incident(?i) itil:IncidentRecord(?r) itil:hasIncidentRecord(?i,?r)

itil:incidentLevel(?r,?l) itil:incidentImpact(?r,?imp)

swrlb:equal(?l, 0) swrlb:greaterThan(?imp, 10000)

itil:incidentPriority(?r, 5) (6)

This is an example of rule chaining, where rule (1) calculates the incident urgency from

the level of importance (code) of the affected IT service (serv). Then, rule (2) calculates

the incident impact from the number of users (usr) of the affected service (serv). Rules

(3) and (4) calculate the level of an incident (i) from the incident urgency (u) and from

the type of group (g) that reported the incident. For example, if the incident has been

reported by the 'GOVERNANCE' group, then the incident level must be equal to the

incident urgency, but if the incidence has been reported by the 'STAFF' group, then the

incident level could be less than the incident urgency. Finally, rules (5) and (6) make

use of the incident impact (imp) and the incident level (l), respectively, to assign the

incident priority. The organization states that the impact, urgency and priority codes

range from 0 to 10, being 10 the highest priority.

113

Proactive Actions

Proactive actions are rules aimed to help organizations define how to act in order to

prevent possible service failures that may occur in the future. The following example by

Jerphanion and Kristelijn, describes a situation requiring a proactive action: “An IT

employee observes that the central hard disks are nearly full. He knows that this will

lead to service failure in the near future, which will generate incidents. To prevent these

incidents from occurring and to make sure that the service will remain available, the IT

employee takes actions” [Jerphanion & Kristelin, 2008]. According to ITIL, proactive

actions are defined as part of one (or a combination of) different processes. Previous

proactive action when a nearly full hard disk is detected can be expressed in SWRL rule

as follows:

itil:Event(itil:HardDiskNearlyFull) itil:IncidentManagement(?p)

itil:hasEventType(itil:HardDiskNearlyFull, itil:WARNING)

itil:hasManagedEventType(itil:HardDiskNearlyFull, itil:PROACTIVE_PASSIVE)

itil:managesEvent(?p, itil:HardDiskNearlyFull)

In our pilot project, the event of hard disk nearly full is managed by the

itil:ICTD_IM_Process instance, and it is considered as a warning event whose type of

monitoring and control is proactive and passive.

114

115

Chapter 5

Conclusions and Future Research

In this thesis, the lack of formal semantics of current ITSM best practices is

addressed adopting an ontological approach (that is, Ontology Engineering – OE –). We

aimed at translating perceptions of the real-world expressed in natural language and

graphical representations to an ontology, which is a formal representation of the ITSM

domain. The aim of the proposed ontology, Onto-ITIL, was to support: (i) business and

IT integration in terms of ITIL implementations; (ii) ITSM knowledge representation;

(iii) ITSM formal taxonomy development; (iv) ITSM metrics model; (v) reasoning

capabilities; (vi) SLA management; and (vii) the sharing, reuse and interchange of the

ITSM knowledge by using different e-business frameworks in the context of B2B

commerce.

The proposed ontology captures best practices described in the ITIL framework for both

representing services so that organizations can understand their ITSM processes (e.g.,

maturity level) and for business decision making (based on an ITSM metrics model)

that can be executed thanks to semantics capabilities.

The standardization of terminology is another problem in ITSM/ITIL. The diversity of

backgrounds causes IT professionals to use similar terminology in many different ways

with many different connotations. Because of such differences, the information that one

IT professional intends to communicate may, in fact, become garbled. Therefore, in the

course of ITSM projects it is necessary to standardize the relevant vocabulary. In this

vein, the Onto-ITIL Ontology provides a common terminology (which aligns with that

adopted in AENOR), avoiding semantic ambiguities, uncertainties, and contradictions.

“A journey of a thousand miles begins with a single step”

Confucius (551 BC-478 BC), Chinese philosopher

116

The ITSM metrics model, included as part of Onto-ITIL, enables IT service providers to

know and understand the KPIs that should be used to measure IT services. These

indicators will allow IT service providers to make business decisions. The Onto-ITIL

metrics model can be used to test the impact of those decisions on KPIs and CSFs (i.e.,

how KPIs change according to new scenarios). Also, the Onto-ITIL metrics model can

act as a basis for identifying and prioritizing IT service improvements, such as

acquisition of new resources and computer tools to support the ITSM processes.

To represent workflow knowledge we have developed the Onto-BPMN Ontology,

included as part of the Onto-ITIL Ontology. The Onto-BPMN Ontology is a

formalization in OWL of the BPMN constructs.

In addition, we have defined a model-driven approach that helps bridging the current

gap between OE and SE with regard to the development of information systems related

to ITSMSs in order to maintain and improve IT service quality in line with business

requirements. We must keep in mind that, during the analysis phase (i.e., conceptual

modeling) of any software system, the emphasis must be placed on the data or in the

information (i.e., in the system domain) rather than in the operations (i.e., in the

behavior). In this vein, ontologies allow us: (i) to represent models of the real world in

terms of conceptual models used by computers; (ii) to represent abstract domain key

concepts appropriately; and (iii) to transform these concepts correctly. Through the

definition of the Onto-ITIL Ontology, we introduce the usage of semantic information

during conceptual modeling of ITSMSs. This allows us to formalize and coherently and

consistently describe all of the knowledge related both to ITSM best practices and to

service management, including the workflows related to service implementation. Thus,

each ontology-based workflow model represents a perspective of an information system

that supports a specific ITSMS. Using our approach, we create models that conceptually

represent the workflow-based information systems we need to build for ITSM. For this

purpose, we match the Onto-BPMN Ontology with the information system conceptual

modeling in terms of the BPMN metamodel, enabling the integration of our workflow

specifications into the Eclipse platform.

117

A real case study regarding the implementation of an Incident Management process,

carried out by a Spanish IT service provider, has been used to illustrate the feasibility

and the benefits of the proposed approach.

The work presented in this thesis can be extended in several directions:

 Further development of the ontologies and rules for other particular ITSM

processes and additional case studies for evaluation purposes.

 The definition of workflows using the proposed ontology is a complex task.

Thus, workflow modeling should be enhanced in the Onto-BPMN Ontology. For

example, Eclipse-based BPMN models could be also transformed into instances

inside the Onto-ITIL Ontology by combining them with the workflow part of the

ontology (Onto-BPMN Ontology). Therefore, the resulting instances will be in

accordance with the ITIL framework and they could be enriched with semantics

and constraints in the form of SWRL rules using Protégé and Jess (or any other

Semantic Web programming frameworks as HP Jena
33

). The rules could be

executed in order to verify constraints and inconsistencies in the instances, and

to incorporate new knowledge into the workflow to better software development

for ITSM.

 Eclipse-based BPMN models provide support for executable service process

models with computational semantics. Thus, the resulting specifications could

be transformed into WS-BPEL
34

 by means of a M2M transformations (e.g.,

using ATL [Doux et al., 2009]) in order to allow their execution.

 The implementation of a M2T transformation (e.g., using the MOFScript

Eclipse plug-in) that enables the generation of HTML documents from the

BPMN models. This will allow the users to generate an easy to navigate

documentation associated to each business process described in the BPMN

model. The BPMN models (depicted using the BPMN Modeler Eclipse plug-in),

together with the HTML documentation generated from them, could be used to

complement the Software Requirements Document (SRD).

33 http://jena.sourceforge.net/
34 http://www.eclipse.org/bpel/

http://jena.sourceforge.net/
http://www.eclipse.org/bpel/

118

References

[Abramowicz et al., 2007]

Abramowicz, W., Filipowska, A., Kaczmarek, M. & Kaczmarek, T. (2007).

Semantically enhanced business process modelling notation. In Proceedings of

the Workshop on Semantic Business Process and Product Lifecycle

Management (SBPM 2007) in conjunction with the 3rd European Semantic

Web Conference (ESWC 2007), Innsbruck, Austria.

[Alanen, 2007]

Alanen, M. (2007). A Metamodeling Framework for Software Engineering.

Turku Centre for Computer Science, TUCS Dissertations, No. 89.

 [Assmann et al., 2006]

Assmann, U., Zschaler, S. & Wagner, G. (2006). Ontologies, Metamodels, and

the Model-Driven Paradigm. Chapter in Ontologies for Software Engineering

and Technology, Coral Calero, Francisco Ruiz and Mario Piattini (Eds.).

Springer-Verlag, 249-274.

[Atkinson & Kühne, 2003]

Atkinson, C. & Khüne, T. (2003). Model Driven Development: A

Metamodeling Foundation. In Journal of IEEE Software, 20(5): 36-41.

[Baader et al., 2003]

Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D. & Patel-Schneider,

P.F. (2003). Description Logic Handbook. Cambridge University Press.

[Bartsch et al., 2008]

Bartsch, C., Shwartz, L, Ward, C., Grabarnik, G. & Buco, M.J. (2008).

Decomposition of IT service processes and alternative service identification

using ontologies. IEEE Network Operations and Management Symposium

(NOMS), 714-717.

[Belhajjame & Brambilla, 2009]

Belhajjame, K. & Brambilla, M. (2009). Ontology-based Description and

Discovery of Business Processes. In Proceedings of the 10th Workshop on

Business Process Modeling, Development, and Support (BPMDS) at CAiSE

2009, Amsterdam. Springer LNBIP, 29: 85-98.

[Berztiss, 1999]

Berztiss, A.T. (1999). Domain analysis for business software systems. In

Journal of Information Systems, 24(7): 555-568.

119

[Bézivin, 2004]

Bézivin, J. (2004). In Search of a Basic Principle for Model Driven

Engineering. CEPIS, UPGRADE, The European Journal for the Informatics

Professional, 2: 21-24.

[Bézivin, 2005]

Bézivin, J. (2005). Model Driven Engineering: An Emerging Technical Space.

In Proceedings of the International Summer School on Generative and

Transformational Techniques in Software Engineering (GTTSE). Braga,

Portugal. Vol. 4143 of LNCS, 36-64. Springer-Verlag Berlin Heidelberg.

[Bézivin, 2009]

Bézivin, J. (2009). Advances in Model Driven Engineering: Achievements and

challenges. Invited talk at JISBD'09: 14th Conference on Software Engineering

and Databases. Retrieved April, 2011, from http://www.emn.fr/z-

info/atlanmod/index.php/Advances_in_Model_Driven_Engineering

[Bézivin & Gerbé, 2001]

Bézivin, J. & Gerbé, O. (2001). Towards a Precise Definition of the

OMG/MDA Framework. In Proceedings of 16th IEEE International

Conference on Automated Software Engineering (ASE’01).

[Bialecki, 2001]

Bialecki, A. (2001). E-Commerce Integration Meta-Framework (ECIMF)

Project Information Center at GetOpt.org. Retrieved April, 2011, from

http://www.getopt.org/ecimf/contrib/onto/REA/

[Black et al., 2007]

Black, J., Draper, C., Lococo, T., Matar, F. & Ward, C. (2007). An integration

model for organizing IT service management. IBM Systems Journal 46(3):

405-422.

[Booch et al., 2005]

Booch, G., Rumbaugh, J. & Jacobson, I. (2005). Unified Modeling Language

User Guide. 2nd Edition. Addison-Wesley.

[Born et al., 2007]

Born, M., Dörr, F. & Weber, I. (2007). User-friendly Semantic Annotation in

Business Process Modeling. In Proceedings of the International Workshop on

Human-Friendly Service Description, Discovery and Matchmaking (Hf-SDDM

2007) at the 8th International Conference on Web Information Systems

Engineering (WISE 2007), Nancy, France, 260-271.

[Bunge, 1977]

Bunge, M. (1977). Treatise on Basic Philosophy, Vol 3: Ontology I: The

Furniture of the World. Reidel, Dordrecht, Boston.

120

[Bunge, 1979]

Bunge, M. (1979). Treatise on Basic Philosophy, Vol 4: Ontology II: A World

of Systems. Reidel, Dordrecht, Boston.

[Cardoso et al., 2004]

Cardoso J., Sheth, A., Miller, J., Arnold, J. & Kochut, K. (2004). Quality of

Service for Workflows and Web Service Processes. J. Web Semantics, 1(3):

281–308.

[Chandrasekaran et al., 1999]

Chandrasekaran, B., Josephson J. & Benjamins, R. (1999). What are

ontologies, and why do we need them. In Journal of IEEE Intelligent Systems,

14(1): 20-26.

[Clark, 1999]

Clark. J. (1999). XSL Transformations (XSLT) Version 1.0, W3C

Recommendation. Retrieved April, 2011, from http://www.w3.org/TR/xslt

[Clark et al., 2008]

Clark, T., Sammut, P. & Willans, J. (2008). Applied Metamodelling. A

Foundation for Language Driven Development. Second Edition. Ceteva, 2008.

Retrieved April, 2011, from http://eprints.mdx.ac.uk/6060/1/Clark-

Applied_Metamodelling_%28Second_Edition%29%5B1%5D.pdf

[CMMI, 2009]

CMMI. (2009). CMMI for Services, Version 1.2. Software Engineering

Institute. Retrieved April, 2011, from http://www.sei.cmu.edu/cmmi/

[Cook, 2004]

Cook, S. (2004). Domain-Specific Modeling and Model Driven Architecture.

MDA Journal, 1-10.

[Cook et al., 2007]

Steve Cook, S., Jones, G., Kent, S. & Cameron, A. (2007). Domain-Specific

Development with Visual Studio DSL Tools. Addison-Wesley.

[Corcho et al., 2002]

Corcho, O., Fernández-López, M. & Gómez-Pérez, A. (2002). Methodologies,

tools and languages for building ontologies. Where is the meeting point? In

Journal of Data and Knowledge Engineering, 46(1): 41-64.

[Czarnecki & Helsen, 2006]

Czarnecki, K. & Helsen, S. (2006). Feature-based survey of model

transformation approaches. IBM Systems Journal, 45(3): 621-645.

121

[DAML Services, 2003]

DAML Services. OWL-S 1.0. Retrieved April, 2011, from

http://www.daml.org/services/owl-s/1.0/

[de Pablos et al., 2008]

de Pablos, C., López-Hermoso, J.J., Martín-Romo, S., Medina, S., Montero, A.,

Nájera, J.J. (2008). Dirección y Gestión de los sistemas de información en la

empresa: una visión integradora (2nd ed.). Madrid: ESIC Editorial.

[Decker et al., 2005]

Decker, S., Sintek, M., Billig, A., Henze, N., Dolog, P., Nejdl, W., Harth, A.,

Leicher, A., Busse, S., Ambite, J.L., Weathers, M., Neumann, G. & Zdun, U.

(2005). TRIPLE - an RDF Rule Language with Context and Use Cases. W3C

Workshop on Rule Languages for Interoperability, 27-28, Washington, D.C.,

USA. Retrieved April, 2011, from http://www.w3.org/2004/12/rules-

ws/paper/98/

[DeMarco, 2009]

DeMarco, T. (2009). Software Engineering: An Idea Whose Time Has Come

and Gone? In Journal of IEEE Software, 26(4): 96, 95.

[Devedžić, 2002]

Devedžić, V. (2002). Understanding Ontological Engineering. In Journal of

Communications of the ACM, 45(4): 136-144.

[Di Francescomarino et al., 2011]

Di Francescomarino, C., Ghidini, C., Rospocher, M., Serafini, L. & Tonella, P.

(2011). A framework for the collaborative specification of semantically

annotated business processes. In Journal of Software Maintenance and

Evolution: Research and Practice. Published online in Wiley Online Library

(wileyonlinelibrary.com). DOI: 10.1002/smr.525.

[DKM website]

Data & Knowledge Management (DKM) website. BPMN Ontology.

https://dkm.fbk.eu/index.php/BPMN_Ontology. Last visited: April 2011.

[Doux et al., 2009]

Doux, G., Jouault, F. & Bézivin, J. (2009). Transforming BPMN process

models to BPEL process definitions with ATL. In GraBaTs 2009, 5th

International Workshop on Graph-Based Tools.

[DSM Forum website]

DSM Forum website. http://www.dsmforum.org/. Last visited: April 2011.

[DuMoulin, 2007]

DuMoulin, T. (2007). ITIL V3: The Past & The Future. The Evolution Of

Service Management Philosophy. Pink Elephant. Retrieved April, 2011, from

122

http://blogs.pinkelephant.com/images/uploads/pinklink/ITIL_v3_The_Past__T

he_Future.pdf

[Dunn et al., 2005]

Dunn, C.L., Owen, J. & Hollander, A.S. (2005). The rea enterprise ontology:

value system and value chain modeling. Chapter in Enterprise Information

Systems: A Pattern-Based Approach, 3rd Edition. McGraw-Hill/Irwin.

[Durak et al., 2006]

Durak, U., Oguztuzun, H. & Ider, S.K. (2006). An Ontology for Trajectory

Simulation. Conference on Winter Simulation, Monterey, 1160-1167,

California. SESSION: Modeling methodology b: ontology driven simulation.

ISBN: 1-4244-0501-7.

[Eclipse - BPMN Modeler, 2011]

Eclipse – STP BPMN Modeler. (2011). BPMN object model. Retrieved April,

2011, from http://www.eclipse.org/bpmn/model/index.php

[Eriksson & Penker, 2000]

Eriksson, H.E. & Penker, M. (2000). Business Modeling with UML. Business

Patterns at Work. John Wiley & Sons.

[Eshuis & Wieringa, 2001]

Eshuis, R. & Wieringa, R. (2001). An Execution Algorithm for UML Activity

Graphs. In Proceedings of the International Conference on the Unified

Modeling Language (UML), Toronto, Canada. Springer Verlag.

[Favre, 2004]

Favre, J.M. (2004). Towards a Basic Theory to Model Model Driven

Engineering. In Workshop on Software Model Engineering, WISME 2004, joint

event with UML2004, Lisboa, Portugal.

[Ferrario & Guarino, 2009]

Ferrario, R. & Guarino, N. (2009). Towards an Ontological Foundation for

Services Science. In Domingue, J., Fensel, D., Traverso, P. (Eds.), FIS 2008.

Vol. 5468 of LNCS, 152–169. Springer-Verlag Berlin Heidelberg.

[Ferris, 2008]

Ferris, K. (2008). Out of one silo and into another. From the Book: IT Service

Management Global Best Practices – Volume 1. Van Haren Publishing.

[France & Rumpe, 2007]

France, R. & Bernhard Rumpe, B. (2007). Model-driven Development of

Complex Software: A Research Roadmap. In Future of Software Engineering

(FOSE’07), 37-54.

123

[Freitas et al., 2008]

Freitas, J., Correia, A., Brito e Abreu, F. (2008). An Ontology for IT Services.

In Proceedings of the 13th Conference on Software Engineering and

Databases, Retrieved April, 2011, from

http://ctp.di.fct.unl.pt/QUASAR/Resources/Papers/2008/freitas2008JISBD.pdf

[Garrido et al., 2007]

Garrido, J.L., Noguera, M., González, M., Hurtado, M.V., Rodríguez, M.L.

(2007). Definition and use of Computation Independent Models in an MDA-

based groupware development process. In Journal of Science of Computer

Programming, 66(1): 25-43.

[Gašević et al., 2006]

Gašević, D., Djurić, D. & Deved, M. (2007). On metamodeling in

megamodels. In Engels, G. et al. (Eds.), MoDELS 2007. Vol. 4735 of LNCS,

91-105. Springer-Verlag Berlin Heidelberg.

[Gašević et al., 2007]

Gašević, D., Kaviani, N. & Devedžić, V. (2006). Model Driven Architecture

and Ontology Development. Springer-Verlag Berlin Heidelberg.

[Geerts & McCarthy, 1999]

Geerts, G.L. & McCarthy, W.E. (1999). An Accounting Object Infrastructure

For Knowledge-Based Enterprise Models. IEEE Intelligent Systems, 14(4): 89-

94, July/Aug. 1999. DOI10.1109/5254.784089.

[Geerts & McCarthy, 2000]

Geerts, G.L. & McCarthy, W.E. (2000). The Ontological Foundation of REA

Enterprise Information Systems. Paper presented at the American Accounting

Association Conference Philadelphia, PA. Retrieved April, 2011, from

https://www.msu.edu/user/mccarth4/Alabama.doc

[Ghedini & Gostinski, 2008]

Ghedini, C. & Gostinski, R. (2008). A Methodological Framework for

Business-IT Alignment. In Proceedings of the Third IEEE/IFIP International

Workshop on Business-Driven IT Management (BDIM), 1-10.

 [Goeken & Alter, 2009]

Goeken, M. & Alter, S. (2009) Towards Conceptual Metamodeling of IT

Governance Frameworks. Approach – Use – Benefits. In Proceedings of the

42nd Hawaii International Conference on System Sciences.

[Goknil & Topaloglu, 2005]

Goknil, A., Topaloglu, Y. (2005). Ontological Perspective in Metamodeling for

Model Transformations. Metainformatics, ACM International Conference

Proceeding Series, 214(7), Esbjerg, Denmark. ISBN: 978-1-59593-719-3.

124

[Graham et al., 1997]

Graham, I., Henderson-Sellers, B. & Younessi, H. (1997). The OPEN Process

Specification. Addison Wesley.

[Graupner et al., 2009]

Graupner, S., Motahari-Nezhad, H.R., Singhal, S. & Basu, S. (2009). Making

processes from best practice frameworks actionable. In Proceedings of the 13th

Enterprise Distributed Object Computing Conference Workshops (EDOCW),

25-34.

[Green et al., 2005]

Green, P.F., Rosemann, M. & Indulska, M. (2005). Ontological Evaluation of

Enterprise Systems Interoperability Using ebXML. In Journal of IEEE

Transactions on Knowledge and Data Engineering, 17(5): 713-725.

[Grimm & Hitzler, 2008]

Grimm, S. & Hitzler, P. (2008). Semantic Matchmaking of Web Resources

with Local Closed-World Reasoning. In International Journal of e-Commerce,

12 (2): 89-126.

[Gruber, 1991]

Gruber, T. (1991). The Role of Common Ontology in Achieving Sharable,

Reusable Knowledge Bases. In Allen, J.A., Fikes, R., Sandewall, E. (Eds.),

Proceedings of the Second International Conference on Principles of

Knowledge Representation and Reasoning, 601-602. Morgan Kaufmann,

Cambridge.

[Gruber, 1995]

Gruber, T.R. (1995). Toward Principles for the Design of Ontologies Used for

Knowledge Sharing. In International Journal of Human-Computer Studies,

43(5-6): 907-928.

[Guarino, 1998]

Guarino, N. (1998). Formal Ontology in Information Systems. In Proceedings

of FOIS’98, Trento, Italy. IOS Press, Amsterdam.

[Guttman & Parodi, 2007]

Guttman, M and Parodi, J. (2007). Real-Life MDA. Solving Business Problems

with Model Driven Architecture. Morgan Kaufmann Publishers.

[Hammer & Champy, 1993]

Hammer, M. & Champy, J. (1993). Reengineering the Corporation. Harper

Business, New York.

[Havey, 2005]

Havey, M. (2005). Essential Business Process Modeling. O’Reilly.

125

[Henderson-Sellers, 2011]

Henderson-Sellers, B. (2011). Bridging Metamodels and Ontologies in

Software Engineering. In Journal of Systems and Software, 84(2): 169-340.

[Horrocks et al., 2004]

Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B. & Dean,

M. (2004). SWRL: A Semantic Web Rule Language Combining OWL and

RuleML. W3C Member Submission. Retrieved April, 2011, from

http://www.w3.org/Submission/SWRL/

[Humphrey, 1989]

Humphrey, W.S. (1989). Managing the Software Process. Addison-Wesley.

[ISACA, 2007]

ISACA (2007). COBIT 4.1. Retrieved April, 2011, from

http://www.isaca.org/Knowledge-Center/cobit/Documents/COBIT%204.1.pdf

[ISACA, 2008]

ISACA. (2008). COBIT® Mapping: Mapping of ITIL v3 With COBIT® 4.1.

Retrieved April, 2011, from

http://www.itsm.hr/baza%20znanja/Mapping%20ITILV3%20COBIT41.pdf

[ISACA, 2009]

ISACA. (2009). Transforming Enterprise IT. Retrieved April, 2011, from

http://www.isaca.org/Knowledge-Center/cobit/Documents/Forms/

AllItems.aspx

[ISACA website]

ISACA website. COBIT Framework for IT Governance and Control. Retrieved

April, 2011, from http://www.isaca.org/Knowledge-

Center/COBIT/Pages/Overview.aspx

[ISO, 2005a]

ISO. (2005a). ISO 9000:2005 Quality management systems – Fundamentals

and vocabulary. Retrieved April, 2011, from http://www.iso.org/iso/home.html

[ISO, 2005b]

ISO. (2005b). ISO/IEC 19502:2005 Information technology – Meta Object

Facility (MOF). Retrieved April, 2011, from

http://www.omg.org/spec/MOF/ISO/19502/PDF/

[ISO/IEC, 2005a]

ISO/IEC. (2005a). ISO/IEC 20000-1:2005 Information Technology – Service

Management – Part 1: Specification. Retrieved April, 2011, from

http://www.iso.org/iso/home.html

126

[ISO/IEC, 2005b]

ISO/IEC. (2005b). ISO/IEC 20000-2:2005 Information Technology – Service

Management – Part 2: Code of Practice. Retrieved April, 2011, from

http://www.iso.org/iso/home.html

[itSMF, 2006]

itSMF-NL. (2006). Frameworks for IT Management. ITSM Library, Van

Haren Publishing.

[itSMF, 2007a]

itSMF International. (2007a). Foundations of IT Service Management Based on

ITIL V3. Van Haren Publishing.

[itSMF, 2007b]

itSMF International. (2007b). ITIL V3: Glossary of Terms and Definitions.

Version to Workload. Retrieved April, 2011, from

http://www.itsmfi.org/content/itil-v3-glossary-acronmys-pdf

[itSMF, 2008]

itSMF International. (2008). IT Service Management Global Best Practices –

Volume 1. Van Haren Publishing.

[ITIL website]

ITIL website. http://www.itil-officialsite.com/home/home.asp. Last visited:

April 2011

[Jacobson et al., 1995]

Jacobson, I., Ericsson, M. & Jacobson, A. (1995). The Object Advantage.

Business Process Reengineering With Object Technology. Addison-Wesley.

[Jensen, 1996]

Jensen, K. (1996). Coloured Petri Nets. Basic Concepts, Analysis Methods and

Practical Use. Volume 1 (Second Edition). Springer.

[Jerphanion & Kristelin, 2008]

Jerphanion, S. & Kristelin, I. (2008). Applying the five disciplines of the

learning organization to ITIL. From the Book: IT Service Management Global

Best Practices – Volume 1. Van Haren Publishing.

[Jones, 2005]

Jones, S. (2005). Toward an acceptable definition of service. In Journal of

IEEE Software, 22(3): 87-93.

127

[Jordan & Evdemon, 2007]

Jordan D. & Evdemon, J. (2007). Web Services Process Execution Language

Version 2.0. Committee Specification. OASIS WS-BPEL TC. Retrieved April,

2011, from http://www.oasis-

open.org/committees/download.php/22475/wsbpel-v2.0-CS01.pdf

[Joukhadar & Al-Maghout, 2008]

Joukhadar, A. & Al-Maghout, H. (2008). Improving Agility in Business

Applications using Ontology Based Multilingual Understanding of Natural

Business Rules. In International Conference on Information and

Communication Technologies: From Theory to Applications (ICTTA 2008), 1-

8, Digital Object Identifier 10.1109/ICTTA. 2008.4530336.

[Kaplan & Norton, 1992]

Kaplan, R. & Norton D. (1992, January-February). The Balanced Scorecard –

Measures that Drive Performance. Harvard Business Review, 71-79.

[KBSI, 1994]

KBSI. (1994). IDEF5 Method Report. Information Integration for Concurrent

Engineering (IICE) project, F33615-90-C-0012. Retrieved April, 2011, from

http://www.idef.com/pdf/Idef5.pdf

[Kent, 2002]

Kent, S. (2002). Model Driven Engineering. In Proceedings of the Third

International Conference on Integrated Formal Methods, 286-298.

[Kleppe et al., 2003]

Kleppe, A, Warmer, J. & Bast, W. (2003). MDA Explained. The Model Driven

Architecture: Practice and Promise. Addison-Wesley.

[Knorr et al., 2011]

Knorr , M., Alferes, J.J. & Hitzler, P. (2011). Local Closed World Reasoning

with Description Logics under the Well-Founded Semantics. In Journal of

Artificial Intelligence. Retrieved April, 2011, from

http://knoesis.wright.edu/faculty/pascal/resources/publications/mknftheo.pdf

[Kurtev et al., 2006]

Kurtev, I., Bézivin, J., Jouault, F. & Valduriez, P. (2006). Model-based DSL

Frameworks. Dynamic Languages Symposium. Companion to the 21st ACM

SIGPLAN symposium on Object-oriented programming systems, languages,

and applications, Portland, Oregon, USA. SESSION: OOPSLA onward! track

chair’s welcome, 602-616. ISBN: 1-59593-491-X.

[Kühne, 2006]

Kühne, T. (2006). Matters of (Meta-)Modeling. In Journal of Software and

Systems Modeling (SoSyM), 5(4): 369-385.

128

[Lenat, 1995]

Lenat, D.B. (1995). Cyc: A Large-Scale Investment in Knowledge

Infrastructure. Communications of the ACM, 38(11): 33-38.

[Li et al., 2011]

Li, D. Li, X & Stolz, V. (2011). QVT-based model transformation using

XSLT. ACM SIGSOFT Software Engineering Notes 36(1).

[Liu & Zhu, 2009]

Liu, X.F. & Zhu, L. (2009). Design of SOA Based Web Service Systems Using

QFD for Satisfaction of Quality of Service Requirements. In Proceedings of

the 2009 IEEE International Conference on Web Services, 567-574.

[Marshall, 2000]

Marshall, C. (2000). Enterprise Modeling with UML. Designing Successful

Software through Business Analysis. Addison-Wesley.

[McCarthy, 1982]

McCarthy, W.E. (1982). The REA Accounting model: A generalized

framework for accounting systems in a shared data environment. The

Accounting Review, 57(3):554–578.

[Mellor et al., 2004]

Mellor, S.J., Scott, K., Uhl, A. & Weise, D. (2004). MDA Distilled. Principles

of Model-Driven Architecture. Addison-Wesley.

[Mili et al., 2010]

Mili H., Guy, T., Guitta, B., Jaoude, G.B., Lefebvre, É., Elabed, L. & El

Boussaidi G. (2010). Business Process Modelling Languages: Sorting Through

the Alphabet Soup. ACM Computing Surveys, 43(1), Article 4.

[Mizoguchi & Ikeda, 1996]

Mizoguchi, R. & Ikeda, M. (1996). Towards Ontology Engineering. Technical

Report AI-TR-96-1, I.S.I.R., Osaka University.

[Nagarajan et al., 2006]

Nagarajan, M., Verma, K., Sheth, A., Miller, J. & Lathem, J. (2006). Semantic

Interoperability of Web Services: Challenges and Experiences. In Proceedings

of the 4th IEEE Int’l Conf. Web Services, IEEE CS Press, 373–382.

[Nextel, 2010]

Nextel S.A. (2010). ISO/IEC 20000 para pymes. Cómo implantar un sistema

de gestión de los servicios de tecnologías de la información. AENOR

ediciones.

129

[Niles & Pease, 2001]

Niles, I. & Pease, A. (2001). Towards a standard upper ontology. In

Proceedings of the 2nd international conference on formal ontology in

information systems (FOIS-2001), 2–9.

[Nurmilaakso, 2008]

Nurmilaakso, J.M. (2008). EDI, XML and e-business frameworks: A survey. In

Journal of Computers in industry, 59(4): 370-379.

[OASIS, 2001]

OASIS. (2001). Business process and business information analysis overview.

version 1.0 (ebXML). Retrieved April, 2011, from

http://www.ebxml.org/specs/bpOVER.pdf

[O'Connor & Das, 2009]

O'Connor, M.J. & Das, A. (2009). SQWRL: a Query Language for OWL.

OWL: Experiences and Directions (OWLED 2009), Fifth International

Workshop, Chantilly, VA.

[OGC, 2007a]

OGC. (2007a). ITIL Service Design. The Stationery Office (TSO). London.

[OGC, 2007b]

OGC. (2007b). ITIL Service Improvement. The Stationery Office (TSO).

London.

[OGC, 2007c]

OGC. (2007c). ITIL Service Operation. The Stationery Office (TSO). London.

[OGC, 2007d]

OGC. (2007d). The Official Introduction to the ITIL Service Lifecycle. The

Stationery Office (TSO). London.

[Oldham et al., 2006]

Oldham, N., Verma, K., Sheth, A., Hakimpour, F. (2006). Semantic WS-

Agreement Partner Selection. In Proceedings of the15th Int’l World Wide Web

Conf. (WWW2006), ACM Press, 697–706.

[Olivé, 2007]

Olivé, A. (2007). Conceptual Modeling of Information Systems. Springer-

Verlag Berlin Heidelberg.

[OMG, 2003]

OMG. (2003). MDA Guide, Version 1.0.1. Retrieved April, 2011, from

http://www.omg.org/cgi-bin/doc?omg/03-06-01

130

[OMG, 2006a]

OMG. (2006a). Business Process Modeling Notation (BPMN), Version 1.0.

Retrieved April, 2011, from

http://bpmn.org/Documents/OMG_Final_Adopted_BPMN_1-0_Spec_06-02-

01.pdf

[OMG, 2006b]

OMG. (2006b). Meta Object Facility (MOF). Core Specification, Version 2.0.

Retrieved April, 2011, from http://www.omg.org/spec/MOF/2.0/PDF/

[OMG, 2007]

OMG. (2007). MOF 2.0/XMI Mapping, Version 2.1.1 Retrieved April, 2011,

from http://www.omg.org/spec/XMI/2.1.1/PDF/index.htm

[OMG, 2008]

OMG. (2008). Business Process Definition Metamodel (BPDM), Version 1.0.

Retrieved April, 2011, from http://www.omg.org/spec/BPDM/1.0/

[OMG, 2009]

OMG. (2009). Ontology Definition Metamodel, Version 1.0. Retrieved April,

2011, from http://www.omg.org/spec/ODM/1.0/PDF/

[OMG, 2010a]

OMG. (2010a). Business Process Model and Notation (BPMN), Version 2.0

(Beta 2). Retrieved April, 2011, from http://www.omg.org/cgi-bin/doc?dtc/10-

06-04

[OMG, 2010b]

OMG. (2010b). Object Constraint Language (OCL), Version 2.2. Retrieved

April, 2011, from http://www.omg.org/spec/OCL/2.2/PDF/

[OMG, 2010c]

OMG. (2010c). Unified Modeling Language (UML), Superstructure, Version

2.3. Retrieved April, 2011, from

http://www.omg.org/spec/UML/2.3/Superstructure/PDF/

[OMG/BPMI-BPMN website]

OMG/BPMI BPMN website. Last visited: April 2011.

[Ould, 1995]

Ould, M.A. (1995). Business Processes: Modelling and Analysis for Re-

engineering and Improvement.Wiley, New York.

[OZONA website]

Ozona website. http://www.ozona.es/. Last visited: April 2011.

131

[Pahl, 2007]

Pahl, C. (2007). Semantic model-driven architecting of service-based software

systems. In Journal of Information and Software Technology, 49(8): 838-850.

[Paschke & Bichler, 2008]

Paschke, A. & Bichler, M. (2008). Knowledge representation concepts for

automated SLA management. In Journal of Decision Support Systems, 46(1):

187-205.

[Pastor & Molina, 2007]

Pastor, O. & Molina, J.C. (2007). Model-Driven Architecture in Practice. A

Software Production Environment Based on Conceptual Modeling. Springer-

Verlag.

[Plesums, 2002]

Plesums, C. A. (2002). Introduction to Workflow. A vendor-independent

tutorial. Retrieved April, 2011, from

http://www.plesums.com/image/introworkflow.html

[PMI website]

Project Management Institute (PMI). (2010). PMBOK Guide and Standards.

Retrieved April, 2011, from http://www.pmi.org/PMBOK-Guide-and-

Standards.aspx

[Prieto & Lozano-Tello, 2009]

Prieto, A.E. & Lozano-Tello, A. (2009). Use of Ontologies as Representation

Support of Workflows Oriented to Administrative Management. In Journal of

Network and Systems Management, 17(3): 309-325.

[Raistrick et al., 2004]

Raistrick, C., Francis, P., Wright, J., Carter, C. & Wilkie, I. (2004). Model

Driven Architecture with Executable UML. Cambridge University Press.

[Recker et al., 2009]

Recker, J.C., Rosemann, M., Indulska, M. & Green, P. (2009). Business

process modeling: A comparative analysis. In Journal of the Association for

Information Systems, 10(4): 333-363.

[Ruiz & Hilera, 2006]

Ruiz, F. & Hilera, J.R. (2006). Using Ontologies in Software Engineering and

Technology. Chapter in Ontologies in Software Engineering and Software

Technology, Calero, C., Ruiz, F. and Piattini, M (Eds.). Springer-Verlag Berlin

Heidelberg, 62-119.

132

[Savvas & Bassiliades, 2009]

Savvas, I. & Bassiliades, N. (2009). A process-oriented ontology-based

knowledge management system for facilitating operational procedures in

public administration. In Journal of Expert Systems with Applications, 36:

4467-4478.

[Scheer, 2000]

Scheer, A.W. (2000). ARIS- Business Process Modeling, 3rd edition. Springer-

Verlag New York.

[Schmidt, 2006]

Schmidt, D.C. (2006). Model-Driven Engineering. In Journal of IEEE

Computer, 39(2): 25-31.

[Sedbrook & Newmark, 2008]

Sedbrook, T. & Newmark, R.I. (2008). Automatin REA Policy Level

Specifications with Semantic Web Technologies. In Journal of Information

Systems, 22(2): 249-277.

[Seidewitz, 2003]

Seidewitz, E. (2003). What Models Mean. In Journal of IEEE Software, 20(5):

26-32.

[Sendall & Kozaczynski, 2003]

Sendall, S. & Kozaczynski, W. (2003). Model Transformation: the Heart and

Soul of Model-Driven Software Development. In Journal of IEEE Software,

42-51.

[Shangguan et al., 2007]

Shangguan, Z., Gao, Z., Zhu, K. (2007). Ontology-Based Process Modeling

Using eTOM and ITIL. In IFIP International Federation for Information

Processing, Vol. 255, Research and Practical Issues of Enterprise Information

Systems II, 2: 1001-1010.

[Sharp & McDermott, 2001]

Sharp, A. & McDermott, P. (2001). Workflow Modeling. Tools for Process

Improvement and Application Development. Artech House.

[Sicilia & Mora, 2010]

Sicilia, M.A. & Mora, M. (2010). On Using the REA Enterprise Ontology as a

Foundation for Service System Representation. In Proceedings of ONTOSE

2010, LNBIP 62: 135-147. Springer-Verlag Berlin Heidelberg.

[Silva, 1985]

Silva, M. (1985). Las Redes de Petri: en la Automática y la Informática.

Editorial AC.

133

[Silva Parreiras & Staab, 2010]

Silva Parreiras, F. & Staab, S. (2010). Using Ontologies with UML Class-

based Modeling: The TwoUse Approach. In Journal of Data & Knowledge

Engineering.

[Smith, 2008]

Smith, D. (2008). How to implement metrics for IT service management. From

the Book: IT Service Management Global Best Practices – Volume 1. Van

Haren Publishing.

[Smith et al., 2004]

Smith, M.K., Welty, C. & McGuinness, D.L. (2004). OWL Web Ontology

Language Guide. W3C Recommendation. Retrieved April, 2011, from

http://www.w3.org/ TR/owl-guide/

[Sommerville, 2010]

Sommerville, I. (2010). Software Engineering. 9th edition. Addison Wesley.

[Stahl & Völter, 2006]

Stahl, T. & Völter, M. (2006). Model-Driven Software Development.

Technology, Engineering, Management. John Wiley & Sons.

[Steinberg, 2006]

Steinberg, R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling -

the IT Service Management Metrics That Matter Most to IT Senior Executives.

Trafford Publishing.

[Talantikite et al., 2009]

Talantikite, H.N., Aissani, D. & Boudjlida, N. (2009). Semantic annotations for

web services discovery and composition. In Journal of Computer Standards &

Interfaces, 31(6): 1108-1117.

[Tautz & Wangenheim, 1998]

Tautz, C. & Von Wangenheim, C. (1998). REFSENO: A Representation

Formalism for Software Engineering Ontologies. Version 1.1. 015.98/E.

Fraunhofer IESE.

[Telefónica, 2010]

Telefónica. (2010). ISO/IEC 20000. Guía completa de aplicación para la

gestión de los servicios de tecnologías de la información. AENOR ediciones.

[Thomas & Fellmann, 2009]

Thomas, O., Fellmann, M. (2009). Semantic Process Modeling – Design and

Implementation of an Ontology-based Representation of Business Processes.

In Journal of Business & Information Systems Engineering, 1(6): 438-451.

134

[UN/CEFACT and OASIS, 2001]

UN/CEFACT and OASIS. (2001). ebXML Business Process Specification

Schema. v1.01. Retrieved April, 2011, from

http://www.ebxml.org/specs/ebBPSS.pdf.

[Uschold & Grüninger, 1996]

Uschold, M. & Grüninger, M. (1996). Ontologies: Principles, Methods, and

Applications. In Knowledge Engineering Review (KER), 11(2): 93-113.

[Verma et al., 2005]

Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S. & Miller,

J. (2005). Meteor-S WSDI: A Scalable Infrastructure of Registries for

Semantic Publication and Discovery of Web Services. J. Information

Technology and Management, 6(1): 17–39.

[Verma & Sheth, 2007]

Verma K. & Sheth A. (2007). Semantically Annotating a Web Service. In

Journal of IEEE Internet Computing, 11(2): 83-85.

[Vicente-Chicote & Alonso, 2007]

Vicente-Chicote, C. & Alonso D. (2007). Tutorial: Herramientas Eclipse para

Desarrollo de Software Dirigido por Modelos. XII Jornadas de Ingeniería del

Software y Bases de Datos (JISBD 2007). Actas de Talleres y Tutoriales de las

Jornadas de Ingeniería del Software y Bases de Datos, 1(8). ISSN: 1988-3455.

[W3C, 2004a]

W3C. (2004). OWL-S: Semantic Markup for Web Services. W3C Member

Submission. Retrieved April, 2011, from

http://www.w3.org/Submission/OWL-S/

[Wade & Hulland, 2004]

Wade, M. & Hulland, J. (2004). Review: The Resource-Based View and

Information Systems Research: Review, Extension, and Suggestions for Future

Research. MIS Quarterly, 28(1): 107-142.

[Walter & Ebert, 2009]

Walter, T. & Ebert, J. (2009). Combining ontology-enriched Domain-Specific

Languages. In Proceedings of the 2nd Workshop on Transforming and

Weaving Ontologies in Model Driven Engineering (TWOMDE).

[Walter et al., 2009]

Walter, T., Silva Parreriras, F. & Staab, S. (2009). OntoDSL: An ontology-

based framework for domain-specific languages. In Proceedings of the 12th

International Conference on Model Driven Engineering Languagesand

Systems (MODELS 2009). Vol. 5795 of LNCS, 408-422. Springer-Verlag

Berlin Heidelberg.

135

[Wand, 1996]

Wand, Y. (1996). Ontology as a foundation for meta-modeling and method

engineering. In Journal of Information and Software Technology, 38(4): 281-

287.

[Wand & Weber, 2003]

Wand, Y. & Weber, R. (1993). On the ontological expressiveness of

information systems analysis and design grammars. In Journal of Information

Systems 3(4): 217–237.

[Watson, 2008]

Watson, A. (2008). UML vs DSLs: A false dichotomy. Whitepaper, Object

Management Group. Retrieved April, 2011, from http://www.omg.org/cgi-

bin/doc?omg/08-09-03

[WfMC, 1999]

WfMC. (1999). Workflow Management Coalition. Terminology and Glossary

English. WfMC-TC-1011 v3. Technical Report. Retrieved April, 2011, from

http://www.wfmc.org/Glossaries-FAQs/

[Wolf & Harmon, 2010]

Wolf, C. & Harmon, P. (2010). The State of Business Process Management

2010. BPTrends report. Retrieved April, 2011, from

http://www.bptrends.com/members_surveys/deliver.cfm?report_id=1004&targ

et=2009%20BPTrends%20State%20of%20Market%20Rept%20-FINAL%

20PDF%20CAP%202-1-10.pdf&return=surveys_landing.cfm

[Živković et al., 2008]

Živković, S., Murzek, M., Kühn, H. (2008). Bringing Ontology Awareness into

Model Driven Engineering Platforms. Workshop on Transforming and

Weaving Ontologies in Model Driven Engineering (TWOMDE 2008) at

MoDELS 2008, Toulouse, France. Vol. 395 of CEUR Workshop Proceedings,

47-54. CEUR-WS.org.

136

Appendix I

ITSM Ontology Concepts

This appendix summarizes the OWL Ontology that we have defined for the IT

service management domain implemented in this thesis.

Classes

Class: CI

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Transition. The Stationery Office (TSO).

Description: An itil:CI is a configuration item that represents an asset, service

component or other item that is, or will be, under the control of

itil:ServiceAsset_and_ConfigurationManagement process. The itil:CI(s) may vary

widely in complexity, size and type, ranging from an entire service or system including

all hardware, software, documentation and support staff to a single software module or a

minor hardware component. The itil:CI(s) may be grouped and managed together. For

example, a set of components may be grouped into a release. The itil:CI(s) should be

selected using established selection criteria, grouped, classified and identified in such a

way that they are manageable and traceable throughout the itil:ServiceLifecycle.

Generalization: owl:Thing

Relation to ITIL: ITIL Service Transition, p. 122-123 and p. 373 (Configuration Item

definition).

Object Properties: itil:hasConfigurationRecord

Datatype Properties: itil:ciDescription and itil:ciName

Class: ConfigurationRecord

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Transition. The Stationery Office (TSO); itSMF

International. (2007). ITIL V3: Glossary of Terms and Definitions. Version to

Workload.

Description: An itil:ConfigurationRecord is a record that contains the details of an

itil:CI. Each itil:ConfigurationRecord documents the itil:Lifecycle of a single itil:CI.

The itil:ConfigurationRecord(s) are stored in a Configuration Management Database

(CMDB).

Generalization: owl:Thing

137

Relation to ITIL: ITIL Service Transition, p. 145-146. ITIL V3: Glossary of Terms

and Definitions (Configuration Record definition).

Object Properties: none

Datatype Properties: none

Class: Lifecycle

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

Description: An itil:Lifecycle represents the various stages in the life of an

itil:ITService, itil:CI, itil:Incident, itil:Problem, itil:Change, etc. The itil:Lifecycle

defines the categories for status and the status transitions that are permitted. For

example:

 The lifecycle of an application includes requirements, design, build, deploy,

operate, and optimize.

 The expanded incident lifecycle includes detect, respond, diagnose, repair,

recover, and restore.

 The lifecycle of a server may include: ordered, received, in test, live, disposed,

etc.

Generalization: owl:Thing

Relation to ITIL: ITIL Service Strategy, p. 355-356 (Lifecycle definition).

Object Properties: itil:hasStage

Datatype Properties: itil:lifecycleDescription and itil:lifecycleName

Class: ServiceLifecycle

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

Description: The architecture of the ITIL V3 Service Management Model is based on a

service lifecycle. The itil:ServiceDesign, itil:ServiceTransition and

itil:ServiceOperation stages are progressive phases of the itil:ServiceLifecycle class that

represent change and transformation. The itil:ServiceStrategy stage represents policies

and objectives. Finally, the Continual Service Improvement (CSI) stage, itil:CSI,

represents learning and improvement.

Generalization: itil:Lifecycle

Relation to ITIL: ITIL Service Strategy, p. 45.

Object Properties: itil:hasServiceStage (subproperty of itil:hasStage), itil:inITService

and inherited from itil:Lifecycle

Datatype Properties: Inherited from itil:Lifecycle

138

Class: Stage

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

Description: An itil:Stage represents any phase of a lifecycle. For example: the status

shows the current stage in the lifecycle of the associated CI, incident, problem, etc.

Generalization: owl:Thing

Relation to ITIL: ITIL Service Strategy, p. 368 (Status definition).

Object Properties: itil:inLifecycle

Datatype Properties: itil:stageDescription and itil:stageName

Class: ServiceStage

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO); OGC.

(2007). The Official Introduction to the ITIL Service Lifecycle. The Stationery Office

(TSO). London.

Description: An itil:ServiceStage represents any phase of an itil:ServiceLifecycle. For

example: Service Operation is a service stage in the lifecycle of an IT service. The

strength of the ITIL service management model rests upon continual feedback

throughout each itil:ServiceStage of an itil:ServiceLifecycle. This feedback ensures that

service optimization is managed from a business perspective and is measured in terms

of the value business at any point in time through the itil:ServiceLifecycle. The

itil:ServiceLifecycle is non-linear in design. At every point in the itil:ServiceLifecycle,

feedback flows between each itil:ServiceStage of an itil:ServiceLifecycle which drive

decisions about the need for minor course corrections of major service improvement

initiatives.

Generalization: itil:Stage

Relation to ITIL: ITIL Service Strategy, p. 366 (Service Operation definition). The

Official Introduction to the ITIL Service Lifecycle, p. 21-22. According to ITIL V3,

Service Strategy, Service Design, Service Transition, Service Operation and Continual

Service Improvement (CSI) are the different phases of the lifecycle of an IT Service.

Object Properties: itil:hasProcess, itil:inServiceLifecycle (subproperty of

itil:inLifecycle), itil:isFeedback, itil:receivesFeedback and inherited from itil:Stage

Datatype Properties: itil:serviceStageObjective, itil:serviceStageScope,

itil:serviceStageValueToBusiness and inherited from itil:Stage

Class: ServiceStrategy

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

139

Description: The ITIL V3 Service Strategy phase establishes an overall Strategy for IT

services and for ITSM. Topics covered in itil:ServiceStrategy include the development

of markets, internal and external, service assets, service Catalog, and implementation of

strategy through the service lifecycle. Financial Management, Service portfolio

management, Organizational development, and Strategic risks are among other major

topics.

The itil:ServiceStrategy is about ensuring that IT service providers are in a position to

handle the costs and risks associated with their service portfolios, and are set up not just

for operational effectiveness but also for distinctive performance. Decisions made with

respect to itil:ServiceStrategy have far-reaching consequences including those with

delayed effect.

Generalization: itil:ServiceStage

Relation to ITIL: ITIL Service Strategy, p. 25 and p. 367 (Service Strategy definition).

Object Properties: itil:hasStrategyProcess (subproperty of itil:hasProcess) and

inherited from itil:ServiceStage

Datatype Properties: Inherited from itil:ServiceStage

Class: ServiceDesign

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

Description: The itil:ServiceDesign is a stage in the lifecycle of an IT service. The ITIL

V3 Service Design phase includes the design and development of services and service

management processes. It covers design principles and methods for converting strategic

objectives into portfolios of services and service assets. The scope of itil:ServiceDesign

is not limited to new services. It includes the changes and improvements necessary to

increase or maintain value to customers over the lifecycle of services, the continuity of

services, achievement of service levels, and conformance to standards and regulations.

It guides IT service providers on how to develop design capabilities for service

management.

Generalization: itil:ServiceStage

Relation to ITIL: ITIL Service Strategy, p. 25 and p. 365 (Service Design definition).

Object Properties: itil:hasDesignProcess (subproperty of itil:hasProcess) and

inherited from itil:ServiceStage

Datatype Properties: Inherited from itil:ServiceStage

Class: ServiceTransition

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

140

Description: The itil:ServiceTransition is a stage in the lifecycle of an IT service. The

ITIL V3 Service Transition phase includes the development and improvement of

capabilities for transitioning new and changed services into operations. The

itil:ServiceTransition shows how the requirements of itil:ServiceStrategy encoded in

itil:ServiceDesign are effectively realized in itil:ServiceOperation while controlling the

risks of failure and disruption. Also, itil:ServiceTransition includes the management of

the complexity related to changes to services and service management processes,

preventing undesired consequences while allowing for innovation.

Generalization: itil:ServiceStage

Relation to ITIL: ITIL Service Strategy, p. 25-26 and p. 367 (Service Transition

definition).

Object Properties: itil:hasTransitionProcess (subproperty of itil:hasProcess) and

inherited from itil:ServiceStage

Datatype Properties: Inherited from itil:ServiceStage

Class: ServiceOperation

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

Description: The itil:ServiceOperation is a stage in the lifecycle of an IT service. The

ITIL V3 Service Operation phase includes the management of service operations using

two major control perspectives: reactive and proactive. The itil:ServiceOperation

enables service providers to achieve effectiveness and efficiency in the delivery and

support of services so as to ensure value for the customer and the service provider.

Strategic objectives are ultimately realized through service operations, therefore making

it a critical capability. Also, itil:ServiceOperation can maintain stability in service

operations, allowing for changes in design, scale, scope and service levels. With

itil:ServiceOperation, IT service providers can make better decisions in areas such as

managing the availability of services, controlling demand, optimizing capacity

utilization, scheduling of operations and fixing problems.

Generalization: itil:ServiceStage

Relation to ITIL: ITIL Service Strategy, p. 26 and p. 366 (Service Transition

definition).

Object Properties: itil:hasOperationProcess (subproperty of itil:hasProcess) and

inherited from itil:ServiceStage

Datatype Properties: Inherited from itil:ServiceStage

Class: CSI

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

141

Description: The ITIL V3 Continual Service Improvement (CSI) is a stage in the

lifecycle of an IT service. The itil:CSI phase is responsible for managing improvements

to IT service management processes and IT services. The performance of the IT service

provider is continually measured and improvements are made to processes, IT services

and IT infrastructure in order to increase efficiency, effectiveness, and cost

effectiveness. Also, itil:CSI combines principles, practices, and methods from quality

management, change management and capability improvement. IT service providers

learn to realize incremental and large-scale improvements in service quality, operational

efficiency and business continuity. The itil:CSI allows IT service providers to link

improvement efforts and outcomes with service strategy, design, and transition. A

closed-loop feedback system, based on the Plan–Do–Check–Act (PDCA) model

specified in ISO/IEC 20000, is established and capable of receiving inputs for change

from any planning perspective.

Generalization: itil:ServiceStage

Relation to ITIL: ITIL Service Strategy, p. 26 and p. 347 (Continual Service

Improvement definition).

Object Properties: itil:hasCSIProcess (subproperty of itil:hasProcess) and inherited

from itil:ServiceStage

Datatype Properties: Inherited from itil:ServiceStage

Class: Specification

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: An oc:Specification is an abstract work that constitutes a description of

the properties of a oc:Situation or a oc:SomethingExisting, and sometimes even entire

collections of such things. Things are made, bought, and searched for according to

specifications, which can be instantiated as printed instructions or as diagrams. This

collection is modally neutral with regard to the descriptive character of its instances.

Thus, it includes descriptions of how things are, were, should be, must be, etc.

Generalization: owl:Thing

Relation to ITIL: Although this concept is not part of the ITIL documentation, in order

to take advantage of existing upper ontologies relating our ITIL-based service

management data to other data expressed on the Semantic Web (independent of a

particular domain), we use the OpenCyc concept oc:Specification to classify the ITIL

concepts that are considered specifications, such as itil:Process (subclassing from

oc:ProgramSpecification). In our modeling approach for ITSMSs, oc:Specifications are

composed of itil:Activity that describe the specification in terms of workflows enriched

with ontological knowledge.

Object Properties: itil:specifiesActivity

Datatype Properties: itil:specDescription and itil:specName

142

Class: ProgramSpecification

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: An oc:ProgramSpecification is a specialization of oc:Specification. Each

instance of this collection is not a computer program itself (i.e. lines of code), but an

abstract characterization of how a program should behave. For example, a sorting

program can be specified by requiring that the program's output be a list of the same

elements as the input such that no element follows an element that is greater than it. A

notable example of a oc:ProgramSpecification is UNIX, which is not (contrary to

popular belief) an operating system per se, but a specification to which many different

operating systems (instances of oc:UnixOS) conform. Note that instances of

oc:ProgramSpecification do not necessarily specify single, discrete programs, thus

many of the internet's Request For Comments (RFC) protocol-establishing documents

fall into this collection.

Generalization: oc:Specification

Relation to ITIL: Although this concept is not part of the ITIL documentation, in order

to take advantage of existing upper ontologies, we use the OpenCyc concept

oc:ProgramSpecification to specify the behavior of the different business activities in

the ITIL processes.

Object Properties: Inherited from oc:Specification

Datatype Properties: Inherited from oc:Specification

Class: Process

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

Description: An itil:Process is a structured set of activities designed to accomplish a

specific objective. It takes one or more defined inputs and turns them into defined

outputs. An itil:Process has an owner and it may include any of the roles,

responsibilities, tools and management controls required to reliably deliver the outputs.

Also, an itil:Process may define policies, standards, guidelines, activities, and work

instructions if they are needed.

Generalization: oc:ProgramSpecification

Relation to ITIL: ITIL Service Strategy, p. 360-361 (Process definition). We use the

itil:Process class to model the different processes that are part of each stage in the

lifecycle of an IT Service. According to the ITIL framework, we have grouped the

different processes into the next categories (subclasses): itil:StrategyProcess,

itil:DesignProcess, itil:TransitionProcess, itil:OperationProcess and itil:CSIProcess.

Since our objective is to implement the ITIL processes, we consider them a subclass of

oc:ProgramSpecification.

Object Properties: itil:hasInterfaceRelation, itil:inServiceStage, itil:managesEvent,

itil:measuredBy, itil:processOwner and inherited from oc:ProgramSpecification

143

Datatype Properties: itil:processChallenge, itil:processInput, itil:processName,

itil:processObjective, itil:processOutput, itil:processRisk, itil:processScope,

itil:processTechnology, itil:processValueToBusiness and inherited from

oc:ProgramSpecification

Class: InterfaceRelation

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO).

Description: Each itil:Process may have interfaces to other itil:Process(s) that are part

of the same or other service management lifecycle stages. That is, this itil:Process will

be supported and executed by itil:Process(s) during the same or other phases of the

service management lifecycle, but the itil:Process is driven by the phase in which it is

part of. For example, interfaces to the itil:IncidentManagement process include:

- itil:ProblemManagement (itil:ServiceOperation),

- itil:ServiceAsset_and_ConfigurationManagement (itil:ServiceTransition),

- itil:ChangeManagement (itil:ServiceTransition),

- itil:CapacityManagement (itil:ServiceDesign),

- itil:AvailabilityManagement (itil:ServiceDesign) and

- itil:ServiceLevelManagement (itil:ServiceDesign).

Generalization: owl:Thing

Relation to ITIL: ITIL Service Operation, p. 100-101.

Object Properties: itil:hasInterfaceRelationType and itil:interfaceValue

Datatype Properties: itil:interfaceRelationDescription and itil:interfaceRelationName

Class: StrategyProcess

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

Description: The itil:StrategyProcess concept represents the structured set of activities

designed to accomplish the Service Strategy phase.

Generalization: itil:Process

Relation to ITIL: We use the itil:StrategyProcess class to classify the processes that

support the Service Strategy phase (subclasses): itil:DemandManagement,

itil:FinancialManagement and itil:ServicePortfolioManagement.

Object Properties: itil:inStrategyStage (subproperty of itil:inServiceStage) and

inherited from itil:Process

Datatype Properties: Inherited from itil:Process

144

Class: DemandManagement

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

Description: The itil:DemandManagement process represents the activities that

understand and influence customer demand for services and the provision of capacity to

meet these demands. At a strategic level, itil:DemandManagement can involve analysis

of PBAs and UPs. At a tactical level it can involve use of differential charging to

encourage customers to use IT services at less busy times.

The itil:DemandManagement process is a critical aspect of service management. Poorly

managed demand is a source of risk for service providers because of uncertainty in

demand. Excess capacity generates cost without creating value that provides a basis for

cost recovery. Customers are reluctant to pay for idle capacity unless it has value for

them.

Business processes are the primary source of demand for services. PBAs influence the

demand patterns seen by the service providers. It is very important to study the

customer’s business to identify, analyze and codify such patterns to provide sufficient

basis for Capacity Management. Visualize the customer’s business activity and plans in

terms of the demand for supporting services. For example, the fulfillment of a purchase

order (business activity) may result in a set of requests (demand) generated by the order-

to-cash process (business process of customer). Analyzing and tracking the activity

patterns of the business process makes it possible to predict demand for services in the

catalogue that support the process. It is also possible to predict demand for underlying

service assets that support those services. Every additional unit of demand generated by

business activity is allocated to a unit of service capacity.

Generalization: itil:StrategyProcess

Relation to ITIL: ITIL Service Strategy, p. 201-215 and p. 349 (Demand Management

definition).

Object Properties: Inherited from itil:StrategyProcess

Datatype Properties: Inherited from itil:StrategyProcess

Class: FinancialManagement

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

Description: The itil:FinancialManagement process provides the business and IT with

the quantification, in financial terms, of the value of IT Services, the value of the assets

underlying the provisioning of those services, and the qualification of operational

forecasting. Talking about IT in terms of services is the crux of changing the perception

of IT and its value to the business. Therefore, a significant portion of

itil:FinancialManagement process is working in tandem with IT and the business to

help identify, document and agree on the value of the services being received, and the

145

enablement of service demand modeling and management. The

itil:FinancialMangement process is responsible for managing an IT service provider’s

budgeting, accounting and charging requirements.

The itil:FinancialManagement process as a strategic tool is equally applicable to all

three service provider types. Internal service providers are increasingly asked to operate

with the same levels of financial visibility and accountability as their business unit and

external counterparts. Moreover, technology and innovation have become the core

revenue-generating capabilities of many companies:

 Type I – Internal service provider: Type I providers are typically business

functions embedded within the business units they serve. The business units

themselves may be part of a larger enterprise or parent organization. Business

functions such as finance, administration, logistics, human resources, and IT

provide services required by various parts of the business. They are funded by

overheads and are required to operate strictly within the mandates of the

business. Type I providers have the benefit of tight coupling with their owner-

customers, avoiding certain costs and risks associated with conducting business

with external parties.

 Type II – Shared Services Unit: Functions such as finance, IT, human resources,

and logistics are not always at the core of an organization’s competitive

advantage. Hence, they need not be maintained at the corporate level where they

demand the attention of the chief executive’s team. Instead, the services of such

shared functions are consolidated into an autonomous special unit called a

Shared Services Unit (SSU). This model allows a more devolved governing

structure under which SSU can focus on serving business units as direct

customers. SSU can create, grow, and sustain an internal market for their

services and model themselves along the lines of service providers in the open

market. Like corporate business functions, they can leverage opportunities

across the enterprise and spread their costs and risks across a wider base. Unlike

corporate business functions, they have fewer protections under the banner of

strategic value and core competence. They are subject to comparisons with

external service providers whose business practices, operating models and

strategies they must emulate and whose performance they should approximate if

not exceed. Performance gaps are justified through benefits received through

services within their domain of control.

 Type III – External service provider: The business strategies of customers

sometimes require capabilities readily available from a Type III provider. The

additional risks that Type III providers assume over Type I and Type II are

justified by increased flexibility and freedom to pursue opportunities. Type III

providers can offer competitive prices and drive down unit costs by

consolidating demand. Certain business strategies are not adequately served by

internal service providers such as Type I and Type II. Customers may pursue

sourcing strategies requiring services from external providers. The motivation

may be access to knowledge, experience, scale, scope, capabilities, and

resources that are either beyond the reach of the organization or outside the

scope of a carefully considered investment portfolio. Business strategies often

require reductions in the asset base, fixed costs, operational risks, or the

146

redeployment of financial assets. Competitive business environments often

require customers to have flexible and lean structures. In such cases it is better to

buy services rather than own and operate the assets necessary to execute certain

business functions and processes. For such customers, Type III is the best choice

for a given set of services. The experience of such providers is not limited to any

one enterprise or market. The breadth and depth of such experience is often the

single most distinctive source of value for customers. The breadth comes from

serving multiple types of customers or markets. The depth comes from serving

multiples of the same type. As a counter-balance, Type III providers mitigate a

type of risk inherent to Types I and II: business functions and shared service

units are subject to the same system of risks as their business unit or enterprise

parent. This sets up a vicious cycle, whereby risks faced by the business units or

the enterprise are transferred to the service units and then fed back with

amplification through the services utilized. Customers may reduce systemic

risks by transferring them to external service providers who spread those risks

across a larger value network.

Like its business equivalent, itil:FinancialManagement responsibilities and activities do

not exist solely within the IT finance and accounting domain. Rather, many parts of the

enterprise interact to generate and consume IT financial information, including

operations and support units, project management organizations, application

development, infrastructure, change management, business units, end users etc. These

entities aggregate, share and maintain the financial data they need. The financial

management data used by an IT organization may reside in, and be owned by the

accounting and finance domain, but responsibility for generating and utilizing it extends

to other areas.

The itil:FinancialManagement process is a key input to the

itil:ServicePortfolioManagement. By understanding cost structures applied in the

provisioning of an IT service, an organization can benchmark that service cost against

other IT service providers. In this way, organizations can use IT financial information,

together with service demand and internal capability information to make beneficial

decisions regarding whether a certain service should be provisioned internally. For

example, if an organization identifies its internal cost of providing Service A to be 80€

per month per user, and then finds a provider with the economics of scale and the

focused skill set required to offer the identical service for 55€ per month, the

organization may decide that it would rather focus its resources on other IT services

where it possesses a greater ability to offer lower cost and/or higher quality, and to

outsource Service A to the other IT service provider.

The itil:FinancialManagement process provides key inputs for Service Provisioning

Optimization (SPO). SPO examines the financial inputs and constraints of service

components or delivery models to determine if alternatives should be explored relating

to how a service can be provisioned differently to make it more competitive in terms of

cost or quality.

One goal of itil:FinancialManagement is to ensure proper funding for the delivery and

consumption of services. Planning provides financial translation and qualification of

expected future demand for IT Services. Financial management planning departs from

historical IT planning by focusing on demand and supply variances resulting from

147

business strategy, capacity inputs and forecasting, rather than traditional individual line

item expenditures or business cost accounts. As with planning for any other business

organization, input should be collected from all areas of the IT organization and the

business. Planning can be categorized into three main areas, each representing financial

results that are required for continued visibility and service valuation:

 Operating and Capital (general and fixed asset ledgers)

 Demand (need and use of IT services)

 Regulatory and Environmental (compliance).

The itil:FinancialManagement provides the shared analytical models and knowledge

used throughout an enterprise in order to assess the expected value and/or return of a

given initiative, solution, program or project in a standardized fashion. It sets the

thresholds that guide the organization in determining what level of analytical

sophistication is to be applied to various projects based on size, scope, resources, cost

and related parameters.

Accounting within itil:FinancialManagement differs from traditional accounting in that

additional category and characteristics must be defined that enable the identification and

tracking of service-oriented expense or capital items. The itil:FinancialManagement

process plays a translational role between corporate financial systems and service

management. The result of a service-oriented accounting function is that far greater

detail and understanding is achieved regarding service provisioning and consumption,

and the generation of data that feeds directly into the planning process. The functions

and accounting characteristics that come into play are discussed below:

 Service recording: the assignment of a cost entry to the appropriate service.

Depending on how services are defined, and the granularity of the

definitions, there may be additional sub-service components.

 Cost Types: these are higher level expenses categories such as hardware,

software, labor, administration, etc. These attributes assist with reporting and

analyzing demand and usage of services and their components in commonly

used financial terms.

 Cost classifications: there are also classifications within services that

designate the end purpose of the cost. These include classifications such as:

- Capital/operational: this classification addresses different accounting

methodologies that are required by the business and regulatory agencies.

- Direct/indirect: this designation determines whether a cost will be

assigned directly or indirectly to a consumer or service.

· Direct costs are charged directly to a service since it is the only

consumer of the expense.

· Indirect or ‘shared’ costs are allocated across multiple services since

each service may consume a portion of the expense.

- Fixed/variable: this segregation of costs is based on contractual

commitments of time or price. The strategic issue around this

classification is that the business should seek to optimize fixed service

148

costs and minimize the variable in order to maximize predictability and

stability.

- Cost Units: a cost unit is the identified unit of consumption that is

accounted for a particular service or service asset.

Variable Cost Dynamics (VCD) within itil:FinancialManagement focuses on analyzing

and understanding the multitude of variables that impact service cost, how sensitive

those elements are to variability, and the related incremental value changes that result.

Among other benefits, VCD analysis can be used to identify a marginal change in unit

cost resulting from adding or subtracting one or more incremental units of a service.

Such an analysis is helpful when applied toward the analysis of expected impacts from

events such as acquisitions, divestitures, changes to the service portfolio or service

provisioning alternatives etc.

On the other hand, funding addresses the financial impacts from changes to current and

future demand for IT services and the way in which IT will retain the funds to continue

operations. There are various traditional models for the funding of IT services. Since

each model assumes a different perspective, yet rests on the same financial data, an

increased ability to generate the requisite information translates to increased visibility

into service costs and perceived value. The model chosen should always take into

account and be appropriate for the current business culture and expectations:

 Rolling Plan Funding: In a rolling plan, as one cycle completes another cycle of

funding is added. This plan encourages a constant cycle of funding. However, it

only addresses timing and does not necessarily increase accuracy. This type of

model for funding would work well with an itil:ServiceLifecycle treatment

where a commitment to fund a service is made at the beginning of the lifecycle

and rolls until changes are made or the lifecycle has ended.

 Trigger-Based Plans: Trigger-based funding occurs when identified critical

triggers occur and set off planning for a particular event. For example, the

itil:ChangeManagement process would be a trigger to the planning process for

all approved changes that have financial impacts. Another trigger might be

capacity planning where insight into capacity variances would affect the

financial translation of IT services. This type of planning alleviates timing issues

with accounting for past events, since the process requires future planning at the

time of the change. It would be a good plan to use with portfolio service

management since it deals with services on a lifecycle basis.

 Zero-Based Funding: This funding refers to how funding of IT occurs. Funding

is only enough to bring the balance of the IT financial centre back to zero or to

bring the balance of the funding of a service back to zero until another funding

cycle. This equates to funding only the actual costs to deliver the IT services.

Finally, a Business Impact Analysis (BIA) seeks to identify a company’s most critical

business services through analysis of outage severity translated into a financial value,

coupled with operational risk. This information can help shape and enhance operational

performance by enabling better decision making regarding prioritization of incident

handling, problem management focus, change and release management operations,

project priority, and so on. It is a beneficial tool for identifying the cost of service

outage to a company, and the relative worth of a service. These two concepts are not

149

identical. The cost of service outage is a financial value placed on a specific service, and

is meant to reflect the value of lost productivity and revenue over a specific period of

time. The worth of a service relative to other services in a portfolio may not result

exclusively from financial characteristics. Service Value is derived from characteristics

that may go beyond itil:FinancialManagement, and represent aspects such as the ability

to complete work or communicate with customers that may not be directly related to

revenue generation. Both of these elements can be identified to a very adequate degree

by the use of a BIA.

Generalization: itil:StrategyProcess

Relation to ITIL: ITIL Service Strategy, p. 69-76, p. 148-173, p. 343 (Business Impact

Analysis definition) and p. 352 (Financial Management definition).

Object Properties: Inherited from itil:StrategyProcess

Datatype Properties: Inherited from itil:StrategyProcess

Class: ServicePortfolioManagement

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

Description: The itil:ServicePortfolioManagement process responsible for managing

the itil:ServicePortfolio. An itil:ServicePortfolio describes a provider’s services in

terms of business value. It articulates business needs and the provider’s response to

those needs. By definition, business value terms correspond to marketing terms,

providing a means for comparing service competitiveness across alternative providers.

By acting as the basis of a decision framework, a service portfolio either clarifies or

helps to clarify the following strategic questions:

 Why should a customer buy these services?

 Why should they buy these services from us?

 What are the pricing or chargeback models?

 What are our strengths and weaknesses, priorities and risk?

 How should our resources and capabilities be allocated?

The itil:ServicePortfolioManagement considers services in terms of the business value

that they provide. The itil:ServicePortfolioManagement is a dynamic method for

governing investments in service management across the enterprise and managing them

for value.

The operative word is method. Often the term portfolio is marginalized to a list of

services, applications, assets or projects. A portfolio is essentially a group of

investments that share similar characteristics. They are grouped by size, discipline or

strategic value. There are few fundamental differences between IT portfolio

management, project portfolio management and service portfolio management (SPM).

150

All are enabling techniques for governance. The difference is in the implementation

details.

As a dynamic and ongoing process set, the itil:ServicePortfolioManagement should

include the following work methods:

 Define: inventory services, ensure business cases and validate portfolio data

 Analyze: maximize portfolio value, align and prioritize and balance supply and

demand

 Approve: finalize proposed portfolio, authorize services and resources

 Charter: communicate decisions, allocate resources and charter services.

Generalization: itil:StrategyProcess

Relation to ITIL: ITIL Service Strategy, p. 186-200 and p. 367 (Service Portfolio

Management definition).

Object Properties: Inherited from itil:StrategyProcess

Datatype Properties: Inherited from itil:StrategyProcess

Class: DesignProcess

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Design. The Stationery Office (TSO).

Description: The itil:DesignProcess concept represents the structured set of activities

designed to accomplish the Service Design phase.

Generalization: itil:Process

Relation to ITIL: We use the itil:DesignProcess class to classify the processes that

support the Service Design phase (subclasses): itil:AvailabilityManagement,

itil:CapacityManagement, itil:InformationSecurityManagement,

itil:ITServiceContinuityManagement, itil:ServiceCatalogManagement,

itil:ServiceLevelManagement and itil:SupplierManagement.

Object Properties: itil:inDesignStage (subproperty of itil:inServiceStage) and inherited

from itil:Process

Datatype Properties: Inherited from itil:Process

Class: AvailabilityManagement

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Design. The Stationery Office (TSO).

Description: The itil:AvailabilityManagement is the process responsible for defining,

analyzing, planning, measuring and improving all aspects of the availability of IT

services. itil:AvailabilityManagement is responsible for ensuring that all IT

infrastructure, processes, tools, roles etc. are appropriate for the agreed service level

151

targets for availability. The purpose of itil:AvailabilityManagement is to provide a point

of focus and management for all availability-related issues, relating to both services and

resources, ensuring that availability targets in all areas are measured and achieved.

The itil:AvailabilityManagement process does not include Business Continuity

Management (BCM) and the resumption of business processing after a major disaster.

The support of BCM is included within the itil:ITServiceContinuityManagement

process. However, itil:AvailabilityManagement does provide key inputs to

itil:ITServiceContinuityManagement, and the two processes have a close relationship,

particularly in the assessment and management of risks and in the implementation of

risk reduction and resilience measures.

The itil:AvailabilityManagement process has two key elements:

(1) Reactive activities: the reactive aspect of itil:AvailabilityManagement involves

the monitoring, measuring, analysis and management of all events, incidents and

problems involving unavailability. These activities are principally involved

within operational roles.

(2) Proactive activities: the proactive activities of itil:AvailabilityManagement

involve the proactive planning, design and improvement of availability. These

activities are principally involved within design and planning roles.

The itil:AvailabilityManagement process relies on the monitoring, measurement,

analysis and reporting of the following aspects:

 Availability: the ability of a service, component or CI to perform its agreed

function when required. It is often measured and reported as a percentage:

 ()
(())

 ()

Downtime should only be included in the above calculation when it occurs

within the Agreed Service Time (AST). However, total downtime should also be

recorded and reported.

 Reliability: a measure of how long a service, component or CI can perform its

agreed function without interruption. The reliability of the service can be

improved by increasing the reliability of individual components or by increasing

the resilience of the service to individual component failure (i.e. increasing the

component redundancy, for example, by using load-balancing techniques). It is

often measured and reported as Mean Time Between Service Incidents (MTBSI)

or Mean Time Between Failures (MTBF):

 ()

 ()

152

 Maintainability: a measure of how quickly and effectively a service, component

or CI can be restored to normal working after a failure. It is measured and

reported as Mean Time to Restore Service (MTRS) and should be calculated

using the following formula:

 ()

MTRS should be used to avoid the ambiguity of the more common industry term

Mean Time To Repair (MTTR), which in some definitions includes only repair

time, but in others includes recovery time. The downtime in MTRS covers all

the contributory factors that make the service, component or CI unavailable:

- Time to record

- Time to respond

- Time to resolve

- Time to physically repair or replace

- Time to recover

 Serviceability: the ability of a third-party supplier to meet the terms of their

contract. Often this contract will include agreed levels of availability, reliability

and/or maintainability for a supporting service or component.

A key output from the itil:AvailabilityManagement process is the measurement and

reporting of IT availability. Availability measures should be incorporated into SLAs,

Operational Level Agreements (OLAs) and Underpinning Contracts (UCs). These

should be reviewed regularly at service level review meetings. Measurement and

reporting provide the basis for:

 Monitoring the actual availability delivered versus agreed targets

 Establishing measures of availability and agreeing availability targets with the

business

 Identifying unacceptable levels of availability that impact the business and users

 Reviewing availability with the IT support organization

 Continual improvement activities to optimize availability

Component Failure Impact Analysis (CFIA) can be used to predict and evaluate the

impact on IT service arising from component failures within the technology. The output

from a CFIA can be used to identify where additional resilience should be considered to

prevent or minimize the impact of component failure to the business operation and

users. This is particularly important during the Service Design stage, where it is

necessary to predict and evaluate the impact on IT service availability arising from

component failures within the proposed IT Service Design. However, the technique can

also be applied to existing services and infrastructure.

The itil:AvailabilityManagement process should also maintain an Availability

Management Information System (AMIS) that contains all of the measurements and

information required to complete the itil:AvailabilityManagement process and provide

the appropriate information to the business on the level of IT service provided. This

information, covering services, components and supporting services, provides the basis

for regular, ad hoc and exception availability reporting and the identification of trends

153

within the data for the instigation of improvement activities. These activities and the

information contained within the AMIS provide the basis for developing the content of

the availability plan.

Generalization: itil:DesignProcess

Relation to ITIL: ITIL Service Design, p. 167-215 and p. 417 (Availability

Management definition).

Object Properties: Inherited from itil:DesignProcess

Datatype Properties: Inherited from itil:DesignProcess

Class: CapacityManagement

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Design. The Stationery Office (TSO).

Description: The itil:CapacityManagement is the process responsible for ensuring that

the capacity of IT services and the IT infrastructure is able to deliver agreed service

level targets in a cost effective and timely manner. The itil:CapacityManagement

process considers all resources required to deliver the IT service, and plans for short-,

medium- and long-term business requirements. The purpose of

itil:CapacityManagement is to provide a point of focus and management for all

capacity- and performance-related issues, relating to both services and resources.

The itil:CapacityManagement process provides the necessary information on current

and planned resource utilization of individual components to enable IT service

providers to decide, with confidence:

 Which components to upgrade: i.e. more memory, faster storage devices, faster

processors, greater bandwidth.

 When to upgrade: ideally this is not too early, resulting in expensive

overcapacity, nor too late, failing to take advantage of advances in new

technology, resulting in bottle-necks, inconsistent performance and, ultimately,

customer dissatisfaction and lost business opportunities.

 How much the upgrade will cost: the forecasting and planning elements of the

itil:CapacityManagement process feed into budgetary lifecycles, ensuring

planned investment.

The Capacity Management Information System (CMIS) is the cornerstone of a

successful itil:CapacityManagement process. Information contained within the CMIS is

stored and analyzed by all the subprocesses of itil:CapacityManagement because it is a

repository that holds a number of different types of data, including business, service,

resource or utilization and financial data, from all areas of technology.

However, the CMIS is unlikely to be a single database, and probably exists in several

physical locations. Data from all areas of technology, and all components that make up

the IT services, can then be combined for analysis and provision of technical and

management reporting. Only when all of the information is integrated can ‘end-to-end’

service reports be produced. The integrity and accuracy of the data within the CMIS

154

needs to be carefully managed. If the CMIS is not part of an overall Configuration

Management System (CMS) or Service Knowledge Management System (SKMS), then

links between these systems need to be implemented to ensure consistency and accuracy

of the information recorded within them.

The information in the CMIS is used to form the basis of performance and capacity

management reports and views that are to be delivered to customers, IT management

and technical personnel. Also, the data is used to generate future capacity forecasts and

allow itil:CapacityManagement to plan for future capacity requirements. Often a Web

interface is provided to the CMIS to provide the different access and views required

outside of the itil:CapacityManagement process itself.

The full range of data types stored within the CMIS is as follows:

 Business data: The business data is used to forecast and validate how changes in

business drivers affect the capacity and performance of the IT infrastructure.

Business data should include business transactions or measurements such as the

number of accounts, the number of invoices generated, the number of product

lines.

 Service data: To achieve a service-orientated approach to the

itil:CapacityManagement process, service data should be stored within the

CMIS. Typical service data are transaction response times, transaction rates,

workload volumes, etc. In general, the itil:SLA(s) and Service Level

Requirements (itil:SLR(s)) provide the service targets for which the

itil:CapacityManagement process needs to record and monitor data. To ensure

that the targets in the itil:SLA(s) are achieved, Service Level Management (SLM)

thresholds should be included, so that the monitoring activity can measure

against these service thresholds and raise exception warnings and reports before

service targets are breached.

 Component utilization data: The CMIS also needs to record resource data

consisting of utilization, threshold and limit information on all of the

technological components supporting the services. Most of the IT components

have limitations on the level to which they should be used. Beyond this level of

utilization, the resource will be over-utilized and the performance of the services

using the resource will be impaired. For example, the maximum recommended

level of utilization on a processor could be 80%, or the utilization of a shared

Ethernet LAN segment should not exceed 40%.

Also, components have various physical limitations beyond which greater

connectivity or use is impossible. For example, the maximum number of

connections through an application or a network gateway is 100, or a particular

type of disk has a physical capacity of 15 Gb. The CMIS should therefore

contain, for each component and the maximum performance and capacity limits,

current and past utilization rates and the associated component thresholds. Over

time this can require vast amounts of data to be accumulated, so there need to be

good techniques for analyzing, aggregating and archiving this data.

 Financial data: The itil:CapacityManagement process requires financial data.

For evaluating alternative upgrade options, when proposing various scenarios in

the capacity plan, the financial cost of the upgrades to the components of the IT

155

infrastructure, together with information about the current IT hardware budget,

must be known and included in the considerations. Most of this data may be

available from the Financial Management for IT services process

(itil:FinancialManagement), but the itil:CapacityManagement process needs to

consider this information when managing the future business requirements.

Generalization: itil:DesignProcess

Relation to ITIL: ITIL Service Design, p. 134-166 and p. 420 (Capacity Management

definition).

Object Properties: Inherited from itil:DesignProcess

Datatype Properties: Inherited from itil:DesignProcess

Class: InformationSecurityManagement

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Design. The Stationery Office (TSO).

Description: The itil:InformationSecurityManagement is the process that ensures the

confidentiality, integrity and availability of an organization’s assets, information, data

and IT services. The itil:InformationSecurityManagement process usually forms part of

an organizational approach to security management that has a wider scope than the IT

service provider, and includes handling of paper, building access, phone calls, etc., for

the entire organization.

The term ‘information’ is used as a general term and includes data stores, databases and

metadata. The objective of information security is to protect the interests of those

relying on information, and the systems and communications that deliver the

information, from harm resulting from failures of availability, confidentiality and

integrity.

The framework or the Information Security Management System (ISMS) provides a

basis for the development of a cost-effective information security program that supports

the business objectives. It will involve the four Ps of People, Process, Products and

Partners as well as technology and suppliers to ensure high levels of security are in

place. ISO 27001 is the formal standard against which organizations may seek

independent certification of their ISMS (meaning their frameworks to design,

implement, manage, maintain and enforce information security processes and controls

systematically and consistently throughout the organizations).

Generalization: itil:DesignProcess

Relation to ITIL: ITIL Service Design, p. 244-259 and p. 429 (Information Security

Management definition).

Object Properties: Inherited from itil:DesignProcess

Datatype Properties: Inherited from itil:DesignProcess

156

Class: ITServiceContinuityManagement

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Design. The Stationery Office (TSO).

Description: The itil:ITServiceContinuityManagement is the process responsible for

managing risks that could seriously affect IT services. The

itil:ITServiceContinuityManagement process ensures that the IT service provider can

always provide minimum agreed service levels, by reducing the risk to an acceptable

level and planning for the recovery of IT services. The

itil:ITServiceContinuityManagement process should be designed to support business

continuity management. Therefore, ITSM should maintain a set of IT service continuity

plans and IT recovery plans that support the overall Business Continuity Plans (BCPs)

of the organization.

The itil:ITServiceContinuityManagement process primarily considers the IT assets and

configurations that support the business processes. If (following a disaster) it is

necessary to relocate to an alternative working location, provision will also be required

for items such as office and personnel accommodation, copies of critical paper records,

courier services and telephone facilities to communicate with customers and third

parties.

Like all elements of ITSM, successful implementation of the

itil:ITServiceContinuityManagement process can only be achieved with senior

management commitment and the support of all members of the organization. Ongoing

maintenance of the recovery capability is essential if it is to remain effective. The

purpose of the itil:ITServiceContinuityManagement process is to maintain the necessary

ongoing recovery capability within the IT services and their supporting components.

The itil:ITServiceContinuityManagement process includes:

 The agreement of the scope of the itil:ITServiceContinuityManagement process

and the policies adopted.

 Business Impact Analysis (BIA) to quantify the impact loss of IT service would

have on the business.

 Risk Analysis (RA): the risk identification and risk assessment to identify

potential threats to continuity and the likelihood of the threats becoming reality.

This also includes taking measures to manage the identified threats where this

can be cost-justified.

 Production of an overall IT service continuity management (ITSCM) strategy

that must be integrated into the BCM strategy. This can be produced following

the two steps identified above, and is likely to include elements of risk reduction

as well as selection of appropriate and comprehensive recovery options.

 Production of an ITSCM plan, which again must be integrated with the overall

BCM plans.

 Testing of the plans.

 Ongoing operation and maintenance of the plans.

Generalization: itil:DesignProcess

157

Relation to ITIL: ITIL Service Design, p. 216-243 and p. 430 (IT Service Continuity

Management definition).

Object Properties: Inherited from itil:DesignProcess

Datatype Properties: Inherited from itil:DesignProcess

Class: ServiceCatalogManagement

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Design. The Stationery Office (TSO).

Description: The itil:ServiceCatalogManagement is the process that provides a single

source of consistent information on all of the agreed services, and ensures that it is

widely available to those who are approved to access it.

The objective of the itil:ServiceCatalogManagement process is to manage the

information contained within the service catalog, and to ensure that it is accurate and

reflects the current details, status, interfaces and dependencies of all services that are

being run, or being prepared to run, in the live environment.

The service catalog has two aspects:

 The Business Service Catalog: containing details of all the IT services delivered

to the customer, together with relationships to the business units and the

business process that rely on the IT services. This is the customer view of the

service catalog.

 The Technical Service Catalog: containing details of all the IT services

delivered to the customer, together with relationships to the supporting services,

shared services, components and CIs necessary to support the provision of the

service to the business. This should underpin the Business Service Catalog and

not form part of the customer view.

Some organizations only maintain either a Business Service Catalog or a Technical

Service Catalog. The preferred situation adopted by the more mature organizations

maintains both aspects within a single service catalog, which is part of a totally

integrated ITSM activity and service portfolio. The Business Service Catalog facilitates

the development of a much more proactive or even pre-emptive

itil:ServiceLevelManagement process, allowing it to develop more into the field of

Business Service Management (BSM). The Technical Service Catalog is extremely

beneficial when constructing the relationship between services, SLAs, OLAs and other

underpinning agreements and components, as it will identify the technology required to

support a service and the support group(s) that support the components. The

combination of a Business Service Catalog and a Technical Service Catalog is

invaluable for quickly assessing the impact of incidents and changes on the business.

Generalization: itil:DesignProcess

Relation to ITIL: ITIL Service Design, p. 101-108.

Object Properties: Inherited from itil:DesignProcess

Datatype Properties: Inherited from itil:DesignProcess

158

Class: ServiceLevelManagement

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Design. The Stationery Office (TSO).

Description: The itil:ServiceLevelManagement is the process responsible for

negotiating the itil:SLA(s), and ensuring that these are met. The

itil:ServiceLevelManagement process is responsible for ensuring that all itil:Process(s),

itil:OLA(s), and itil:UC(s), are appropriate for the agreed service level targets. The

itil:SLA(s) provide the basis for managing the relationship between the service provider

and the customer, and the itil:ServiceLevelManagement process provides that central

point of focus for a group of customers, business units or lines of business. Using the

service catalog as an aid, the itil:ServiceLevelManagement process must design the most

appropriate itil:SLA structure to ensure that all services and all customers are covered in

a manner best suited to the organization’s needs. Also, the itil:ServiceLevelManagement

process monitors and reports on service levels, and holds regular customer reviews.

The itil:ServiceLevelManagement process needs to manage the expectation and

perception of the business, customers and users and ensure that the quality of service

delivered by the service provider is matched to those expectations and needs. In order to

do this effectively, the itil:ServiceLevelManagement process should establish and

maintain itil:SLA(s) for all current live services and manage the level of service

provided to meet the targets and quality measurements contained within the itil:SLA(s).

The itil:ServiceLevelManagement process should also produce and agree itil:SLR(s) for

all planned new or changed services.

The goal of the itil:ServiceLevelManagement process is to ensure that an agreed level of

IT service is provided for all current IT services, and that future services are delivered to

agreed achievable targets. If the targets are not aligned with business needs, then service

provider activities and service levels will not be aligned with business expectations and

problems will develop. Proactive measures are also taken to seek and implement

improvements to the level of service delivered.

The itil:ServiceLevelManagement process should include instigation and coordination

of a Service Improvement Plan (SIP) for the management, planning and implementation

of all service and process improvements. A SIP is an overall program or plan of

prioritized improvement actions, encompassing all services and all processes, together

with associated impacts and risks. In other words, a SIP is a formal plan to implement

improvements to a process or IT service.

The itil:ServiceLevelManagement process should also include activities and procedures

for the logging and management of all complaints and compliments. The logging

procedures are often performed by the itil:SERVICE_DESK (itil:RoleType instance) as

they are similar to those of Incident Management and Request Fulfillment processes.

The definition of a complaint and compliment should be agreed with the customers,

together with agreed contact points and procedures for their management and analysis.

All complaints and compliments should be recorded and communicated to the relevant

parties. All complaints should also be actioned and resolved to the satisfaction of the

originator. If not, there should be an escalation contact and procedure for all complaints

159

that are not actioned and resolved within an appropriate timescale. All outstanding

complaints should be reviewed and escalated to senior management where appropriate.

Reports should also be produced on the numbers and types of complaints, the trends

identified and actions taken to reduce the numbers received. Similar reports should also

be produced for compliments.

Generalization: itil:DesignProcess

Relation to ITIL: ITIL Service Design, p. 109-133, p. 441 (Service Improvement Plan

definition) and p. 442 (Service Level Management definition).

Object Properties: Inherited from itil:DesignProcess

Datatype Properties: Inherited from itil:DesignProcess

Class: SupplierManagement

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Design. The Stationery Office (TSO).

Description: The itil:SupplierManagement is the process responsible for ensuring that

all contracts with suppliers support the needs of the business, and that all suppliers meet

their contractual commitments. The purpose of the itil:SupplierManagement process is

to obtain value for money from suppliers and to ensure that suppliers perform to the

targets contained within their contracts and agreements, while conforming to all of the

terms and conditions. All itil:SupplierManagement process activity should be driven by

a supplier strategy and policy from itil:ServiceStrategy. In order to achieve consistency

and effectiveness in the implementation of the policy, a Supplier and Contracts

Database (SCD) should be established, together with clearly defined roles and

responsibilities.

SCDs are beneficial because they can be used to promote preferred suppliers and to

prevent purchasing of unapproved or incompatible items. By coordinating and

controlling the buying activity, the organization is more likely to be able to negotiate

preferential rates.

It is essential that itil:SupplierManagement processes and planning are involved in all

stages of the service lifecycle, from strategy and design, through transition and

operation, to improvement. The complex business demands require the complete

breadth of skills and capability to support provision of a comprehensive set of IT

services to a business, therefore the use of value networks and the suppliers and the

services they provide are an integral part of any end-to-end solution. Suppliers and the

management of suppliers and partners are essential to the provision of quality IT

services.

Ideally the SCD should form an integrated element of a comprehensive CMS or SKMS,

recording all supplier and contract details, together with details of the type of

itil:ITService(s) provided by each supplier (itil:ITServiceProvider), and all other

information and relationships with other associated itil:CIs. The services provided by

suppliers will also form a key part of the itil:ServicePortfolio. The relationship between

the itil:SupportingService(s) and the IT and itil:CoreService(s) they support are key to

providing quality IT services.

160

Adding new suppliers or contracts to the SCD needs to be handled via the

itil:ChangeManagement process, to ensure that any impact is assessed and understood.

In most itil:ITServiceProvider(s), the SCD is owned by the itil:SupplierManagement

process or the procurement or purchasing department. The SCD provides a single,

central focal set of information for the management of all suppliers and contracts.

Generalization: itil:DesignProcess

Relation to ITIL: ITIL Service Design, p. 260-286 and p. 445 (Supplier Management

definition).

Object Properties: Inherited from itil:DesignProcess

Datatype Properties: Inherited from itil:DesignProcess

Class: TransitionProcess

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Transition. The Stationery Office (TSO).

Description: The itil:TransitionProcess concept represents the structured set of

activities designed to accomplish the Service Transition phase.

Generalization: itil:Process

Relation to ITIL: We use the itil:TransitionProcess class to classify the processes that

support the Service Transition phase (subclasses): itil:ChangeManagement,

itil:Evaluation, itil:KnowledgeManagement, itil:Release_and_DeploymentManagement,

itil:ServiceAsset_and_ConfigurationManagement, itil:ServiceValidation_and_Testing

and itil:TransitionPlanning_and_Support.

Object Properties: itil:inTransitionStage (subproperty of itil:inServiceStage) and

inherited from itil:Process

Datatype Properties: Inherited from itil:Process

Class: ChangeManagement

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Transition. The Stationery Office (TSO).

Description: The itil:ChangeManagement is the process responsible for controlling the

lifecycle of all changes. The primary objective of itil:ChangeManagement is to enable

beneficial changes to be made, with minimum disruption to IT services.

Generalization: oc:TransitionProcess

Relation to ITIL: ITIL Service Transition, p. 77-117 and p. 371 (Change Management

definition).

Object Properties: Inherited from oc:TransitionProcess

Datatype Properties: Inherited from oc:TransitionProcess

161

Class: Evaluation

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Transition. The Stationery Office (TSO).

Description: The itil:Evaluation is the process responsible for assessing a new or

changed IT service to ensure that risks have been managed and to help determine

whether to proceed with the change. The itil:Evaluation process is also used to mean

comparing an actual outcome with the intended outcome, or comparing one alternative

with another.

Generalization: oc:TransitionProcess

Relation to ITIL: ITIL Service Transition, p. 245-255 and p. 376 (Evaluation

definition).

Object Properties: Inherited from oc:TransitionProcess

Datatype Properties: Inherited from oc:TransitionProcess

Class: KnowledgeManagement

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Transition. The Stationery Office (TSO).

Description: The itil:KnowledgeManagement is the process responsible for gathering,

analyzing, storing and sharing knowledge and information within an organization. The

primary purpose of the itil:KnowledgeManagement process is to improve efficiency by

reducing the need to rediscover knowledge.

Generalization: oc:TransitionProcess

Relation to ITIL: ITIL Service Transition, p. 256-273 and p. 381 (Knowledge

Management definition).

Object Properties: Inherited from oc:TransitionProcess

Datatype Properties: Inherited from oc:TransitionProcess

Class: Release_and_DeploymentManagement

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Transition. The Stationery Office (TSO).

Description: The itil:Release_and_DeploymentManagement is the process responsible

for both release management and deployment. The release management process is

responsible for planning, scheduling and controlling the movement of releases to test

and live environments. The primary objective of release management is to ensure that

the integrity of the live environment is protected and that the correct components are

162

released. Deployment is the activity responsible for movement of new or changed

hardware, software, documentation, process, etc. to the live environment.

Generalization: oc:TransitionProcess

Relation to ITIL: ITIL Service Transition, p. 152-206, p. 375 (Deployment definition)

and p. 388 (Release and Deployment Management definition) (Release Management

definition).

Object Properties: Inherited from oc:TransitionProcess

Datatype Properties: Inherited from oc:TransitionProcess

Class: ServiceAsset_and_ConfigurationManagement

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Transition. The Stationery Office (TSO); itSMF

International. (2007). ITIL V3: Glossary of Terms and Definitions. Version to

Workload.

Description: The itil:ServiceAsset_and_ConfigurationManagement is the process

responsible for both configuration management and asset management. The asset

management process is responsible for tracking and reporting the value and ownership

of financial assets throughout their lifecycle. The configuration management process is

the responsible for maintaining information about CIs required to deliver an IT Service,

including their Relationships. This information is managed throughout the Lifecycle of

the CI.

Generalization: oc:TransitionProcess

Relation to ITIL: ITIL Service Transition, p. 118-151, p. 366 (Asset Management

definition) and p. 373 (Configuration Management definition). ITIL V3: Glossary of

Terms and Definitions (Service Asset and Configuration Management (SACM)

definition).

Object Properties: Inherited from oc:TransitionProcess

Datatype Properties: Inherited from oc:TransitionProcess

Class: ServiceValidation_and_Testing

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Transition. The Stationery Office (TSO); itSMF

International. (2007). ITIL V3: Glossary of Terms and Definitions. Version to

Workload.

Description: The itil:ServiceValidation_and_Testing is the process responsible for

validation and testing of a new or changed IT service. The

itil:ServiceValidation_and_Testing process ensures that the IT service matches its

design specification and will meet the needs of the business. Validation is an activity

that ensures a new or changed IT service, process, plan, or other deliverable meets the

163

needs of the business. Validation ensures that business requirements are met even

though these may have changed since the original design (do not be confused by the

term verification: an activity that ensures a new or changed IT service, process, plan, or

other deliverable is complete, accurate, reliable and matches its design specification).

Test is an activity that verifies that a CI, IT service, process, etc. meets its specification

or agreed requirements. Acceptance is a formal agreement that an IT service, process,

plan, or other deliverable is complete, accurate, reliable and meets its specified

requirements. Acceptance is usually preceded by evaluation or testing and is often

required before proceeding to the next stage of a project or process.

Generalization: oc:TransitionProcess

Relation to ITIL: ITIL Service Transition, p. 207-244, p. 365 (Acceptance definition),

p. 396 (Test definition), p. 397 (Validation definition) and p. 398 (Verification

definition). ITIL V3: Glossary of Terms and Definitions (Service Validation and Testing

definition).

Object Properties: Inherited from oc:TransitionProcess

Datatype Properties: Inherited from oc:TransitionProcess

Class: TransitionPlanning_and_Support

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Transition. The Stationery Office (TSO); itSMF

International. (2007). ITIL V3: Glossary of Terms and Definitions. Version to

Workload.

Description: The itil:TransitionPlanning_and_Support is the process responsible for

planning all service transition processes and coordinating the resources that they

require. These service transition processes are: itil:ChangeManagement, itil:Evaluation,

itil:KnowledgeManagement, itil:Release_and_DeploymentManagement,

itil:ServiceAsset_and_ConfigurationManagement and

itil:ServiceValidation_and_Testing. Planning is an activity responsible for creating one

or more plans. For example, capacity planning.

Generalization: oc:TransitionProcess

Relation to ITIL: ITIL Service Transition, p. 63-76 and p. 385-386 (Planning

definition). ITIL V3: Glossary of Terms and Definitions (Transition Planning and

Support definition).

Object Properties: Inherited from oc:TransitionProcess

Datatype Properties: Inherited from oc:TransitionProcess

Class: OperationProcess

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO).

164

Description: The itil:OperationProcess concept represents the structured set of

activities designed to accomplish the Service Operation phase.

Generalization: itil:Process

Relation to ITIL: We use the itil:OperationProcess class to classify the processes that

support the Service Operation phase (subclasses): itil:AccessManagement,

itil:EventManagement, itil:IncidentManagement, itil:ProblemManagement, and

itil:RequestFulfillment.

Object Properties: itil:inOperationStage (subproperty of itil:inServiceStage) and

inherited from itil:Process

Datatype Properties: Inherited from itil:Process

Class: AccessManagement

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO); itSMF

International. (2007). ITIL V3: Glossary of Terms and Definitions. Version to

Workload.

Description: The itil:AccessManagement is the process responsible for allowing users

to make use of IT services, data, or other assets. The itil:AccessManagement process

helps to protect the confidentiality, integrity and availability of assets by ensuring that

only authorized users are able to access or modify the assets. The

itil:AccessManagement process is sometimes referred to as rights management or

identity management. The itil:AccessManagement process does not decide who has

access to which IT services. Rather, The itil:AccessManagement process executes the

policies and regulations defined during itil:ServiceStrategy and itil:ServiceDesign. The

itil:AccessManagement process enforces decisions to restrict or provide access, rather

than making the decision.

Generalization: oc:OperationProcess

Relation to ITIL: ITIL Service Operation, p. 126-135. ITIL V3: Glossary of Terms and

Definitions (Access Management definition).

Object Properties: Inherited from oc:OperationProcess

Datatype Properties: Inherited from oc:OperationProcess

Class: EventManagement

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO).

Description: The itil:EventManagement is the process responsible for managing

itil:Event(s) throughout their lifecycle. The itil:EventManagement process is one of the

main activities of IT operations. The itil:EventManagement process monitors all

itil:Event(s) that occur throughout the IT infrastructure, to monitor normal operation

165

and to detect and escalate exception conditions. The itil:EventManagement process is

the basis for operational monitoring and control. In addition, if the itil:Event(s) are

programmed to communicate operational information as well as warnings and

exceptions, they can be used as a basis for automating many routine operations

management activities, for example executing scripts on remote devices, or submitting

jobs for processing, or even dynamically balancing the demand for a service across

multiple devices to enhance performance.

The itil:EventManagement therefore provides the entry point for the execution of many

itil:ServiceOperation processes and activities. In addition, it provides a way of

comparing actual performance and behavior against design standards and itil:SLA(s). As

such, the itil:EventManagement process also provides a basis for service assurance and

reporting, and service improvement.

Generalization: oc:OperationProcess

Relation to ITIL: ITIL Service Operation, p. 35, p. 52, p. 67 and p. 374 (Event

Management definition). Note that although the itil:EventMangement process monitors

all the itil:Event(s), other itil:Process(s) can managed specific itil:Event(s). For

example, an itil:Incident is an itil:Event managed by the itil:IncidentManagement

process.

Object Properties: Inherited from oc:OperationProcess

Datatype Properties: Inherited from oc:OperationProcess

Class: IncidentManagement

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO).

Description: The itil:IncidentManagement is the process for dealing with all incidents;

this can include failures, questions or queries reported by the users (usually via a

telephone call to the itil:SERVICE_DESK, the itil:RoleType instance, of the

itil:ITServiceProvider), by technical staff, or automatically detected and reported by

event monitoring tools. The primary goal of the itil:IncidentManagement process is to

restore normal service operation as quickly as possible and minimize the adverse impact

on business operations, thus ensuring that the best possible levels of service quality and

availability are maintained. Normal service operation is defined here as service

operation within itil:SLA limits.

Note that, although both itil:Incident(s) and itil:ServiceRequest(s) are reported to the

itil:SERVICE_DESK, this does not mean that they are the same. The

itil:ServiceRequest(s) do not represent a disruption to agreed itil:ITservice, but are a

way of meeting the itil:Customer’s needs and may be addressing an agreed

itil:ServiceLevelTarget in an itil:SLA. The itil:ServiceRequest(s) are dealt with by the

itil:RequestFulfillment process and not by the itil:IncidentManagement process.

Generalization: itil:OperationProcess

Relation to ITIL: ITIL Service Operation, p. 86-104 and p. 376 (Incident Management

definition).

166

Object Properties: Inherited from itil:OperationProcess

Datatype Properties: Inherited from itil:OperationProcess

Class: ProblemManagement

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO); itSMF

International. (2007). ITIL V3: Glossary of Terms and Definitions. Version to

Workload.

Description: The itil:ProblemManagement is the process responsible for managing the

lifecycle of all problems. The primary objectives of itil:ProblemManagement are to

prevent incidents from happening, and to minimize the impact of incidents that cannot

be prevented.

Generalization: oc:OperationProcess

Relation to ITIL: ITIL Service Operation, p. 111-125. ITIL V3: Glossary of Terms and

Definitions (Problem Management definition).

Object Properties: Inherited from oc:OperationProcess

Datatype Properties: Inherited from oc:OperationProcess

Class: RequestFulfillment

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO).

Description: The itil:RequestFulfillment is the process responsible for managing the

lifecycle of all service requests. The term ‘service request’ is used as a generic

description for many varying types of demands that are placed upon the IT department

by the users. Many of these are actually small changes, low risk, frequently occurring,

low cost, etc. (e.g., a request to change a password, a request to install an additional

software application onto a particular workstation, a request to relocate some items of

desktop equipment) or maybe just a question requesting information, but their scale and

frequent, low-risk nature means that they are better handled by a separate process, rather

than being allowed to congest and obstruct the normal incident and change management

processes. The value of itil:RequestFulfillment is to provide quick and effective access

to standard services which business staff can use to improve their productivity or the

quality of business services and products. The itil:RequestFulfillment process

effectively reduces the bureaucracy involved in requesting and receiving access to

existing or new services, thus also reducing the cost of providing these services.

Centralizing fulfilment also increases the level of control over these services. This in

turn can help reduce costs through centralized negotiation with suppliers, and can also

help to reduce the cost of support.

Generalization: oc:OperationProcess

167

Relation to ITIL: ITIL Service Operation, p. 105-110 and p. 386 (Request Fulfillment

definition).

Object Properties: Inherited from oc:OperationProcess

Datatype Properties: Inherited from oc:OperationProcess

Class: CSIProcess

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Continual Service Improvement. The Stationery Office

(TSO).

Description: The itil:CSIProcess concept represents the structured set of activities

designed to accomplish the Continual Service Improvement phase.

Generalization: itil:Process

Relation to ITIL: We use the itil:CSIProcess class to classify the processes that

support the Continual Service Improvement phase (subclasses):

itil:The7StepImprovement.

Object Properties: itil:inCSIStage (subproperty of itil:inServiceStage) and inherited

from itil:Process

Datatype Properties: Inherited from itil:Process

Class: The7StepImprovement

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Continual Service Improvement. The Stationery Office

(TSO).

Description: The itil:The7StepImprovement is a process that spans not only the

management organization but the entire service lifecycle. This is a cornerstone of CSI.

Steps:

(1) Define what you should measure: At the onset of the service lifecycle, Service

Strategy and Service Design should have identified this information. CSI can

then start its cycle all over again at Where are we now? This identifies the ideal

situation for both the Business and IT.

(2) Define what you can measure: This activity related to the CSI activities of

Where do we want to be? By identifying the new service level requirements of

the business, the IT capabilities (identified through Service Design and

implemented via Service Transition) and the available budgets, CSI can conduct

a gap analysis to identify the opportunities for improvement as well as

answering the question How do we get there?.

(3) Gathering the data: In order to properly answer the Did we get there? question,

data must first be gathered (usually through Service Operations). Data is

168

gathered based on goals and objectives identified. At this point the data is raw

and no conclusions are drawn.

(4) Processing the data: Here the data is processed in alignment with the CSFs and

KPIs specified. This means that timeframes are coordinated, unaligned data is

rationalized and made consistent, and gaps in the data are identified. The simple

goal of this step is to process data from multiple disparate sources into an

“apples to apples” comparison. Once we have rationalized the data we can then

begin analysis.

(5) Analyzing the data: Here the data becomes information as it is analyzed to

identify service gaps, trends and the impact on business. It is the analyzing step

that is most often overlooked or forgotten in the rush to present data to

management.

(6) Presenting and using the information: Here the answer to Did we get there? is

formatted and communicated in whatever way necessary to present to the

various stakeholders an accurate picture of the results of the improvement

efforts. Knowledge is presented to the business in a form and manner that

reflects their needs and assists them in determining the next steps.

(7) Implementing corrective action: The knowledge gained is used to optimize,

improve and correct services. Managers identify issues and present solutions.

The corrective actions that need to be taken to improve the service are

communicated and explained to the organization. Following this step the

organization establishes a new baseline and the cycle begins anew.

While these seven steps of measurement appear to form a circular set of activities, in

fact, they constitute a knowledge spiral. In actual practice, knowledge gathered and

wisdom derived from that knowledge at one level of the organization becomes a data

input to the next.

Generalization: itil:CSIProcess

Relation to ITIL: ITIL Continual Service Improvement, p. 54-55 and p. 68-90.

Object Properties: Inherited from itil:CSIProcess

Datatype Properties: Inherited from itil:CSIProcess

Class: ComputerProgram-CW

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: The OpenCyc concept oc:ComputerProgram-CW is a specialization of

oc:PropositionalConceptualWork, oc:ComputerFile-CW and oc:SoftwareObject-

Individual. Each instance of oc:ComputerProgram-CW is a deliberately created abstract

object composed of propositions (described by specifications using the

oc:programSpecifications property) that together constitute a list of instructions for

computers to execute. Example instances include oc:Emacs-TheProgram and

oc:LinuxKernel-TheProgram. Instances of this collection are distinct from computer

code and from both running and installed programs. The instructions that comprise an

169

instance of oc:ComputerProgram-CW can be expressed as abstract computer code (see

oc:ComputerCode), but no list of instructions expressed in code constitutes an instance

of oc:ComputerProgram-CW. Rather, the code in which an instance of

oc:ComputerProgram-CW is expressed constitutes an instance of

oc:AbstractInformationStructure that can be related to the program it expresses using

the predicate oc:programCode.

Generalization: owl:Thing

Relation to ITIL: Although this concept is not part of the ITIL documentation, in order

to take advantage of existing upper ontologies, we use we use the OpenCyc concept

oc:ComputerProgram-CW to classify the applications that will be implemented in an IT

service provider for an ITSMS.

Object Properties: oc:programCode and oc:programSpecifications

Datatype Properties: none

Class: AbstractInformationStructure

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: An oc:AbstractInformationStructure is a specialization of

oc:AbstractStructure. Each instance of oc:AbstractInformationStructure is an abstract

individual comprising abstract symbols and relations between them. Important

specializations of this collection include oc:CharacterString and oc:Sentence. The

OpenCyc concept oc:AbstractInformationStructure also includes abstract diagrams,

graphs, and bit strings. The collection can be more precisely defined as follows: Each

oc:AbstractInformationStructure is such that each of its physical instantiations consists

of instantiations of instances of oc:AtomicSymbol-Abstract, arranged in a certain way.

For example, the abstract sentence 'The pig flies' is an oc:AbstractInformationStructure.

Each written instantiation of it consists of an instantiation of the words (symbols) 'The',

'pig' and 'flies', written in that order. (If the oc:AbstractInformationStructure 'The pig

flies' were spoken, the same words would appear in the same order, i.e. 'The' first, etc.,

but the sequence would be determined by the arrangement of the spoken words in time,

rather than space.) Likewise with abstract diagrams, graphs, etc. Each of these is such

that its physical instantiations consist of arrangements of instantiations of instances of

oc:AtomicSymbol-Abstract. A hard copy of a wiring diagram consists of a group of

concrete symbols representing various circuit components, in which these symbols are

spatially arranged in a certain in way. The arrangement of the concrete symbols in an

instantiation of an oc:AbstractInformationStructure is not always a simple matter of

arrangement in space or time. The sequence of symbols '0010010111011001' can be

instantiated in written, spoken, or electronic forms. In the last case, the order of the

symbols is determined by conventions concerning the electronic medium in which it is

stored, rather than by any common criterion for precedence or subsequence in space or

time.

Generalization: owl:Thing

170

Relation to ITIL: Although this concept is not part of the ITIL documentation, in order

to take advantage of existing upper ontologies, we use we use the OpenCyc concept

oc:AbstractInformationStructure to classify the applications that will be implemented in

an IT service provider for an ITSMS.

Object Properties: none

Datatype Properties: none

Class: ComputerAIS

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: An oc:ComputerAIS is a specialization of

oc:AbstractInformationStructure. Each instance of oc:ComputerAIS is the abstract

information structure of an abstract work whose instantiation in computer memory is

intended to have meaning.

Generalization: oc:AbstractInformationStructure

Relation to ITIL: Although this concept is not part of the ITIL documentation, in order

to take advantage of existing upper ontologies, we use we use the OpenCyc concept

oc:ComputerAIS to classify the applications that will be implemented in an IT service

provider for an ITSMS.

Object Properties: Inherited from oc:AbstractInformationStructure

Datatype Properties: Inherited from oc:AbstractInformationStructure

Class: ComputerCode

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: An oc:ComputerCode is a specialization of oc:ComputerAIS. Each

instance of oc:ComputerCode is an abstract list of instructions expressed in some

computer language including executable binary code.

Generalization: oc:ComputerAIS

Relation to ITIL: Although this concept is not part of the ITIL documentation, in order

to take advantage of existing upper ontologies, we use we use the OpenCyc concept

oc:ComputerCode to classify the applications that will be implemented in an IT service

provider for an ITSMS.

Object Properties: Inherited from oc:ComputerAIS

Datatype Properties: itil:computerLanguage and inherited from oc:ComputerAIS

171

Class: Application

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

Description: An itil:Application is software that provides functions that are required by

an IT service. Each itil:Application implements an itil:Activity and it may be part of

more than one IT service. An itil:Application runs on one or more servers or customers.

Generalization: oc:ComputerCode

Relation to ITIL: ITIL Service Strategy, p. 340 (Application definition). In our

modeling approach for ITSMSs, an itil:Application is the code (computer tool) that

implements an itil:Activity.

Object Properties: itil:implementsActivity, itil:supportsITService and inherited from

oc:ApplicationProgram

Datatype Properties: itil:appDescription, itil:appName and inherited from

oc:ComputerCode

Class: Situation

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: An oc:Situation is a state or event consisting of one or more objects

having certain properties or bearing certain relations to each other. Notable

specializations of oc:Situation are oc:Event and oc:StaticSituation.

Generalization: owl:Thing

Relation to ITIL: Although this concept is not part of the ITIL documentation, in order

to take advantage of existing upper ontologies, we use the OpenCyc concept

oc:Situation for the classification of some ITIL concepts such as incident or IT service.

Object Properties: none

Datatype Properties: itil:situationDescription and itil:situationName

Class: Event

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: An oc:Event is a dynamic situation in which the state of the real-world

changes; each instance is something one would say ‘happens’. The oc:Event(s) are

intangible because they are changes per se, not tangible objects that effect and undergo

changes.

Generalization: oc:Situation

172

Relation to ITIL: We use the OpenCyc concept oc:Event in order to take advantage of

existing upper ontologies. The oc:Event is the parent class of oc:Action.

Object Properties: itil:inEvent, oc:subEvents and inherited from oc:Situation

Datatype Properties: Inherited from oc:Situation

Class: Action

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: An oc:Action is the collection of events that are carried out by some

‘doer’. Instances of oc:Action include any event in which one or more actors effect

some change in the (tangible or intangible) state of the real-world, typically by an

expenditure of effort or energy. Note that it is not required that any tangible object be

moved, changed, produced, or destroyed for an action to occur; the effects of an action

might be intangible (such as a change in a bank balance or the intimidation of a

subordinate). Note also that the doer of an action need not be (for example, a falling

rock that dents a car's roof). Depending upon the context, doers of actions might be

animate or inanimate, conscious or non conscious.

Generalization: oc:Event

Relation to ITIL: Although this concept is not part of the ITIL documentation, in order

to take advantage of existing upper ontologies, we use we use the OpenCyc concept

oc:Action as the super class for all concrete oc:Action types in the ITSM model.

Object Properties: oc:performedBy and inherited from oc:Event

Datatype Properties: Inherited from oc:Event

Class: PurposefulAction

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: An oc:PurposefulAction is an oc:Action consciously, volitionally, and

purposefully done by at least one actor.

Generalization: oc:Action

Relation to ITIL: Although this concept is not part of the ITIL documentation, in order

to take advantage of existing upper ontologies, we use the OpenCyc concept

oc:PurposefulAction to classify activities in a ITIL workflow process (i.e., the set of

events, the order in which they must be performed, and the performers who participate

in the process) and to classify service events associated with the ITSM model.

Object Properties: Inherited from oc:Action

Datatype Properties: Inherited from oc:Action

173

Class: BpmnDiagram

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn /; Object Management

Group (OMG), 2010. Business Process Model and Notation (BPMN) Version 2.0.

Available at: http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

Description: The wf:BpmnDiagram is the Workflow representation in form of a BPMN

diagram which is composed of messages (wf:MessagingEdge) and pools (wf:Pool).

Generalization: oc:PurposefulAction, wf:Identifiable and wf:ArtifactsContainer

Relation to ITIL: We use the Workflow concept wf:BpmnDiagram in order to relate

the business process flow to the itil:Activity that defines it. In our modeling approach for

ITSMSs, the wf:BpmnDiagram is considered a subclass of oc:PurposefulAction and is

the parent class of itil:Activity.

Object Properties: wf:diagramComposedOf and inherited from oc:PurposefulAction,

wf:Identifiable and wf:ArtifactsContainer

Datatype Properties: wf:diagramAuthor, wf:diagramTitle and inherited from

oc:PurposefulAction, wf:Identifiable and wf:ArtifactsContainer

Class: Activity

Ontology: ITIL (itil:)

Source: itSMF International. (2007). ITIL V3: Glossary of Terms and Definitions.

Version to Workload.

Description: An itil:Activity is a set of actions designed to achieve a particular result.

The itil:Activity is usually defined as part of processes or plans, and it is documented in

procedures.

Generalization: wf:BpmnDiagram

Relation to ITIL: ITIL V3: Glossary of Terms and Definitions (Activity definition). In

our modeling approach for ITSMSs, the itil:Activity is a wf:BpmnDiagram that contains

the workflow of an itil:Process. Following the approach defined in [Ferrario & Guarino,

2009] we present an itil:Activity as the service process that implements the service, i.e.,

the actions that ultimately lead to service production performed by the IT service

provider. These activities are carried out and coordinated by the specifications as part of

a business process, during which documents or information are passed from one

participant to another, according to a set of procedural rules.

Object Properties: itil:coordinatedBySpecification, itil:implementedByApplication and

inherited from wf:BpmnDiagram

Datatype Properties: Inherited from wf:BpmnDiagram

Class: ServiceEvent

Ontology: OpenCyc (oc:)

174

Source: OpenCyc Browser.

Description: An oc:ServiceEvent is an event in which one or more agents (related to the

event via the predicate oc:providerOfService) do something for one or more other

agents (related to the event via the predicate oc:recipientOfService). An

oc:ServiceEvent may involve maintenance, repair, or refurbishing of some object

belonging to the recipient(s) of the service (including care of his/her person), or it may

involve gathering or transmitting information, providing advice, entertainment,

transportation, etc. to the recipient(s). The oc:ServiceEvents may or may not be done for

payment. Those done for payment are instances of oc:ServiceProduct.

Generalization: oc:PurposefulAction

Relation to ITIL: Although this concept is not part of the ITIL documentation, in order

to take advantage of existing upper ontologies, we use the OpenCyc concept

oc:ServiceEvent for the classification of the different service products associated with

the ITSM model.

Object Properties: oc:providerOfService, oc:recipientOfService and inherited from

oc:PurposefulAction

Datatype Properties: Inherited from oc: PurposefulAction

Class: ServiceProduct

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: An oc:ServiceProduct is the collection of all oc:ServiceEvent(s) for which

payment is made.

Generalization: oc:ServiceEvent

Relation to ITIL: Although this concept is not part of the ITIL documentation, in order

to take advantage of existing upper ontologies, we use the OpenCyc concept

oc:ServiceProduct for the classification of IT services, and events that are managed by

specific ITIL processes.

Object Properties: Inherited from oc:ServiceEvent

Datatype Properties: Inherited from oc:ServiceEvent

Class: Event

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO).

Description: An itil:Event is any detectable or discernible occurrence that has

significance for the management of the IT infrastructure or the delivery of an IT service

and evaluation of the impact a deviation might cause to the services. The itil:Event(s)

are typically notifications created by an itil:ITService, itil:CI or monitoring tool and

they have an itil:Lifecycle. An itil:Event typically requires IT Operations personnel to

175

take actions, and often lead to incidents being logged. Events occur continuously, but

not all of them are detected or registered. It is therefore important that everybody

involved in designing, developing, managing and supporting IT services and the IT

infrastructure that they run on understands what types of events need to be detected and

considered itil:Events. Also, activities undertaken to manage a specific itil:Event should

be documented.

There are many different types of itil:Events, for example:

 Events that signify regular operation:

- Notification that a scheduled workload has completed.

- A user has logged in to use an application.

- An e-mail has reached its intended recipient.

 Events that signify an exception:

- A user attempts to log on to an application with the incorrect password.

- An unusual situation has occurred in a business process that may indicate an

exception requiring further business investigation (for example, a Web page

alert indicates that a payment authorization site is unavailable – impacting

financial approval of business transactions).

- A device’s CPU is above the acceptable utilization rate.

- A PC scan reveals the installation of unauthorized software.

 Events that signify unusual, but not exceptional, operation. These are an

indication that the situation may require closer monitoring. In some cases the

condition will resolve itself, for example in the case of an unusual combination

of workloads – as they are completed, normal operation is restored. In other

cases, operator intervention may be required if the situation is repeated or if it

continues for too long. These rules or policies are defined in the Monitoring and

Control Objectives for that device or service. Examples of this type of event are:

- A server’s memory utilization reaches within 5% of its highest acceptable

performance level.

- The completion time of a transaction is 10% longer than normal.

Generalization: oc:ServiceProduct

Relation to ITIL: ITIL Service Operation p. 67, p. 69, p. 91 and p. 373-374 (Event

definition). We use the itil:Event class to specify all the events that are included in an

itil:Process for proactive and reactive event management. Since

itil:ITServiceProvider(s) wants to make sure that the itil:ITService will remain available

to meet the itil:SLA(s), the IT employee must take actions when an event occurs.

According to ITIL, some events could be part of different processes, or even a

combination of two or more of them. Therefore an itil:ITServiceProvider must decide

and indicate what itil:Process (or processes) is going to manage a specific itil:Event.

Object Properties: itil:hasEventCategoryCode, itil:hasEventLifecycle,

itil:hasEventType, itil:hasManagedEventType, itil:hasTechnicalManagementType,

itil:managedByProcess, itil:undertakesActivity and inherited from oc:ServiceProduct

176

Datatype Properties: Inherited from oc:ServiceProduct

Class: Incident

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO); Pilot

project documentation.

Description: An itil:Incident is an unplanned interruption to an itil:ITService or

reduction in the quality of an itil:ITService. Failure of an itil:CI that has not yet

impacted the itil:ITService is also an itil:Incident, for example failure of one disk from a

mirror set.

The itil:IncidentManagement process includes any event which disrupts, or which could

disrupt, a service. This includes itil:Event(s) which are communicated directly by users,

either through the itil:SERVICE_DESK (itil:RoleType instance) or through an interface

from the itil:EventManagement process to incident management tools.

The itil:Incident(s) can also be reported and/or logged by technical staff (if, for

example, they notice something untoward with a hardware or network component they

may report or log an incident and refer it to the itil:SERVICE_DESK). This does not

mean, however, that all itil:Event(s) are itil:Incident(s). Many classes of itil:Event(s) are

not related to disruptions at all, but are indicators of normal operation or are simply

informational.

Each itil:Incident may have links to the itil:Event(s) concerned (oc:subEvents property)

(for example, relationship with other itil:Incident(s), itil:Problem(s), itil:Change(s) or

itil:KnownError(s)), and to the itil:Activity undertaken to resolve the itil:Incident

(itil:undertakesActivity property).

Generalization: itil:Event

Relation to ITIL: ITIL Service Operation, p. 77, p. 86, p. 91, p. 101 and p. 376

(Incident definition). In our pilot project, an itil:Incident is allocated to different support

groups/persons that could resolve the itil:Incident (oc:performedBy property).

Object Properties: itil:hasIncidentRecord and inherited from itil:Event

Datatype Properties: Inherited from itil:Event

Class: ServiceRequest

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO); Pilot

project documentation.

Description: An itil:ServiceRequest is a request from an itil:User for information or

advice, or for a standard change or for access to an itil:ITService. For example to reset a

password, or to provide standard itil:ITService(s) for a new itil:User. To be an

itil:ServiceRequest, it is normal for some prerequisites to be defined and met (e.g.,

needs to be proven, repeatable, pre-approved, proceduralized). The

177

itil:ServiceRequest(s) do not represent a disruption to agreed itil:ITService, but are a

way of meeting the customer’s needs and may be addressing an agreed target in an

itil:SLA. The itil:ServiceRequest(s) are usually handled by the itil:SERVICE_DESK

(RoleType instance), and do not require an itil:RFC to be submitted.

Generalization: itil:Event

Relation to ITIL: ITIL Service Operation, p. 36, p. 86 and p. 390 (Service Request

definition). In our pilot project, each itil:ServiceRequest has a type and it is allocated to

different support groups/persons that could deal with the itil:ServiceRequest

(oc:performedBy property).

Object Properties: Inherited from itil:Event

Datatype Properties: Inherited from itil:Event

Class: RFC

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO).

Description: A Request for Change (RFC) is a formal proposal for a change to be

made. An itil:RFC includes details of the proposed change, and may be recorded on

paper or electronically. Authorized itil:RFC(s) should be passed to the relevant

technical groups for building of the changes. Each service change arrives into service

evaluation and qualification in the form of an itil:RFC from the itil:ChangeManagement

process.

All itil:RFC(s) received should be logged and allocated an identification number (in

chronological sequence). Where itil:RFC(s) are submitted in response to a trigger such

as a resolution to an itil:ProblemRecord, it is important that the reference number of the

triggering document is retained to provide traceability.

Generalization: itil:Event

Relation to ITIL: ITIL Service Operation, p. 94, p. 102, p. 246 and p. 388 (Request for

Change definition).

Object Properties: itil:hasChangeRecord, itil:proposesChange and inherited from

itil:Event

Datatype Properties: Inherited from itil:Event

Class: Change

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Transition. The Stationery Office (TSO); Pilot

project documentation.

Description: An itil:Change represents the addition, modification or removal of

authorized, planned or supported service or service component and its associated

documentation.

178

Generalization: itil:Event

Relation to ITIL: ITIL Service Transition, p. 78 and p. 371 (Change definition). In our

pilot project, changes are considered urgent when they restore a service after the

identification of a problem and pre-approved when the approval of the Change Advisory

Board (CAB) is not required.

Object Properties: Inherited from itil:Event

Datatype Properties: itil:urgentChange, itil:preApprovedChange and inherited from

itil:Event

Class: Problem

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO); Pilot

project documentation.

Description: An itil:Problem is the cause of one or more incidents. The cause is not

usually known at the time an itil:ProblemRecord is created, and the

itil:ProblemManagement process is responsible for further investigation.

Generalization: itil:Event

Relation to ITIL: ITIL Service Operation, p. 111 and p. 383 (Problem definition). In

our pilot project, each itil:Problem is allocated to an specfic support group/person that

could resolve the itil:Problem (oc:performedBy property).

Object Properties: itil:hasProblemRecord and inherited from itil:Event

Datatype Properties: Inherited from itil:Event

Class: KnownError

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO).

Description: An itil:KnownError is an itil:Problem that has a documented root cause

and a workaround. The workaround describes how to reduce or eliminate the impact of

an itil:Problem for which a full resolution is not yet available. For example, by

restarting a failed itil:CI. The itil:KnownError(s) are created and managed throughout

their itil:Lifecycle by the itil:ProblemManagement process. The itil:KnownError(s) may

also be identified by development or suppliers.

The known error record (itil:ProblemRecord) should hold exact details of the fault and

the symptoms that occurred, together with precise details of any workaround or

resolution action that can be taken to restore the service and/or resolve the problem. An

itil:Incident count will also be useful to determine the frequency with which

itil:Incident(s) are likely to recur and influence priorities, etc.

Generalization: itil:Problem

179

Relation to ITIL: ITIL Service Operation, p. 123, p. 378 (Known Error definition) and

p. 395 (Workaround definition).

Object Properties: Inherited from itil:Problem

Datatype Properties: Inherited from itil:Problem

Class: IncidentRecord

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO).

Description: An itil:IncidentRecord represents a record containing the details of an

itil:Incident. Each itil:IncidentRecord documents the itil:Lifecycle of a single

itil:Incident and the responsible (group/person) of the resolution of the reported

incident, i.e., the oc:Agent-Generic that records the itil:Incident.

Generalization: owl:Thing

Relation to ITIL: ITIL Service Operation, p. 86 and p. 376 (Incident Record

definition).

Object Properties: itil:hasIncidentGroup, itil:hasIncidentStatus and

itil:hasIncidentResponsible

Datatype Properties: itil:incidentImpact, itil:incidentLevel, itil:incidentPriority,

itil:incidentResolution, itil:incidentResolutionDatetime, itil:incidentStartDatetime and

itil:incidentUrgency

Class: ChangeRecord

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Transition; The Stationery Office (TSO); itSMF

International. (2007). ITIL V3: Glossary of Terms and Definitions. Version to

Workload.

Description: An itil:ChangeRecord holds the full history of the change, incorporating

information from the itil:RFC and subsequently recording agreed parameters such as

priority and authorization, implementation and review information. There may be many

different types of itil:ChangeRecord(s) used to record different types of itil:Change.

The documentation should be defined during the process design and planning stage.

An itil:ChangeRecord is created for every itil:RFC that is received, even those that are

subsequently rejected. The itil:ChangeRecord(s) should reference the itil:CI(s) that are

affected by the requested change. The itil:ChangeRecord(s) are stored in the CMS.

Generalization: owl:Thing

Relation to ITIL: ITIL Service Transition, p. 93-94. ITIL V3: Glossary of Terms and

Definitions (Change Record definition).

Object Properties: itil:affectsCI

180

Datatype Properties: none

Class: ProblemRecord

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO); itSMF

International. (2007). ITIL V3: Glossary of Terms and Definitions. Version to

Workload.

Description: An itil:ProblemRecord represents a record containing the details of an

itil:Problem. Each itil:ProblemRecord documents the itil:Lifecycle of a single

itil:Problem.

Generalization: owl:Thing

Relation to ITIL: ITIL Service Operation, p. 86. ITIL V3: Glossary of Terms and

Definitions (Problem Record definition).

Object Properties: none

Datatype Properties: none

Class: ITService

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

Description: An itil:ITService is a service provided to one or more itil:Customer(s) by

an itil:ITServiceProvider. That is, an itil:ITService represents the means of delivering

value to customers by facilitating outcomes, and it should be defined in an itil:SLA. An

itil:ITService is based on the use of information technology and supports the customer’s

business processes (in fact, many business processes rely on IT services). As customers

and suppliers become the direct users of IT services, the expectations and service level

requirements (SLRs) have become more demanding, requiring a value net approach. An

outcome-based definition of service moves IT service providers beyond business-IT

alignment towards business-IT integration. An outcome is the result of carrying out an

activity; following a process; delivering an IT service etc. The term outcome is used to

refer to intended results, as well as to actual results.

Each itil:ITService defines a set of itil:Metric(s) whose purpose is to measure the

quality and effectiviness of that service in order to take timely actions that make sure

service are delivered in line with business needs. These are the metrics that really matter

in order to demonstrate the value of the service and for the operation in a cycle of

continuous improvement. Also, itil:ITService(s) are managed according to an

itil:ServiceLifecycle and they are composed of itil:Application(s) and other itil:CI(s)

necessary to support the provision of the itil:ITService to the business.

Generalization: oc:ServiceProduct

Relation to ITIL: ITIL Service Strategy, p. 36, p. 81, p. 340 (Application definition), p.

343 (Business Process definition), p. 354 (IT Service definition) and p. 358-359

181

(Outcome definition). In our modeling approach for ITSMSs, just like the approach of

[Ferrario & Guarino, 2009], we consider itil:ITService(s) to be events based on

agreements. In [Ferrario & Guarino, 2009], services are modeled by means of a layered

set of interrelated activities (events), each one with its own participants and spatio-

temporal location. Therefore, itil:ITServicesProvider(s) deliver not the service itself, but

its content: “the actions to be performed in the interest of the customer.”

Object Properties: itil:definesMetric, itil:doneForCustomer (subproperty of

oc:recipientOfservice), itil:hasApplication, itil:hasCustomerReq,

itil:hasServiceLifecycle, itil:inServicePortfolio, itil:managesCI, itil:supportsPBA and

inherited from oc:ServiceProduct

Datatype Properties: itil:internalService, itil:serviceImportanceCode,

itil:serviceUsers, itil:visibleToCustomer and inherited from oc:ServiceProduct

Class: CoreService

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO);); itSMF

International. (2007). ITIL V3: Glossary of Terms and Definitions. Version to

Workload.

Description: An itil:CoreService represents an itil:ITService that delivers the basic

outcomes desired by the itil:Customer. The itil:CoreService(s) represent the value that

the itil:Customer wants and for which they are willing to pay. The itil:CoreService(s)

anchor the value proposition for the itil:Customer and provide the basis for their

continued utilization and satisfaction. The itil:SupportingService(s) either enable or

enhance the value proposition. Enabling services are basic factors and enhancing

services are excitement factors.

Generalization: itil:ITService

Relation to ITIL: ITIL Service Strategy, p. 207. ITIL V3: Glossary of Terms and

Definitions (Core Service definition).

Object Properties: itil:hasSupportingService and inherited from itil:ITService

Datatype Properties: Inherited from itil:ITService

Class: SupportingService

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO); itSMF

International. (2007). ITIL V3: Glossary of Terms and Definitions. Version to

Workload.

Description: An itil:SupportingService is an itil:ITService that enables or enhances an

itil:CoreService. For example, the itil:DirectoryService or the itil:BackupService service

instances.

Generalization: itil:ITService

182

Relation to ITIL: ITIL Service Strategy, p. 207. ITIL V3: Glossary of Terms and

Definitions (Supporting Service definition).

Object Properties: Inherited from itil:ITService

Datatype Properties: Inherited from itil:ITService

Class: PBA

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

Description: Pattern of Business Activity (PBA) defines dynamics of a business and

includes interactions with customers, suppliers, partners and other stakeholders. An

itil:PBA represents a workload profile of one or more business activities, where

workload is the resources required to deliver an identifiable part of an itil:ITService.

Workloads may be categorized by users, groups of users, or functions within the

itil:ITservice. This is used to assist in analyzing and managing the capacity,

performance and utilization of itil:CI(s) and itil:ITService(s). The term workload is

sometimes used as a synonym for the design concept throughput. Throughput is a

measure of the number of transactions, or other operations, performed in a fixed time.

For example, 5,000 e-mails sent per hour, or 200 disk I/Os per second.

An itil:PBA is used to help the itil:ITServiceProvider understand and plan for different

levels of business activity. The itil:ITService(s) often directly support itil:PBA. Since

itil:PBA(s) generate revenue, income and costs they account for a large proportion of

business outcomes.

The itil:PBA(s) are identified, codified, and shared across process for clarity and

completeness of detail. One or more attributes such as frequency, volume, location and

duration describe business activity. They are associated with requirements such as

security, privacy and latency or tolerance for delays. This profile of business activity

can change over time with changes and improvements in business processes, people,

organization, applications and infrastructure. The itil:PBA(s) are placed under change

control.

Each itil:PBA has to be substantially different from another itil:PBA in order to be

coded with a unique reference. Codifying patterns helps multidimensional analysis,

using criteria such as likeness and nearness. This provides efficiency and robustness in

developing a catalogue of patterns with simplification and standardization to reduce the

number of patterns, make analysis easier, and avoid complicated solutions.

Generalization: owl:Thing

Relation to ITIL: ITIL Service Strategy, p. 204-205 and p. 359 (Pattern of Business

Activity definition), p. 370 (Throughput definition) and p. 372-373 (Workload

definition).

Object Properties: none

Datatype Properties: itil:pbaDescription and itil:pbaName

183

Class: UP

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

Description: User Profile (UP) is a pattern of user demand for IT Services. Each

itil:UP includes one or more itil:PBA. That is, itil:UP(s) are constructed using one or

more predefined itil:PBA(s). Pattern matching using itil:PBA and itil:UP ensure a

systematic approach to understanding and managing demand from customers. They also

require customers to better understand their own business activities and view them as

consumers of services and producers of demand. When they are used to communicate

demand, service providers have the information necessary to sort and serve the demand

with appropriately matched services, service levels, and service assets. This leads to

improved value for both customers and service providers by eliminating waste and poor

performance.

The itil:UP(s) are based on roles and responsibilities within organizations for people,

and functions and operations for processes and applications. Business processes and

applications are treated as users in many business contexts. Many processes are not

actively executed or controlled by staff or personnel. Process automation allows for

processes to consume services on their own. Processes and applications can have user

profiles. Whether they should is a matter of judgment.

Generalization: owl:Thing

Relation to ITIL: ITIL Service Strategy, p. 205-207 and p. 359 (User Profile

definition).

Object Properties: itil:includesPBA

Datatype Properties: itil:upDescription and itil:upName

Class: SLR

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Design. The Stationery Office (TSO).

Description: A Service Level Requirement (SLR) is a customer requirement for an

aspect of an itil:ITService. A set of targets and responsibilities should be documented

and agreed within an itil:SLR for each proposed new or changed itil:ITService. An

itil:SLR is based on business objectives and it is used to negotiate agreed

itil:ServiceLevelTarget(s).

Generalization: owl:Thing

Relation to ITIL: ITIL Service Design, p. 127 and p. 442 (Service Level Requirement

definition).

Object Properties: itil:usedForNegotiation

Datatype Properties: itil:slrBusinessObjective, itil:slrDescription and itil:slrName,

itil:slrResponsibility and itil:slrTarget

184

Class: ServiceLevelTarget

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Design. The Stationery Office (TSO).

Description: An itil:ServiceLevelTarget is a commitment that is documented in an

itil:SLA. The itil:ServiceLevelTarget(s) are based on itil:SLR(s), and are needed to

ensure that the itil:ServiceDesign is fit for purpose. The itil:ServiceLevelTarget(s)

should be smart, and are usually based on itil:KPI(s).

Generalization: owl:Thing

Relation to ITIL: ITIL Service Design, p. 442 (Service Level Target definition).

Object Properties: itil:basedOnKPI and itil:basedOnSLR

Datatype Properties: itil:targetDescription and itil:targetName

Class: ServicePortfolio

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

Description: The itil:ServicePortfolio is the complete set of itil:ITService(s) that are

managed by an itil:ITServiceProvider. The itil:ServicePortfolio is used to manage the

entire lifecycle of all itil:ITService(s), and includes three categories

(itil:ServicePortfolioType enumeration class): Service Pipeline (proposed or in

development), Service Catalog (live or available for deployment) and Retired Services.

In other words, itil:ServicePortfolio represents the commitments and investments made

by an itil:ITServiceProvider across all customers and market spaces. It represents

present contractual commitments, new service development, and ongoing service

improvement plans initiated by itil:CSI. The itil:ServicePortfolio also includes third-

party services, which are an integral part of service offerings to customers. Some third-

party services are visible to the customers while others are not.

Changes to itil:ServicePortfolio are governed by policies and procedures. The

itil:ServicePortfolio(s) instill a certain financial discipline necessary to avoid making

investments that will not yield value.

The itil:ServicePortfolio represents all the resources presently engaged or being released

in various phases of the itil:ServiceLifecycle. Each phase requires resources for

completion of projects, initiatives and contracts. This is a very important governance

aspect of the itil:ServicePortfolioManagement process. Entry, progress and exit are

approved only with approved funding and a financial plan for recovering costs or

showing profit as necessary. The itil:ServicePortfolio should have the right mix of

services in the pipeline and catalog to secure the financial viability of the IT service

provider. The Service Catalog is the only part of the itil:ServicePortfolio that recovers

costs or earns profits.

Generalization: owl:Thing

Relation to ITIL: ITIL Service Strategy, p. 116-117 and p. 367 (Service Portfolio

definition).

185

Object Properties: itil:detailsITService and itil:hasServicePortfolioType

Datatype Properties: itil:portfolioDescription and itil:portfolioName

Class: ServicePackage

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO); itSMF

International. (2007). ITIL V3: Glossary of Terms and Definitions. Version to

Workload.

Description: An itil:ServicePackage is detailed description of an itil:ITService that is

available to be delivered to itil:Customer(s). The itil:ServicePackage(s) come with one

or more itil:SLP(s) and one or more itil:CoreService(s) and itil:SupportingService(s).

An itil:ServicePackage is considered a core itil:ServicePackage when it represents a

detailed description of an itil:CoreService that may be shared by two or more

itil:ServiceLevelPackage(s).

Generalization: owl:Thing

Relation to ITIL: ITIL Service Strategy, p. 209. ITIL V3: Glossary of Terms and

Definitions (Core Service Package definition and Service Package definition). Note that

an itil:ServicePackage only can be associated with more that one itil:SLP and

itil:ITService when the service is representing a line of service (LOS). A LOS is an

itil:CoreService or itil:SupportingService that has multiple service level packages

(SLP). A LOS is managed by a product manager and each SLP is designed to support a

particular market segment.

Object Properties: itil:hasITService, itil:hasSLP

Datatype Properties: itil:isCorePackage, itil:packageDescription and

itil:packageName

Class: SLP

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

Description: An itil:SLP is a defined level of utility and warranty for a particular

itil:ServicePackage. Each itil:SLP is designed to meet the needs of a particular itil:PBA.

In other words, itil:SLP(s) are effective in developing itil:ServicePackage(s) for

providing value to a segment of users with utility and warranty appropriate to their

needs and in a cost-effective way. Utility is the functionality offered by a product or

service to meet a particular need. Utility is often summarized as “what it does.”

Warranty is a promise or guarantee that a product or service will meet its agreed

requirements. Warranty is often summarized as “how well it does it.”

The itil:SLP(s) are associated with a set of service levels, pricing policies, and a service

package. Combinations of itil:ServicesPackage(s) and itil:SLP(s) are used to serve

customer segments with differentiated value. Common attributes of itil:SLP(s) are

subsumed into the supporting itil:ServicePackage(s). This is like the popular game of

186

Tetris in which the bottom-most layer of bricks gets subsumed when all its gaps are

filled with the falling bricks. This follows the principle of modularity to reduce

complexity, increase asset utilization across itil:SLP(s), and to reduce the overall cost of

services. The itil:ServicePackage(s) and itil:SLP(s) are loosely coupled to allow for

local optimization while maintaining efficiency over the entire supported service

catalog. Improvements made to itil:ServicePackage(s) are automatically available to all

itil:SLP(s) following the principle of inheritance and encapsulation.

The itil:ServicePackage(s) and itil:SLP(s) are each made up of reusable components

many of which themselves can be services. Other components include software

applications, hardware, licenses, third-party services and public infrastructure services.

Some service components are assets owned by customers.

Generalization: owl:Thing

Relation to ITIL: ITIL Service Strategy, p. 209-212, p. 366 (Service Level Package

definition), p. 371 (Utility definition) and p. 372 (Warranty definition).

Object Properties: itil:meetsPBA

Datatype Properties: itil:slpDescription and itil:slpName

Class: Agent-Generic

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: An oc:Agent-Generic is a specialization of oc:SomethingExisting. An

oc:Agent-Generic is a being that has desires or intentions, and the ability to act on those

desires or intentions.

Generalization: owl:Thing

Relation to ITIL: Although this concept is not part of the ITIL documentation, in order

to take advantage of existing upper ontologies, we use the OpenCyc concept oc:Agent-

Generic for the classification of the agents that participate in the ITSM model.

Object Properties: oc:responsibleFor

Datatype Properties: itil:agentDescription and itil:agentName

Class: IntelligentAgent

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: An oc:IntelligentAgent is a specialization of oc:Agent-Generic and

oc:InformationStore. An agent is an oc:IntelligentAgent if and only if it is capable of

knowing and acting, and capable of employing its knowledge in its actions. An

oc:IntelligentAgent typically knows about certain things, and its beliefs concerning

those things influences its actions. As with agents generally, an oc:IntelligentAgent

187

might either be a single individual, such as a person, or a group consisting of two or

more individual agents, such as a business or government organization.

Generalization: oc:Agent-Generic

Relation to ITIL: Although this concept is not part of the ITIL documentation, in order

to take advantage of existing upper ontologies, we use the OpenCyc concept

oc:IntelligentAgent for the classification of some ITIL concepts such as itil:Customer or

itil:ITServiceProvider and to assign the roles to the agents that participates in the

management of an itil:ITService.

Object Properties: itil:hasRoleRelation and inherited from oc:Agent-Generic

Datatype Properties: Inherited from oc:Agent-Generic

Class: ActorSlot

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: An oc:ActorSlot is a collection of binary predicates; a specialization of

oc:Role. Each instance of oc:ActorSlot relates some instance of oc:Event to a temporal

thing involved in that event (here called a ‘participant’, although the thing in question

might not be playing an active role in the event). The first argument of every instance of

oc:ActorSlot is constrained to be an instance of some specialization of oc:Event, and the

second argument is constrained to be an instance of some specialization of

oc:SomethingExisting (e.g., oc:Agent-Generic).

Generalization: owl:Thing

Relation to ITIL: Although this concept is not part of the ITIL documentation, in order

to take advantage of existing upper ontologies, we use the OpenCyc concept

oc:ActorSlot for the definition of the itil:RoleRelation class that relates an

oc:PurposefulAction to an oc:IntelligentAgent.

Object Properties: none

Datatype Properties: none

Class: RoleRelation

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Design. The Stationery Office (TSO).

Description: The itil:RoleRelation is used to build a RACI chart that is needed to

identify/define, on the one hand, the functional roles and, on the other hand,

responsibilities of the various roles (i.e., RACI codes). In some organizations this could

be a full-time individual and in others it could be several people, or it could be a part-

time role. In smaller organizations many of these roles may be performed by a single

person. This will depend on the size and volatility of the organization. The roles or job

titles often vary between organizations. However, what is important is that the roles,

188

responsibilities, processes, dependencies and interfaces are clearly defined and scoped

for each individual organization.

Generalization: oc:ActorSlot

Relation to ITIL: ITIL Service Design, p. 323-339. An oc:IntelligentAgent can

participate in oc:PurposefulAction(s) using different roles and assigned with different

RACI codes.

Object Properties: itil:roleAction, itil:roleRACI, itil:roleCode and inherited from

oc:ActorSlot

Datatype Properties: Inherited from oc:ActorSlot

Class: Organization

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: An oc:Organization is the collection of all organizations. Each instance of

oc:Organization is a group whose group-members are instances of oc:IntelligentAgent.

In each instance of oc:Organization, certain relationships and obligations exist between

the members of the oc:Organization, or between the oc:Organization and its members.

Instances of oc:Organization include both informal and legally constituted

organizations. Each instance of oc:Organization can undertake projects, enter into

agreements, own property, and do other tasks characteristic of agents.

Generalization: oc:IntelligentAgent

Relation to ITIL: Although this concept is not part of the ITIL documentation, in order

to take advantage of existing upper ontologies, we use the OpenCyc concept

oc:Organization for the classification of some ITIL concepts such as itil:Customer or

itil:ITServiceProvider (subclassing from oc:ServiceOrganization).

Object Properties: oc:hasMembers and inherited from oc:IntelligentAgent

Datatype Properties: Inherited from oc:IntelligentAgent

Class: Customer

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

Description: An itil:Customer is someone who buys goods or services. The

itil:Customer of an itil:ITServiceProvider is the person or group that defines and agrees

the itil:ServiceLevelTarget(s).

Generalization: oc:Organization

Relation to ITIL: ITIL Service Strategy, p. 348 (Customer definition). In our modeling

approach for ITSMSs, the itil:ServiceLevelTarget(s) are associated with itil:SLA(s). The

term customer is also sometimes informally used to mean user. However, as mentioned

189

earlier, itil:Users are distinct from itil:Customers, as some itil:Customers do not use the

IT service directly.

Object Properties: Inherited from oc:Organization

Datatype Properties: Inherited from oc:Organization

Class: ServiceOrganization

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: A oc:ServiceOrganization is an organization whose main function is to

provide some service or services (as opposed, for example, to mainly selling goods or

manufacturing products). An oc:ServiceOrganization might or might not be a subsidiary

or department in some larger organization; it might or might not be a for-profit

organization.

Generalization: oc:Organization

Relation to ITIL: Although this concept is not part of the ITIL documentation, in order

to take advantage of existing upper ontologies, we use the OpenCyc concept

oc:ServiceOrganization for the classification of organizations that are providers of

services.

Object Properties: Inherited from oc:Organization

Datatype Properties: Inherited from oc:Organization

Class: ITServiceProvider

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO); OGC.

(2007). ITIL Service Design. The Stationery Office (TSO).

Description: An itil:ITServiceProvider provides itil:ITService(s) to an itil:Customer

within a business. A business is an overall corporate entity or organization formed of a

number of business units, i.e., segments of the business that has their own plans,

metrics, income and costs. In the context of ITSM, the term business includes public

sector and not-for-profit organizations, as well as companies. The itil:ITServiceProvider

may be part of the same business as its customer (internal service provider), or part of

another business (external service provider).

According to ITIL V3, an itil:SLA is defined as a written agreement between an

itil:ITServiceProvider and the itil:Customer(s) that documents agreed service levels for

an itil:ITService. The itil:ITServiceProvider should be aware that itil:SLA(s) are widely

used to formalize service-based relationships, both internally and externally, and that

while conforming to the definition above, these agreements vary considerably in the

detail covered.

Generalization: oc:ServiceOrganization

190

Relation to ITIL: ITIL Service Strategy, p. 343 (Business definition), p. 344 (Business

Unit definition). ITIL Service Design, p. 269.

Object Properties: itil:managesServicePortfolio and inherited from

oc:ServiceOrganization

Datatype Properties: itil:internalProvider and inherited from oc:ServiceOrganization

Class: OrganizationOfPeopleOnly

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: An oc:OrganizationOfPeopleOnly is an oc:Organization each of whose

members (see the predicate oc:hasMembers) is an instance of oc:Person. Examples of

oc:OrganizationOfPeopleOnly include a human nuclear family, a carpool, or a sports

team. Negative examples include oc:UnitedNationsOrganization or

oc:OrganizationOfAmericanStates.

Generalization: oc:Organization

Relation to ITIL: Although this concept is not part of the ITIL documentation, in order

to take advantage of existing upper ontologies, we use the OpenCyc concept

oc:OrganizationOfPeopleOnly for the classification of groups or team of people that are

participating in an IT service delivery process.

Object Properties: Inherited from oc:Organization

Datatype Properties: Inherited from oc:Organization

Class: Shift

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO).

Description: An itil:Shift is a group or team of people who carry out a specific role for

a fixed period of time. For example there could be four itil:Shift(s) of IT operations

control personnel to support an IT service that is used 24 hours a day.

Generalization: oc:OrganizationOfPeopleOnly

Relation to ITIL: ITIL Service Operation, p. 259-260 and p. 390 (Shift definition).

Object Properties: Inherited from oc:OrganizationOfPeopleOnly

Datatype Properties: Inherited from oc:OrganizationOfPeopleOnly

Class: SupportGroup

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO).

191

Description: An itil:SupportGroup is a group of people with technical skills. The

itil:SupportGroup(s) provide the technical support needed by all of the ITSM processes

(itil:Process(s)).

Generalization: oc:OrganizationOfPeopleOnly

Relation to ITIL: ITIL Service Operation, p. 392 (Support Group definition).

Object Properties: Inherited from oc:OrganizationOfPeopleOnly

Datatype Properties: Inherited from oc:OrganizationOfPeopleOnly

Class: User

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

Description: An itil:User is a person who uses the IT service on a day-to-day basis.

The itil:User class is distinct from the itil:Customer class, as some itil:Customers do not

use the IT service directly.

Generalization: oc:OrganizationOfPeopleOnly

Relation to ITIL: ITIL Service Strategy, p. 371 (User definition).

Object Properties: Inherited from oc:OrganizationOfPeopleOnly

Datatype Properties: Inherited from oc:OrganizationOfPeopleOnly

Class: SuperUser

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO); itSMF

International. (2007). ITIL V3: Glossary of Terms and Definitions. Version to

Workload.

Description: An itil:SuperUser is an itil:User who helps other users, and assists in

communication with the itil:SERVICE_DESK (itil:RoleType instance) or other parts of

the itil:ITServiceProvider. The itil:SuperUser(s) typically provide support for minor

itil:Incident(s) and training. Many organizations find it useful to appoint or designate a

number of itil:SuperUser(s) throughout the user community, to act as liaison points with

IT in general and the itil:SERVICE_DESK in particular.

Generalization: itil:User

Relation to ITIL: ITIL Service Operation, p. 210-211. ITIL V3: Glossary of Terms and

Definitions (Super User definition).

Object Properties: Inherited from itil:User

Datatype Properties: Inherited from itil:User

192

Class: Metric

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

Description: An itil:Metric is something that is measured and reported to help manage

a process, IT service or activity.

Generalization: owl:Thing

Relation to ITIL: ITIL Service Strategy, p. 357 (Metric definition). In our modeling

approach for ITSMSs, we use metrics to measure the itil:Process(s). The itil:Metric(s)

provide the feedback mechanism allowing management to steer, control and guide IT

toward strategic objectives [Smith, 2008]. For example, ‘Number and percentage of the

incidents resolved remotely, without the need for a visit’ is a metric that should be

monitored and reported upon to judge the efficiency and effectiveness of the Incident

Management process.

Object Properties: itil:hasAnalyticalMetric, itil:hasMetricType,

itil:includesMeasurement and itil:measures

Datatype Properties: itil:metricDescription, itil:metricName, itil:metricValue

Class: OperationalMetric

Ontology: ITIL (itil:)

Source: Steinberg, R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling -

the IT Service Management Metrics That Matter Most to IT Senior Executives. Trafford

Publishing.

Description: An itil:OperationalMetric is a basic observation of operational events that

provides live data from ITSM process (i.e., itil:Process) reporting and other

infrastructure measurements and observations.

Generalization: itil:Metric

Relation to ITIL: Measuring ITIL, p. 20-21. In our modeling approach for ITSMSs, we

use operational metrics to measure, for example, the number of IT changes that have

been implemented, the number of incidents of some type that have occurred, the current

peak utilization of components such as network lines or servers, or the availability of an

application or system.

Object Properties: Inherited from itil:Metric

Datatype Properties: Inherited from itil:Metric

Class: KPI

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Continual Service Improvement. The Stationery Office

(TSO); Steinberg, R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling -

193

the IT Service Management Metrics That Matter Most to IT Senior Executives. Trafford

Publishing; Pilot project documentation.

Description: An itil:KPI is an itil:Metric that is used to help manage an itil:Process,

itil:ITService or itil:Activity. Many metrics may be measured, but only the most

important of these are defined as itil:KPI(s) and used to actively manage and report on

the process, IT service or activity. The itil:KPI(s) should be selected to ensure that

efficiency, effectiveness, and cost effectiveness are all managed. Also, the provision of

itil:KPI(s) is essential to supporting itil:CSI. The itil:KPI(s) are used to provide a basis

for actionable management decisions. Each itil:KPI is trying to answer a question.

While itil:OperationalMetric(s) are generally historical in nature, itil:KPI(s) are really

the “metrics that matter.” These itil:KPI(s) become the data inputs to analyze and

identify improvement opportunities. For example, ‘Increasing first-contact resolution’ is

a common itil:KPI for the itil:IncidentManagement process. In order to compute the

itil:KPI, we must identify the metrics and measurements required. There are two basic

kinds of itil:KPI, qualitative and quantitative. ‘10 percent increase in customer

satisfaction rating for handling incidents over the next 6 months’ is an example of a

qualitative itil:KPI that requires the metrics ‘Original customer satisfaction score for

handling incidents’ and ‘Ending customer satisfaction score for handling incidents’, and

the measurements ‘Incident handling survey score’ and ‘Number of survey scores.’ On

the other hand, ‘10 percent reduction in the costs of handling printer incidents’ is an

example of quantitative itil:KPI that requires the metrics ‘Original cost of handling a

printer incidents’, ‘Final cost of handling a printer incidents’ and ‘Cost of the

improvement effort’, and the measurements ‘Time spent on the incident by first-level

operative and their average salary’, ‘Time spent on the incident by second-level

operative and their average salary’, ‘Time spent on Problem Management activities by

second-level operative and their average salary’, ‘Time spent on the training first-level

operative on the workaround’, ‘Cost of a service call to third-party vendor’ and ‘Time

and material from third-party vendor.’ Note that all itil:KPI(s) require calculation. The

itil:CapacityManagement process, for example, is an itil:OperationalMetric (observed

from a process audit) and simply carries over as an itil:KPI.

Generalization: itil:Metric

Relation to ITIL: ITIL Continual Service Improvement, p. 290 (Key Performance

Indicator definition), p. 41 and p. 99-100. Measuring ITIL, p. 20-22. For example, in

our pilot project, the itil:Incident_resolution_rate and itil:Customer_satisfaction_level

are instances of itil:KPI for the itil:Process_IncidentManagement instance. In our

approach, according to (Steinberg, 2006), the itil:KPI(s) are calculated or derived from

one or more itil:OperationalMetric(s). For example, in our pilot project, the itil:KPI of

itil:Incident_resolution_rate is the result of dividing

itil:Number_of_incidents_resolved_within_agreed_service_levels by

itil:Total_number_of_incidents (instances of itil:OperationalMetric). The results of

these calculations are then compared to an itil:Tolerance range to identify whether those

results fall within acceptable levels.

Object Properties: itil:fallsIntoToleranceRange, itil:questionBeingAnswered,

itil:requiresOperationalMetric and inherited from itil:Metric

Datatype Properties: Inherited from itil:Metric

194

Class: Tolerance

Ontology: ITIL (itil:)

Source: Steinberg, R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling -

the IT Service Management Metrics That Matter Most to IT Senior Executives. Trafford

Publishing; Pilot project documentation.

Description: The itil:Tolerance(s) represent the boundaries for acceptable and non-

acceptable itil:KPI values (i.e., service target and warning level). They should be set by

the IT service manager and agreed by IT and business senior management. These are

critical, as they form the basis for when management needs to take action or make a key

decision. Tolerance values are based on desired service and performance levels that the

business is willing to tolerate.

Generalization: itil:Metric

Relation to ITIL: Measuring ITIL, p. 20 and p. 23. In our modeling approach for

ITSMSs, we use tolerances to associate itil:Tolerance values to itil:KPI(s). For

example, in our pilot project, if the service target itil:Tolerance value for the itil:KPI of

itil:Average_Incident_Resolution_Hours is 2.0 it means that the service target for this

itil:KPI would be 2.0 hours. On the other hand, if the warning level itil:Tolerance value

for the itil:KPI of itil:Average_Incident_Resolution_Hours is 3.5, it means that the

performance of this itil:KPI would be considered acceptable as long as it is not higher

than 3.5 hours. If it is higher, management actions may need to take place to raise the

performance back to acceptable levels.

Object Properties: Inherited from itil:Metric

Datatype Properties: itil:toleranceCode, itil:toleranceServiceTarget,

itil:toleranceWarningLevel and inherited from itil:Metric

Class: CSF

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Continual Service Improvement. The Stationery Office

(TSO); OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO); Steinberg,

R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling - the IT Service

Management Metrics That Matter Most to IT Senior Executives. Trafford Publishing;

Pilot project documentation.

Description: An itil:CSF is something that must happen if a process, project, plan, or

IT service is to succeed. An itil:CSF is an itil:Metric that represents key operational

performance requirements which indicate whether a process, IT service or activity is

performing successfully from a customer or business perspective. One way to define

itil:CSF(s) is by customer assets and the service archetypes. For example, in healthcare,

IT service providers have extensive knowledge of hospital procedures, medical

equipment, interactions between physicians, clinicians and pharmacists, insurance

policies and privacy regulations. IT service providers present in market spaces related to

the quality of outcomes in healthcare typically have physicians and clinicians on their

payroll. Service strategies for the healthcare market spaces take into account the need to

deal with users with highly specialized skills, special-purpose equipment, low tolerance

195

for error, and the need to balance security with usability of services. These are

itil:CSF(s) for a cluster of market spaces related to healthcare. A subset of these

itil:CSF(s) is shared by other market spaces such as military applications. The

itil:CSF(s) can therefore span more than one market space. They represent opportunities

for leveraging economies of scale and scope.

The itil:KPI(s) are used to measure the achievement of each itil:CSF. A recommended

approach for deriving an itil:CSF is to first identify which itil:KPI(s) relate to it and

then rate the itil:CSF based on the lowest valued observed in any one of those

itil:KPI(s).

Generalization: itil:Metric

Relation to ITIL: ITIL Continual Service Improvement, p. 100 and p. 283 (Critical

Success Factor definition). ITIL Service Strategy, p. 137. Measuring ITIL, p. 20 and p.

24. For example, in our pilot project, itil:Quickly_resolve_incidents is a instance of

itil:CSF measured by the itil:KPI(s) of itil:Incident_reopen_rate,

itil:Average_time_to_resolve_severity1_and_severity2_incidents_hours and

itil:Incident_management_tooling_support_level. In another example, the itil:KPI of

itil:10_percent_increase_in_customer_satisfaction_rating_for

handling_incidents_over_the_next_6_months would measure an itil:CSF of

itil:Improving_IT_service_quality, and the itil:KPI of itil:10_percent_reduction_in_the_

costs_of_handling_printer_incidents would measure an itil:CSF of

itil:Reducing_IT_costs.

Object Properties: itil:hasPerformanceLevel, itil:measuredByKPI and inherited from

itil:Metric

Datatype Properties: Inherited from itil:Metric

Class: Dashboard

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO); Steinberg,

R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling - the IT Service

Management Metrics That Matter Most to IT Senior Executives. Trafford Publishing.

Description: An itil:Dashboard is a graphical representation of overall IT service

performance and availability. The itil:Dashboard images may be updated in real-time,

and can also be included in management reports and Web pages. Therefore,

itil:Dashboard(s) can be considered as key itil:Metric(s) that are represented on a report

or graphical interface that indicates the success, at risk or failure of a business activity.

They are used to quickly asses the state of operation and take timely actions to correct

operational deficiencies.

The itil:CSF(s) are used to determine itil:Dashboard measures, i.e., itil:Dashboard

results are derived from itil:CSF results. The itil:Dashboard(s) can be used to support

service level management, event management or incident diagnosis.

Generalization: itil:Metric

196

Relation to ITIL: ITIL Service Operation, p. 283 and p. 371-372 (Dashboard

definition). Measuring ITIL, p. 20 and p. 25-28.

Object Properties: itil:hasCSFRelation and inherited from itil:Metric

Datatype Properties: Inherited from itil:Metric

Class: CSFRelation

Ontology: ITIL (itil:)

Source: Steinberg, R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling -

the IT Service Management Metrics That Matter Most to IT Senior Executives. Trafford

Publishing.

Description: The itil:Dashboard results are derived from itil:CSF results. The

itil:CSF(s) can contribute to one or more dashboards and each dashboard may have one

or more multiple itil:CSF(s).

Generalization: owl:Thing

Relation to ITIL: Measuring ITIL, p. 20, p. 25 and p. 28.

Object Properties: itil:factorValue and itil:hasScorecardType

Datatype Properties: none

Class: Outcome

Ontology: ITIL (itil:)

Source: Steinberg, R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling -

the IT Service Management Metrics That Matter Most to IT Senior Executives. Trafford

Publishing.

Description: The itil:Outcome(s) are key indicators of general business risk areas, that

is, they are the kind of things that IT is trying to protect against. These are associated

with performance indicators that identify the success, at risk or failure of itil:KPI(s) or

itil:CSF(s). The itil:CSF(s) are used to determine itil:Outcome(s) (operational risks).

Legal exposure, service outages, rework, waste, security breaches, unexpected costs,

slow response to business needs and changes, fines and penalties, loss of market share

and dissatisfied customers are examples of itil:Outcome(s).

Generalization: itil:Metric

Relation to ITIL: Measuring ITIL, p. 20 and p. 29-30.

Object Properties: itil:derivedFromCSF, itil:hasPerformanceLevel and inherited from

itil:Metric

Datatype Properties: Inherited from itil:Metric

197

Class: AnalyticalMetric

Ontology: ITIL (itil:)

Source: Steinberg, R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling -

the IT Service Management Metrics That Matter Most to IT Senior Executives. Trafford

Publishing.

Description: An itil:AnalyticalMetric is a used to separate out certain metrics that are

really more helpful for supporting research into an issue, incident or service problem.

The itil:AnalyticalMetric(s) are metrics that IT service providers may report on only on

a one-time basis or as part of a drill-down (such as for an itil:Dashboard).

IT frequently makes the mistake of including these in regular reporting to senior

management “just in case.” This results in a lot of wasted labor in building reports and

clouds real management issues that need to be addressed.

Generalization: itil:Metric

Relation to ITIL: Measuring ITIL, p. 33.

Object Properties: Inherited from itil:Metric

Datatype Properties: Inherited from itil:Metric

Class: Measurement

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Continual Service Improvement. The Stationery Office

(TSO).

Description: In general, an itil:Metric is a scale of itil:Measurement defined in terms of

a standard, i.e. in terms of a well-defined unit. The quantification of an event through

the process of measurement relies on the existence of an explicit or implicit metric,

which is the standard to which measurements are referenced.

Generalization: owl:Thing

Relation to ITIL: ITIL Continual Service Improvement, p. 98. We use the

itil:Measurement class to define the things that need to be measured in order to obtain

an itil:Metric.

Object Properties: none

Datatype Properties: itil:measureDescription and itil:measureName

Class: Contract

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: An oc:Contract is a collection of agreements. Each instance of

oc:Contract is a legal agreement in which two or more oc:agreeingAgents promise to

198

do (or not do) something. There are legal consequences to breaking the promises made

in an oc:Contract.

Generalization: owl:Thing

Relation to ITIL: In order to take advantage of existing upper ontologies, we use the

OpenCyc concept oc:Contract as the legal agreements between itil:Customer(s) and

itil:ITServiceProvider(s).

Object Properties: oc:agreeingAgents and itil:agreesContractDocument

Datatype Properties: none

Class: ContractDocument

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: An oc:ContractDocument is a document which outlines the contents of a

legally-binding agreement.

Generalization: owl:Thing

Relation to ITIL: Although this concept is not part of the ITIL documentation, in order

to take advantage of existing upper ontologies, we use the OpenCyc concept

oc:ContractDocument for the definition of legal documents that form part of a specific

oc:Contract. In our modeling approach for an ITSMF, the itil:Agreement is a subclass

of the OpenCyc concept oc:ContractDocument.

Object Properties: none

Datatype Properties: none

Class: Agreement

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO).

Description: An itil:Agreement is a document that describes a formal understanding

between two or more parties. An itil:Agreement is not legally binding, unless it forms

part of a contract.

Generalization: oc:ContractDocument

Relation to ITIL: ITIL Service Strategy, p. 339 (Agreement definition). In our

modeling approach for an ITSMF, each itil:Agreement defines a business process that

enables the delivery of an itil:ITService.

Object Properties: itil:definesBusinessProcess and inherited from

oc:ContractDocument

Datatype Properties: itil:agreementCustomer, itil:agreementDescription,

itil:agreementITServiceProvider, itil:agreementName, itil:agreementResponsibility,

199

itil:agreementService and itil:agreementTarget and inherited from

oc:ContractDocument

Class: SLA

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Design. The Stationery Office (TSO).

Description: An itil:SLA is a written agreement between an itil:ITServiceProvider and

the itil:Customer(s), defining the key service targets and responsibilities of both parties.

That is, an itil:SLA describes the itil:ITService, itil:ServiceLevelTarget(s), and specifies

the responsibilities of the itil:ITServiceProvider and the itil:Customer. A single itil:SLA

may cover multiple itil:ITService(s) or multiple itil:Customer(s).

The emphasis must be on agreement, and itil:SLA(s) should not be used as a way of

holding one side or the other to ransom. A true partnership should be developed

between the itil:ITServiceProvider and the itil:Customer, so that a mutually beneficial

agreement is reached, otherwise the itil:SLA could quickly fall into disrepute and a

‘blame culture’ could develop that would prevent any true service quality improvements

from taking place.

The itil:SLA(s) provide the basis for managing the relationship between the

itil:ITServiceProvider and the itil:Customer. There are a number of potential options for

itil:SLA(s):

(1) Service-based SLA: This is where an itil:SLA covers one service, for all the

customers of that service. For example, an itil:SLA may be established for an

organization’s e-mail service covering all the customers of that service. This

may appear fairly straightforward. However, difficulties may arise if the specific

requirements of different customers vary for the same service, or if

characteristics of the infrastructure mean that different service levels are

inevitable (for example, head office staff may be connected via a high-speed

LAN, while local offices may have to use a lower-speed WAN line). In such

cases, separate targets may be needed within the one agreement. Difficulties

may also arise in determining who should be the signatories to such an

agreement. However, where common levels of service are provided across all

areas of the business, for example, e-mail or telephony, the service-based SLA

can be an efficient approach to use. Multiple classes of service, for example,

gold, silver and bronze, can also be used to increase the effectiveness of service-

based SLAs;

(2) Customer-based SLA: This is an agreement with an individual customer group,

covering all the services they use. For example, agreements may be reached with

an organization’s finance department covering, say, the finance system, the

accounting system, the payroll system, the billing system, the procurement

system, and any other IT systems that they use. Customers often prefer such an

agreement, as all of their requirements are covered in a single document. Only

one signatory is normally required, which simplifies this issue. A combination of

either of these structures might be appropriate, providing all services and

customers are covered, with no overlap or duplication.

200

(3) Multi-level SLAs: Some organizations have chosen to adopt a multi-level SLA

structure. For example, a three-layer structure as follows:

 Corporate level: covering all the generic SLM issues appropriate to every

customer throughout the organization. These issues are likely to be less

volatile, so updates are less frequently required.

 Customer level: covering all SLM issues relevant to the particular

customer group or business unit, regardless of the service being used.

 Service level: covering all SLM issues relevant to the specific service, in

relation to a specific customer group (one for each itil:ITService covered

by the itil:SLA).

Generalization: itil:Agreement

Relation to ITIL: ITIL Service Design, p. 43, p. 111, p. 114-115 and p. 442 (Service

Level Agreement definition). In our modeling approach for ITSMSs, the itil:SLA

represents the document that describes a formal understanding of an agreement between

itil:Customer(s) and the itil:ITServiceProvider.

Object Properties: itil:coveringITService, itil:definesServiceTarget,

itil:hasCustomerRelation, itil:hasITServiceProviderRelation,

itil:hasSLAIncidentResolution, itil:supportedByOLA, itil:supportedByUC and inherited

from itil:Agreement

Datatype Properties: Inherited from itil:Agreement

Class: OLA

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Design. The Stationery Office (TSO).

Description: An itil:OLA is an agreement between an itil:ITServiceProvider and a third

party that assists with the provision of itil:ITService(s) to itil:Customer(s). However, in

this case, the third party is another part of the same itil:Organization. In ITIL, a third

party is a person, group, or business who is not part of an itil:SLA for an itil:ITService,

but is required to ensure successful delivery of that itil:ITService (e.g., a software

supplier, a hardware maintenance company, or a facilities department). The itil:OLA

defines the goods or services to be provided and the responsibilities of both parties. For

example there could be an itil:OLA: (i) between the itil:ITServiceProvider and a

facilities department that maintains the air conditioning; (ii) between the

itil:ITServiceProvider and the network support team that supports the network service;

(iii) between the itil:ITServiceProvider and a procurement department to obtain

hardware in agreed times; and (iv) between the itil:SERVICE_DESK (itil:RoleType

instance) and a itil:SupportGroup to provide itil:Incident resolution in agreed times. An

itil:OLA should contain targets that underpin those within an itil:SLA to ensure that

targets will not be breached by failure of the supporting activity. In other words, an

itil:OLA is any underpinning agreement necessary to deliver the quality of service

agreed within the itil:SLA.

Generalization: itil:Agreement

201

Relation to ITIL: ITIL Service Design, p. 43, p. 112, p. 434 (Operational Level

Agreement definition) and p. 446 (Third Party definition).

Object Properties: Inherited from itil:Agreement

Datatype Properties: Inherited from itil:Agreement

Class: UC

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Design. The Stationery Office (TSO).

Description: An itil:UC is an itil:Agreement between an itil:ITServiceProvider and a

third party. In this case, the third party is another itil:Organization. The itil:UC defines

targets and responsibilities that are required to meet agreed itil:ServiceLevelTarget(s) in

an itil:SLA.

Generalization: itil:Agreement

Relation to ITIL: ITIL Service Design, p. 43, p. 112 and p. 447 (Underpinning

Contract definition).

Object Properties: Inherited from itil:Agreement

Datatype Properties: Inherited from itil:Agreement

Class: CustomerRelation

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Design. The Stationery Office (TSO).

Description: The itil:CustomerRelation is used to specify the responsibilities of the

itil:Customer(s) in a specific itil:SLA.

Generalization: owl:Thing

Relation to ITIL: ITIL Service Design, p. 109-111.

Object Properties: none

Datatype Properties: itil:customerResponsibility

Class: ITServiceProviderRelation

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Design. The Stationery Office (TSO).

Description: The itil:ITServiceProviderRelation is used to specify the responsibilities

of the itil:ITServiceProvider in a specific itil:SLA.

Generalization: owl:Thing

Relation to ITIL: ITIL Service Design, p. 109-111.

202

Object Properties: none

Datatype Properties: itil:erviceproviderResponsibility

Class: SLAIncidentResolution

Ontology: ITIL (itil:)

Source: Pilot Project documentation.

Description: The itil:SLAIncidentResolution is used to specify the agreed incident

resolution times for itil:Customer(s) in a specific itil:SLA.

Generalization: owl:Thing

Relation to ITIL: Although this concept is not part of the ITIL documentation, we use

this class to specify the agreed incident resolution times.

Object Properties: none

Datatype Properties: itil:slaIncidentPriority and itil:slaIncidentResolutionTime

Class: Identifiable

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn /; Object Management

Group (OMG), 2010. Business Process Model and Notation (BPMN) Version 2.0.

Available at: http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

Description: The wf:Identifiable provides a mechanism to assign a unique identifier to

a Workflow model element.

Generalization: owl:Thing

Relation to ITIL: Workflow concept associated with an itil:Activity.

Object Properties: none

Datatype Properties: wf:elementID

Class: NamedBpmnObject

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn /; Object Management

Group (OMG), 2010. Business Process Model and Notation (BPMN) Version 2.0.

Available at: http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

Description: A wf:NamedBpmnObject represents Workflow model elements that may

have a name and additional information.

Generalization: owl:Thing

Relation to ITIL: Workflow concept associated with an itil:Activity.

203

Object Properties: none

Datatype Properties: wf:objectDocumentation, wf:objectName, wf:objectNcname

Class: Artifact

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn /; Object Management

Group (OMG), 2010. Business Process Model and Notation (BPMN) Version 2.0.

Available at: http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

Description: The wf:Artifact provides modelers with the capability of showing

additional information about a business activity that is not directly related to the

sequence flows or message flows of the wf:Activity. Three standard wf:Artifact(s) are

provided: wf:Association, wf:Group and wf:TextAnnotation.

Generalization: wf:Identifiable and wf:NamedBpmnObject

Relation to ITIL: Workflow concept associated with an itil:Activity.

Object Properties: wf:composedOfAssociations, wf:inArtifactsContainer and inherited

from wf:Identifiable and wf:NamedBpmnObject

Datatype Properties: Inherited from wf:Identifiable and wf:NamedBpmnObject

Class: DataObject

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn /; Object Management

Group (OMG), 2010. Business Process Model and Notation (BPMN) Version 2.0.

Available at: http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

Description: The wf:DataObject is an wf:Artifact that provides provide information

about what the what activities require to be performed and/or what they produce. That

is, how documents, data, and other objects are used and updated during the business

process. A wf:DataObject can represent a singular object or a collection of objects.

Generalization: wf:Artifact

Relation to ITIL: Workflow concept associated with an itil:Activity.

Object Properties: Inherited from wf:Artifact

Datatype Properties: Inherited from wf:Artifact

Class: Group

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn /; Object Management

Group (OMG), 2010. Business Process Model and Notation (BPMN) Version 2.0.

Available at: http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

204

Description: The wf:Group is an wf:Artifact that provides a visual mechanism to group

elements of a diagram informally.

Generalization: wf:Artifact

Relation to ITIL: Workflow concept associated with an itil:Activity.

Object Properties: itil:hasActivities and inherited from wf:Artifact

Datatype Properties: Inherited from wf:Artifact

Class: TextAnnotation

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn /; Object Management

Group (OMG), 2010. Business Process Model and Notation (BPMN) Version 2.0.

Available at: http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

Description: The wf:TextAnnotation is an wf:Artifact that provides a mechanism to

introduce additional text information for the reader of a BPMN Diagram.

Generalization: wf:Artifact

Relation to ITIL: Workflow concept associated with an itil:Activity.

Object Properties: Inherited from wf:Artifact

Datatype Properties: Inherited from wf:Artifact

Class: ArtifactsContainer

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn /; Object Management

Group (OMG), 2010. Business Process Model and Notation (BPMN) Version 2.0.

Available at: http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

Description: The wf:ArtifactsContainer provides a container for the wf:Artifact(s) in a

BPMN diagram.

Generalization: wf:NamedBpmnObject

Relation to ITIL: Workflow concept associated with an itil:Activity.

Object Properties: wf:hasArtifacts and inherited from wf:NamedBpmnObject

Datatype Properties: Inherited from wf:NamedBpmnObject

Class: Association

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn /; Object Management

Group (OMG), 2010. Business Process Model and Notation (BPMN) Version 2.0.

Available at: http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

205

Description: A wf:Association is used to associate information between wf:Artifact(s)

and flow objects (wf:AssociationTarget).

Generalization: owl:Thing

Relation to ITIL: Workflow concept associated with an itil:Activity.

Object Properties: wf:hasDirectionType, wf:source and wf:target

Datatype Properties: none

Class: AssociationTarget

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn /; Object Management

Group (OMG), 2010. Business Process Model and Notation (BPMN) Version 2.0.

Available at: http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

Description: A wf:AssociationTarget is used to obtain the targets of the

wf:Association(s).

Generalization: wf:Identifiable

Relation to ITIL: Workflow concept associated with an itil:Activity.

Object Properties: wf:hasAssociations and inherited from wf:Identifiable

Datatype Properties: Inherited from wf:Identifiable

Class: Graph

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn /; Object Management

Group (OMG), 2010. Business Process Model and Notation (BPMN) Version 2.0.

Available at: http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

Description: A wf:Graph is the workflow model graphical element used to define pools

(wf:Pool) and subprocesses (wf:SubProcess). A wf:Graph is composed of vertices

(wf:Vertex) and edges (wf:SequenceEdge).

Generalization: wf:AssociationTarget and wf:ArtifactsContainer

Relation to ITIL: Workflow concept associated with an itil:Activity.

Object Properties: wf:graphComposedOf and inherited from wf:AssociationTarget and

wf:ArtifactsContainer

Datatype Properties: Inherited from wf:AssociationTarget and wf:ArtifactsContainer

Class: Vertex

Ontology: Workflow (wf:)

206

Source: BPMN Modeler website: http://www.eclipse.org/bpmn /; Object Management

Group (OMG), 2010. Business Process Model and Notation (BPMN) Version 2.0.

Available at: http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

Description: A wf:Vertex is a a given node in a diagram, which is a graph of diagram

elements.

Generalization: wf:AssociationTarget

Relation to ITIL: Workflow concept associated with an itil:Activity.

Object Properties: wf:incomingEdges, wf:inGraph, wf:outgoingEdges and inherited

from wf:AssociationTarget

Datatype Properties: Inherited from wf:AssociationTarget

Class: MessageVertex

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn /; Object Management

Group (OMG), 2010. Business Process Model and Notation (BPMN) Version 2.0.

Available at: http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

Description: The wf:MessageVertex represents nodes that can send and/or receive

messages.

Generalization: wf:Identifiable and wf:NamedBpmnObject

Relation to ITIL: Workflow concept associated with an itil:Activity.

Object Properties: wf:incomingMessages, wf:outgoingMessages and inherited from

wf:Identifiable and wf:NamedBpmnObject

Datatype Properties: Inherited from wf:Identifiable and wf:NamedBpmnObject

Class: Activity

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/; Object Management

Group (OMG), 2010. Business Process Model and Notation (BPMN) Version 2.0.

Available at: http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

Description: An wf:Activity is work that is performed within a business process. An

wf:Activity can be atomic or non-atomic (compound). The wf:Activity represents points

in a process flow where work is performed. The wf:Activity(s) are the executable

elements of a business process.

Generalization: wf:MessageVertex and wf:Vertex

Relation to ITIL: Workflow concept associated with an itil:Activity.

Object Properties: wf:eventHandlerFor, wf:hasActivityType, wf:inActivityGroup and

inherited from wf:MessageVertex and wf:Vertex

207

Datatype Properties: wf:looping and inherited from wf:MessageVertex and wf:Vertex

Class: SubProcess

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn /; Object Management

Group (OMG), 2010. Business Process Model and Notation (BPMN) Version 2.0.

Available at: http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

Description: A wf:SubProcess is a wf:Activity that represents a behavior whose internal

details have been modeled using activities, gateways, events, and sequence flows.

Generalization: wf:Activity and wf:Graph

Relation to ITIL: Workflow concept associated with an itil:Activity.

Object Properties: wf:eventHandlers and inherited from wf:Activity and wf:Graph

Datatype Properties: wf:isTransaction, wf:adhoc and inherited from wf:Activity and

wf:Graph

Class: MessagingEdge

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn /; Object Management

Group (OMG), 2010. Business Process Model and Notation (BPMN) Version 2.0.

Available at: http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

Description: A wf:MessagingEdge is used to connect messages nodes

(wf:MessageVertex).

Generalization: wf:AssociationTarget and wf:NamedBpmnObject

Relation to ITIL: Workflow concept associated with an itil:Activity.

Object Properties: wf:inBpmnDiagram, wf:messageVertexSource,

wf:messageVertexTarget and inherited from wf:AssociationTarget and

wf:NamedBpmnObject

Datatype Properties: Inherited from wf:AssociationTarget and wf:NamedBpmnObject

Class: SequenceEdge

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn /; Object Management

Group (OMG), 2010. Business Process Model and Notation (BPMN) Version 2.0.

Available at: http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

Description: A wf:SequenceEdge is used to connect nodes (wf:Vertex) in a graph. In

wf:SequenceEdge, the wf:objectName represents the guard of the edge (i.e., the

specification evaluated at runtime to determine if the edge can be traversed).

208

Generalization: wf:AssociationTarget and wf:NamedBpmnObject

Relation to ITIL: Workflow concept associated with an itil:Activity.

Object Properties: wf:hasSequenceFlowConditionType, wf:inGraph, wf:vertexSource,

wf:vertexTarget and inherited from wf:AssociationTarget and wf:NamedBpmnObject

Datatype Properties: wf:isDefault and inherited from wf:AssociationTarget and

wf:NamedBpmnObject

Class: Pool

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn /; Object Management

Group (OMG), 2010. Business Process Model and Notation (BPMN) Version 2.0.

Available at: http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

Description: A wf:Pool is the graphical representation of a participant in a

collaboration. A participant represents a specific partner entity (e.g., a company) and/or

a more general partner role (e.g., a buyer, seller, or manufacturer) that are participants in

a collaboration.

Generalization: oc:Agent-Generic, wf:Graph and wf:MessageVertex

Relation to ITIL: Workflow concept associated with an itil:Activity. In our modeling

approach for ITSMSs, a wf:Pool is a subclass of the Opencyc concept oc:Agent-Generic

representing the actor that participates in an itil:Activity.

Object Properties: wf:composedOfLanes, wf:inBpmnDiagram and inherited from

wf:Graph and wf:MessageVertex

Datatype Properties: Inherited from wf:Graph and wf:MessageVertex

Class: Lane

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn /; Object Management

Group (OMG), 2010. Business Process Model and Notation (BPMN) Version 2.0.

Available at: http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

Description: A wf:Lane is a sub-partition within a wf:Pool which extends the entire

length of the workflow level, either vertically or horizontally.

Generalization: oc:Agent-Generic, wf:AssociationTarget and wf:NamedBpmnObject

Relation to ITIL: Workflow concept associated with an itil:Activity. Just like a

wf:Pool, in our modeling approach for ITSMSs, a wf:Lane is a subclass of the Opencyc

concept oc:Agent-Generic representing the actor that participates in an itil:Activity.

Object Properties: wf:hasActivities, wf:inPool and inherited from

wf:AssociationTarget and wf:NamedBpmnObject

Datatype Properties: Inherited from wf:AssociationTarget and wf:NamedBpmnObject

209

210

Enumerations

Class: ActivityType

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/; Object Management

Group (OMG), 2010. Business Process Model and Notation (BPMN) Version 2.0.

Available at: http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

Description: The specific value that represents the type of functionality of a specific

wf:Activity.

Data Literals:

EventEndCancel

EventEndCompensation

EventEndEmpty

EventEndError

EventEndLink

EventEndMessage

EventEndMultiple

EventEndSignal

EventEndTerminate

EventIntermediateCancel

EventIntermediateCompensation

EventIntermediateEmpty

EventIntermediateError

EventIntermediateLink

EventIntermediateMessage

EventIntermediateMultiple

EventIntermediateRule

EventIntermediateSignal

EventIntermediateTimer

EventStartEmpty

EventStartLink

EventStartMessage

EventStartMultiple

EventStartRule

EventStartSignal

211

EventStartTimer

GatewayComplex

GatewayDataBasedExclusive

GatewayDataBasedInclusive

GatewayEventBasedExclusive

GatewayParallel

Subprocess

Task

Relation to ITIL: We use the wf:ActivityType class to model the workflow associated

with an itil:Activity.

Class: DirectionType

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/; Object Management

Group (OMG), 2010. Business Process Model and Notation (BPMN) Version 2.0.

Available at: http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

Description: The specific value that represents the type of direction of a specific

wf:Association.

Data Literals:

NO_DIRECTION

TO

FROM

BOTH

Relation to ITIL: We use the wf:DirectionType class to model the workflow associated

with an itil:Activity.

Class: EventCategoryCode

Ontology: itil (itil)

Source: Pilot project documentation.

Description: According to our pilot project, there are four types of events depending

on the business area where the event must be resolved: (i) Teaching; (ii) Systems and

users; (iii) Development; and (iv) Communications.

Data Literals:

TEACHING

SYSTEMS_AND_USERS

212

DEVELOPMENT

COMMUNICATIONS

Relation to ITIL: We use the itil:EventCategory class to represent the class of a

specific itil:Event.

Class: EventType

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO).

Description: The specific value that represents the type of a specific itil:Event. Every

IT service provider will have its own categorization of the significance of an itil:Event,

but it is suggested that at least these three broad categories be represented:

 Informational: This refers to an event that does not require any action and does

not represent an exception. They are typically stored in the system or service log

files and kept for a predetermined period. Informational events are typically used

to check on the status of a device or service, or to confirm the successful

completion of an activity. Informational events can also be used to generate

statistics (such as the number of users logged on to an application during a

certain period) and as input into investigations (such as which jobs completed

successfully before the transaction processing queue hung). Examples of

informational events include:

- A user logs onto an application.

- A job in the batch queue completes successfully.

- A device has come online.

- A transaction is completed successfully.

 Warning: A warning is an event that is generated when a service or device is

approaching a threshold. Warnings are intended to notify the appropriate person,

process or tool so that the situation can be checked and the appropriate action

taken to prevent an exception. Warnings are not typically raised for a device

failure. Although there is some debate about whether the failure of a redundant

device is a warning or an exception (since the service is still available). A good

rule is that every failure should be treated as an exception, since the risk of an

incident impacting the business is much greater. Examples of warnings are:

- Memory utilization on a server is currently at 65% and increasing. If it

reaches 75%, response times will be unacceptably long and the OLA for that

department will be breached.

- The collision rate on a network has increased by 15% over the past hour.

 Exception: An exception means that a service or device is currently operating

abnormally (however that has been defined). Typically, this means that an

itil:OLA and itil:SLA have been breached and the business is being impacted.

Exceptions could represent a total failure, impaired functionality or degraded

performance. Please note, though, that an exception does not always represent an

213

incident. For example, an exception could be generated when an unauthorized

device is discovered on the network. This can be managed by using either an

Incident Record or a Request for Change (or even both), depending on the

organization’s Incident and Change Management policies. Examples of

exceptions include:

- A server is down.

- Response time of a standard transaction across the network has slowed to

more than 15 seconds.

- More than 150 users have logged on to the General Ledger application

concurrently.

- A segment of the network is not responding to routine requests.

Data Literals:

INFORMATIONAL

WARNING

EXCEPTION

Relation to ITIL: ITIL Service Operation, p. 71-73.

Class: IncidentGroupType

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO).

Description: The user group that can report an itil:Incident.

Data Literals:

GOVERNANCE

ICTD

STAFF

STUDENT

OTHER

Relation to ITIL: ITIL Service Operation, p. 91.

Class: IncidentStatusType

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO).

Description: The information needed for each incident is likely to include the incident

status (active, waiting, closed, etc.).

Data Literals:

214

NEW

ACCEPTED

ACTIVE

WAITING

PLANNED

RESOLVED

CLOSED

Relation to ITIL: ITIL Service Operation, p. 91.

Class: InterfaceRelationType

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO).

Description: An itil:Process may have input and output interfaces with other

itil:Process(s).

Data Literals:

INPUT

OUTPUT

Relation to ITIL: ITIL Service Operation, p. 100-101.

Class: ManagedEventType

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO).

Description: The specific value that represents the type of monitoring and control

systems used for a specific itil:Event. An effective service operation is dependent on

knowing the status of the infrastructure and detecting any deviation from normal or

expected operation. This is provided by good monitoring and control systems, which are

based on two types of tools (note that reactive and proactive monitoring could be active

or passive):

(1) Active versus Passive Monitoring: active monitoring tools poll key CIs to

determine their status and availability. Any exceptions will generate an alert that

needs to be communicated to the appropriate tool or team for action. On the

other hand, passive monitoring tools detect and correlate operational alerts or

communications generated by CIs.

(2) Reactive versus Proactive: reactive monitoring is designed to request or trigger

action following a certain type of event or failure. For example, server

performance degradation may trigger a reboot, or a system failure will generate

an incident. Reactive monitoring is not only used for exceptions. It can also be

215

used as part of normal operations procedures, for example a batch job completes

successfully, which prompts the scheduling system to submit the next batch job.

On the other hand, proactive monitoring is used to detect patterns of events

which indicate that a system or service may be about to fail. Proactive

monitoring is generally used in more mature environments where these patterns

have been detected previously, often several times. Proactive monitoring tools

are therefore a means of automating the experience of seasoned IT staff and are

often created through the proactive problem management process. Generally, it

is better to manage IT services proactively, but achieving this is not easily

planned or achieved.

Data Literals:

PROACTIVE_ACTIVE

PROACTIVE_PASSIVE

REACTIVE_ACTIVE

REACTIVE_PASSIVE

Relation to ITIL: ITIL Service Operation, p. 159-160.

Class: MetricType

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Design. The Stationery Office (TSO); OGC.

(2007). ITIL Continual Service Improvement. The Stationery Office (TSO).

Description: The specific value that represents the type of a specific itil:Metric. There

are three types of metrics that an organization will need to collect to support CSI

activities as well as other process activities. The types of metrics are:

(1) Technology metrics: these metrics are often associated with component and

application based metrics such as performance, availability etc.

(2) Process metrics: these metrics are captured in the form of CSFs, KPIs and

activity metrics for the service management processes. These metrics can help

determine the overall health of a process. Four key questions that KPIs can help

answer are around quality, performance, value and compliance of following the

process. CSI would use these metrics as input in identifying improvement

opportunities for each process.

(3) Service metrics: these metrics are the results of the end-to-end service.

Component/technology metrics are used to compute the service metrics.

Also, there are four types of metrics that can be used to measure the capability and

performance of processes:

(1) Progress: milestones and deliverables in the capability of the process.

(2) Compliance: compliance of the process to governance requirements, regulatory

requirements and compliance of people to the use of the process.

216

(3) Effectiveness: the accuracy and correctness of the process and its ability to

deliver the ‘right result.’

(4) Efficiency: the productivity of the process, its speed, throughput and resource

utilization.

Data Literals:

PROCESS

SERVICE

TECHNOLOGY

PROGRESS

COMPLIANCE

EFFECTIVENESS

EFFICIENCY

Relation to ITIL: ITIL Service Design, p. 77. ITIL Continual Service Improvement, p.

72.

Class: PerformanceLevel

Ontology: ITIL (itil:)

Source: Steinberg, R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling -

the IT Service Management Metrics That Matter Most to IT Senior Executives. Trafford

Publishing.

Description: The specific value that represents the level of performance associated

with itil:CSF(s) and itil:Outcome(s).

Data Literals:

HIGH

MEDIUM

LOW

Relation to ITIL: Measuring ITIL, p. 24 and p. 29-30.

Class: RACICode

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Design. The Stationery Office (TSO); OGC.

(2007). ITIL Service Transition. The Stationery Office (TSO); OGC. (2007). ITIL

Continual Service Improvement. The Stationery Office (TSO).

Description: The specific value that represents the RACI code of a specific

oc:IntelligentAgent. RACI is a model used to help define roles and responsibilities in

ITIL V3. The RACI model will be beneficial in enabling decisions to be made with

217

pace and confidence. RACI stands for Responsible, Accountable, Consulted and

Informed:

(1) Responsible: the individual who is responsible to perform the actions.

(2) Accountable: the individual who is ultimately accountable has the power of veto.

Only one accountable can be assigned to an action.

(3) Consulted: the individual(s) to be consulted prior to a final decision or action

being taken.

(4) Informed: the individual(s) who needs to be informed after a decision or action

is taken.

To build a RACI chart the following steps are required:

(1) Identify the activities/processes.

(2) Identify/define the functional roles.

(3) Conduct meetings and assign the RACI codes.

(4) Identify any gaps or overlaps – for example, where there are two Rs or no Rs

(see analysis below).

(5) Distribute the chart and incorporate feedback.

(6) Ensure that the allocations are being followed.

Developing an authority matrix (RACI matrix) can be a tedious and time-consuming

exercise but it’s a crucially important one. The authority matrix clarifies to all involved

which activities they are expected to fulfill, as well as identifying any gaps in service

delivery and responsibilities. It is especially helpful in clarifying the staffing model

necessary for improvement.

Data Literals:

R

A

C

I

Relation to ITIL: ITIL Service Design, p. 323-324 and p. 437 (RACI definition). ITIL

Service Transition, p. 136-138 and p. 288-290. ITIL Continual Service Improvement, p.

215-218.

Class: RoleType

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO).

Description: The specific value that represents the type of role of a specific

oc:IntelligentAgent. Roles and responsibilities are defined within organizations for

people. The key to effective ITSM is ensuring that there is clear accountability and roles

defined to carry out the practice of Service Operation. A role is a set of responsibilities,

218

activities and authorities granted to a person or team. A role is defined in a process. One

person or team may have multiple Roles, for example the roles of configuration

manager and change manager may be carried out by a single person. The size of an

organization, how it is structured, the existence of external partners and other factors

will influence how roles are assigned. Whether a particular role is filled by a single

individual or shared between two or more, the importance is the consistency of

accountability and execution, along with the interaction with other roles in the

organization.

Data Literals:

ACCESS_MANAGER

BPO

CARS

CEO

CHA

CIO

FIRST_LINE_SUPPORT

HA

HD

HO

HELP_DESK

INCIDENT_MANAGER

IT_FACILITIES_MANAGER

IT_OPERATIONS_MANAGER

IT_OPERATOR

MAJOR_INCIDENT_TEAM

PROBLEM_MANAGER

PRODUCT_MANAGER

SECOND_LINE_SUPPORT

SERVICE_DESK

SERVICE_REQUEST_FULFILLMENT_GROUP

THIRD_LINE_SUPPORT

Relation to ITIL: ITIL Service Operation, 6.6. Service Operation roles and

responsibilities, p. 256-267 and p. 387 (Role definition).

Class: ScorecardType

Ontology: ITIL (itil:)

219

Source: Steinberg, R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling -

the IT Service Management Metrics That Matter Most to IT Senior Executives. Trafford

Publishing.

Description: The specific value that represents the type of scorecard of a specific

itil:Dashboard. The itil:Dashboard(s) come in all forms, shapes and sizes. For the

purpose of our modeling approach for ITSMSs, just like the approach of [Steinberg,

2006], we use the Balanced Scorecard originally developed in [Kaplan & Norton,

1992]. The Balanced Scorecard was originally developed around the concept that

financial measures alone are not critical for business success. The Balanced Scorecard

has been generally recognized as an acceptable approach for senior management levels.

The scorecard categories recommended for ITSM are:

 Customer: The Customer category represents the customer view of the services

being delivered. Are they satisfied? Are they serviced in accordance with

agreements and expectations? ‘Protect services when making changes’ and

‘Make changes quickly and accurately in line with business needs’ are examples

of some Change Management CSFs that contribute to Customer. Both of these

CSFs impact how a customer might be receiving (or not receiving) their

services.

 Capabilities: The Capabilities category represents, in the ITSM sense, the

capability of the IT service provider to meet business needs. Is there enough

capacity to handle planned business volumes? Is there enough capacity to handle

anticipated business and IT changes? Does the IT staff possess the right skills?

‘Provide services with appropriate capacity to match business need’ and

‘Provide accurate capacity forecasts’ are examples of some Capacity

Management CSFs that contribute to Capabilities. These CSFs represent whether

the IT service provider is capable of delivering needed capacity to support

services by accurately predicting capacity needs and providing needed capacity

at the right time to match business requirements.

 Operational: The Operational category represents, in the ITSM sense, how well

the IT service provider is delivering their services on a day-to-day basis. Are

services levels being met? Are incidents resolved on a timely basis? ‘Quickly

resolve incidents’ and ‘Maintain IT service quality’ are examples of some

Incident Management CSFs that contribute to Operational. These CSFs relate to

everyday tasks (in this case Incident Management tasks) and whether those tasks

are operating in a repeatable, consistent, efficient and effective manner to

quickly resolve incidents and take actions to maintain the quality of the services

being delivered.

 Financial: The Financial category represents, in the ITSM sense, how well the

IT service provider is managing and controlling costs as well as protecting and

enhancing revenue. Are IT costs effectively managed? Are costs staying within

budget? Does revenue received for IT chargeback cover the costs for the

services being charged for? ‘Provide effective stewardship of IT Finances’,

‘Maintain overall effectiveness of the IT Financial Management Process’ and

‘Recapture IT costs through chargeback for delivery of IT services’ are

examples of some Financial Management CSFs that contribute to Financial.

220

 Regulatory: The Regulatory category represents, in the ITSM sense, how well

the IT service provider is operating in a manner that protects it again regulatory

risks for fines, penalties and audit issues. While not part of the original Balanced

Scorecard approach, it has been included because of the recent emphasis on IT

regulatory issues. Is effective stewardship maintained over IT costs? Is the

infrastructure protected from unauthorized changes? Is the infrastructure

adequately protected from security risks? ‘Provide effective stewardship of IT

finances’, ‘Use a repeatable process for handling changes’, ‘Provide a repeatable

process for rolling out releases’ and ‘Maintain viability of IT Service Continuity

Plans’ are examples of some CSFs that contribute to Regulatory.

Data Literals:

CUSTOMER

CAPABILITIES

OPERATIONAL

FINANCIAL

REGULATORY

Relation to ITIL: Measuring ITIL, p. 25-28.

Class: SequenceFlowConditionType

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/; Object Management

Group (OMG), 2010. Business Process Model and Notation (BPMN) Version 2.0.

Available at: http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

Description: The specific value that represents the type of condition of a specific

wf:SequenceEdge.

Data Literals:

NONE

EXPRESSION

DEFAULT

Relation to ITIL: We use the wf:SequenceFlowConditionType class to model the

workflow associated with an itil:Activity.

Class: ServicePortfolioType

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Design. The Stationery Office (TSO); OGC.

(2007). ITIL Service Strategy. The Stationery Office (TSO).

Description: The specific value that represents the type of a specific

itil:ServicePortfolio. The itil:ServicePortfolio is used to manage the entire lifecycle of

221

all itil:ITService(s), and it includes three categories: Service pipeline (proposed or in

development), service catalog (live or available for deployment) and retired services.

 Service Pipeline: The Service Pipeline is a database or structured document

listing all itil:ITService(s) that are under consideration or development, but are

not yet available to customers. The Service Pipeline provides a business view of

possible future itil:ITService(s) and is part of the itil:ServicePortfolio which is

not normally published to itil:Customer(s). These services are to be phased into

operation by itil:ServiceTransition after completion of design, development, and

testing. The pipeline represents the IT service provider’s growth and strategic

outlook for the future. The general health of the itil:ITServiceProvider is

reflected in the pipeline. It also reflects the extent to which new service concepts

and ideas for improvement are being fed by itil:ServiceStrategy,

itil:ServiceDesign and itil:CSI. Good itil:FinancialManagement is necessary to

ensure adequate funding for the pipeline.

 Service Catalog: The Service Catalog is a database or structured document with

information about all live itil:ITService(s), including those available for

deployment. The Service Catalog is basic aspect of all itil:ITServiceProvider,

and it is the only part of the itil:ServicePortfolio published to customers, and is

used to support the sale and delivery of itil:ITService(s). As mentioned earlier,

the itil:ServicePortfolio is the complete set of itil:ITService(s) that are managed

by an itil:ITServiceProvider. The Service Catalog includes information about

deliverables, prices, contact points, ordering and request processes.

The Service Catalog is a key element containing valuable information on the

complete set of services offered. It should preferably be stored as a set of

‘service’ CIs within a Configuration Management System (CMS), maintained

under the itil:ChangeManagement process. As it is such a valuable set of

information it should be available to anyone within the itil:Organization. Every

new itil:ITService should immediately be entered into the Service Catalog once

its initial definition of requirements has been documented and agreed. The

Service Catalog should record the status of every itil:ITService, through the

itil:ServiceStage(s) of its defined itil:ServiceLifecycle.

The Service Catalog will also show the relationship between itil:ITService(s)

and itil:Application(s). A single itil:Application could be part of more than one

itil:ITService, and a single itil:ITService could use more than one

itil:Application.

A Service Catalog is also a collection of LOS, each under the control of a

product manager.

 Retired Services: Some services in the itil:ServicePortfolio are phased out or

retired. Phasing out of services is part of itil:ServiceTransition. This is to ensure

that all commitments made to customers are duly fulfilled and service assets are

released from contracts. When services are retired, the related knowledge and

information are stored in a knowledge base for future use: Retired Services.

Retired Services are not available to new customers or contracts unless a special

business case is made. Such services may be reactivated into operations under

special conditions and SLAs that are to be approved by senior management. This

222

is necessary because such services may cost a lot more to support and may

disrupt economies of scale and scope.

Data Literals:

SERVICE_PIPELINE

SERVICE_CATALOG

RETIRED_SERVICES

Relation to ITIL: ITIL Service Design, p. 84, p. 390, p. 441 (Service Catalog

definition) and p. 446 (Third Party definition). ITIL Service Strategy, p. 116-117, p.

120, p. 213-215 and p. 367 (Service Portfolio definition).

Class: TechnicalManagementType

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO); Pilot

project documentation.

Description: The specific value that represents the type of intervention in a specific

itil:Event. Technical management is not normally provided by a single department or

group. One or more technical support teams or departments will be needed to provide

technical management and support for the IT Infrastructure. In all but the smallest

organizations, where a single combined team or department may suffice, separate teams

or departments will be needed for each type of infrastructure being used.

Data Literals:

PHYSICAL

NON_PHYSICAL

AUTOMATED

Relation to ITIL: ITIL Service Operation, p. 222-223. According to our pilot project,

there are three types of technical support depending on the type of the intervention:

physical (i.e., it is managed by an agent), non physical or automated.

223

Object Properties

Property: affectsCI

Ontology: ITIL (itil:)

Source: see the class itil:ChangeRecord.

Description: (itil:affectsCI itil:ChangeRecord itil:CI) means that the itil:CI is affected

by the change detailed in itil:ChangeRecord.

Functional: No

Inverse: none

Domain: itil:ChangeRecord

Range: itil:CI

Subproperties: none

Property: agreeingAgents

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: (oc:agreeingAgents oc:Contract oc:IntelligentAgent) means that the

oc:Contract has the oc:IntelligentAgent(s) among its agreeing parties. This property

relates an agreement to the agents who made or are making the agreement.

Functional: No

Inverse: none

Domain: oc:Contract

Range: oc:IntelligentAgent

Subproperties: none

Property: agreesContractDocument

Ontology: ITIL (itil:)

Source: see the class oc:Contract.

Description: (itil:agreesContractDocument oc:Contract oc:ContractDocument) means

that the oc:ContractDocument outline the contents of the oc:Contract.

Functional: No

Inverse: none

Domain: oc:Contract

Range: oc:ContractDocument

224

Subproperties: none

Property: basedOnKPI

Ontology: ITIL (itil:)

Source: see the class itil:ServiceLevelTarget.

Description: (itil:basedOnKPI itil:ServiceLevelTarget itil:KPI) means that the

itil:ServiceLevelTarget is based on the itil:KPI.

Functional: No

Inverse: none

Domain: itil:ServiceLevelTarget

Range: itil:KPI

Subproperties: none

Property: basedOnSLR

Ontology: ITIL (itil:)

Source: itSMF International. (2007). ITIL V3: Glossary of Terms and Definitions.

Version to Workload. (Service Level Requirement definition).

Description: (itil:basedOnSLR itil:ServiceLevelTarget itil:SLR) means that the

itil:ServiceLevelTarget is based on the itil:SLR.

Functional: No

Inverse: itil:usedForNegotiation

Domain: itil:ServiceLevelTarget

Range: itil:SLR

Subproperties: none

Property: composedOfAssociations

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:composedOfAssociations wf:Artifact wf:Association) means that the

wf:Artifact is composed of the wf:Association.

Functional: No

Inverse: wf:source

Domain: wf:Artifact

Range: wf:Association

Subproperties: none

225

Property: composedOfLanes

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:composedOfLanes wf:Pool wf:Lane) means that the wf:Pool is

composed of wf:Lane.

Functional: No

Inverse: wf:inPool

Domain: wf:Pool

Range: wf:Lane

Subproperties: none

Property: coordinatedBySpecification

Ontology: ITIL (itil:)

Source: see the class itil:Activity.

Description: (itil:coordinatedBySpecification itil:Activity oc:Specification) means that

the itil:Activity is defined according to the oc:Specification.

Functional: No

Inverse: itil:specifiesActivity

Domain: itil:Activity

Range: oc:Specification

Subproperties: none

Property: coveringITService

Ontology: ITIL (itil:)

Source: see the class: itil:SLA.

Description: (itil:coveringITService itil:SLA itil:ITService) means that the itil:SLA is

defined for the itil:ITService.

Functional: No

Inverse: none

Domain: itil:SLA

Range: itil:ITService

Subproperties: none

Property: definesBusinessProcess

226

Ontology: ITIL (itil:)

Source: see the class itil:Agreement.

Description: (itil:definesBusinessProcess itil:Agreement itil:Activity) means that the

itil:Agreement includes the itil:Activity in its content.

Functional: Yes

Inverse: none

Domain: itil:Agreement

Range: itil:Activity

Subproperties: none

Property: definesMetric

Ontology: ITIL (itil:)

Source: see the class itil:ITService.

Description: (itil:definesMetric itil:ITService itil:Metric) means that the itil:ITService

measures the service processes using the itil:Metric.

Functional: No

Inverse: none

Domain: itil:ITService

Range: itil:Metric

Subproperties: none

Property: definesServiceTarget

Ontology: ITIL (itil:)

Source: see the class itil:SLA.

Description: (itil:definesServiceTarget itil:SLA itil:ServiceLevelTarget) means that the

itil:SLA defines the itil:ServiceLevelTarget.

Functional: No

Inverse: none

Domain: itil:SLA

Range: itil:ServiceLevelTarget

Subproperties: none

Property: derivedFromCSF

Ontology: ITIL (itil:)

227

Source: Steinberg, R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling -

the IT Service Management Metrics That Matter Most to IT Senior Executives. Trafford

Publishing, p. 20 and p. 29-30.

Description: (itil:derivedFromCSF itil:Outcome itil:CSF) means that the itil:Outcome

derives from the itil:CSF.

Functional: No

Inverse: none

Domain: itil:Outcome

Range: itil:CSF

Subproperties: none

Property: detailsITService

Ontology: ITIL (itil:)

Source: see the class itil:ServicePortfolio.

Description: (itil:detailsITService itil:ServicePortfolio itil:ITService) means that the

itil:ITService(s) are contained within the itil:ServicePortfolio.

Functional: No

Inverse: itil:inServicePortfolio

Domain: itil:ServicePortfolio

Range: itil:ITService

Subproperties: none

Property: diagramComposedOf

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:diagramComposedOf wf:BpmnDiagram wf:MessagingEdge/wf:Pool)

means that the wf:BpmnDiagram is composed of the wf:MessagingEdge/wf:Pool.

Functional: No

Inverse: wf:inBpmnDiagram

Domain: wf:BpmnDiagram

Range:

wf:MessagingEdge

wf:Pool

Subproperties: none

228

Property: eventHandlerFor

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:eventHandlerFor wf:Activity wf:SubProcess) means that the

wf:Activity is the event handler for the wf:SubProcess.

Functional: Yes

Inverse: wf:eventHandlers

Domain: wf:Activity

Range: wf:SubProcess

Subproperties: none

Property: eventHandlers

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:eventHandlers wf:SubProcess wf:Activity) means that the wf:Activity

is an event handler for the wf:SubProcess.

Functional: No

Inverse: wf:eventHandlerfor

Domain: wf:SubProcess

Range: wf:Activity

Subproperties: none

Property: factorValue

Ontology: ITIL (itil:)

Source: Steinberg, R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling -

the IT Service Management Metrics That Matter Most to IT Senior Executives. Trafford

Publishing, p. 20 and p. 25.

Description: (itil:factorValue itil:CSFRelation itil:CSF) means that the itil:CSFRelation

represents the itil:CSF.

Functional: Yes

Inverse: none

Domain: itil:CSFRelation

Range: itil:CSF

Subproperties: none

229

Property: fallsIntoToleranceRange

Ontology: ITIL (itil:)

Source: Steinberg, R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling -

the IT Service Management Metrics That Matter Most to IT Senior Executives. Trafford

Publishing, p. 20 and p. 23.

Description: (itil:fallsIntoToleranceRange itil:KPI itil:Tolerance) means that the

itil:KPI results will fall into itil:Tolerance ranges. Each itil:KPI should be associated

with one or more itil:Tolerance values. For example, an upper value can represent a

desired service target for the itil:KPI and a lower value can represent a warning level or

point at which some further action should occur.

Functional: No

Inverse: none

Domain: itil:KPI

Range: itil:Tolerance

Subproperties: none

Property: graphComposedOf

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:graphComposedOf wf:Graph wf:SequenceEdge/wf:Vertex) means

that the wf:Graph is composed of the wf:SequenceEdge/wf:Vertex.

Functional: No

Inverse: wf:inGraph

Domain: wf:Graph

Range:

wf:SequenceEdge

wf:Vertex

Subproperties: none

Property: hasActivities

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:hasActivities wf:Group/wf:Lane wf:Activity) means that the

wf:Group/wf:Lane includes the wf:Activity.

Functional: No

Inverse: wf:inActivityGroup

230

Domain:

wf: Group

wf:Lane

Range: wf:Activity

Subproperties: none

Property: hasActivityType

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:hasActivityType wf:Activity wf:ActivityType) means that the

wf:Activity has the type wf:ActivityType.

Functional: Yes

Inverse: none

Domain: wf:Activity

Range: wf:ActivityType

Subproperties: none

Property: hasAnalyticalMetric

Ontology: ITIL (itil:)

Source: Steinberg, R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling -

the IT Service Management Metrics That Matter Most to IT Senior Executives. Trafford

Publishing, p. 33.

Description: (itil:hasAnalyticalMetric itil:Metric itil:AnalyticalMetric) means that the

itil:AnalyticalMetric is a subset of subdivision of an itil:Metric. For example, the

itil:OperationalMetric of Total number of incidents for analytical purposes could be

broken out by the next itil:AnalyticalMetric(s):

 Geographic region,

 Department of business unit,

 Technology platform,

 IT service delivered,

 Time of day,

 etc.

Functional: No

Inverse: none

Domain: itil:Metric

231

Range: itil:AnalyticalMetric

Subproperties: none

Property: hasApplication

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO), p. 340.

Description: (itil:hasApplication itil:ITService itil:Application) means that the

itil:ITService uses the itil:Application.

Functional: No

Inverse: itil:supportsITService

Domain: itil:ITService

Range: itil:Application

Subproperties: none

Property: hasArtifacts

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:hasArtifacts wf:ArtifactsContainer wf:Artifact) means that the

wf:ArtifactsContainer is composed of the wf:Artifact.

Functional: No

Inverse: wf:inArtifactsContainer

Domain: wf:ArtifactsContainer

Range: wf:Artifact

Subproperties: none

Property: hasAssociations

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:hasAssociations wf:AssociationTarget wf:Association) means that the

wf:AssociationTarget is associated with the wf:Association.

Functional: No

Inverse: wf:target

Domain: wf:AssociationTarget

Range: wf:Association

Subproperties: none

232

Property: hasChangeRecord

Ontology: ITIL (itil:)

Source: itSMF International. (2007). ITIL V3: Glossary of Terms and Definitions.

Version to Workload. (Change Record definition).

Description: (itil:hasChangeRecord itil:RFC itil:ChangeRecord) means that the

itil:ChangeRecord contains the details of the change proposed in the itil:RFC.

Functional: Yes

Inverse: none

Domain: itil:RFC

Range: itil:ChangeRecord

Subproperties: none

Property: hasConfigurationRecord

Ontology: ITIL (itil:)

Source: itSMF International. (2007). ITIL V3: Glossary of Terms and Definitions.

Version to Workload. (Configuration Record definition).

Description: (itil:hasConfigurationRecord itil:CI itil:ConfigurationRecord) means that

the itil:ConfigurationRecord contains the details of the itil:CI.

Functional: No

Inverse: none

Domain: itil:CI

Range: itil:ConfigurationRecord

Subproperties: none

Property: hasCSFRelation

Ontology: ITIL (itil:)

Source: Steinberg, R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling -

the IT Service Management Metrics That Matter Most to IT Senior Executives. Trafford

Publishing, p. 20 and p. 25.

Description: (itil:hasCSFRelation itil:Dashboard itil:CSFRelation) means that the

itil:Dashboard has the itil:CSFRelation.

Functional: No

Inverse: none

Domain: itil:Dashboard

Range: itil:CSFRelation

233

Subproperties: none

Property: hasCustomerRelation

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Design. The Stationery Office (TSO), p. 109-111.

Description: (itil:hasCustomerRelation itil:SLA itil:CustomerRelation) means that the

itil:SLA has the itil:CustomerRelation, used to specify the responsibilities of the

itil:Customer(s) in a specific itil:SLA.

Functional: No

Inverse: none

Domain: itil:SLA

Range: itil:CustomerRelation

Subproperties: none

Property: hasCustomerReq

Ontology: ITIL (itil:)

Source: itSMF International. (2007). ITIL V3: Glossary of Terms and Definitions.

Version to Workload. (Service Level Requirement definition).

Description: (itil:hasCustomerReq itil:ITService itil:SLR) means that the itil:SLR is a

customer requirement for an aspect of an itil:ITService.

Functional: No

Inverse: none

Domain: itil:ITService

Range: itil:SLR

Subproperties: none

Property: hasDirectionType

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf: hasDirectionType wf:Association wf:DirectionType) means that the

directions of the wf:Association has the type wf:DirectionType.

Functional: Yes

Inverse: none

Domain: wf:Association

Range: wf:DirectionType

234

Subproperties: none

Property: hasEventCategoryCode

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: (itil:hasEventCategoryCode itil:Event itil:EventCategoryCode) means that

the itil:Event has the class of itil:EventCategoryCode.

Functional: Yes

Inverse: none

Domain: itil:Event

Range: itil:EventCategoryCode

Subproperties: none

Property: hasEventLifecycle

Ontology: ITIL (itil:)

Source: see the class itil:Event.

Description: (itil:hasEventLifecycle itil:Event itil:Lifecycle) means that the

itil:Lifecycle represents the lifecycle of the itil:Event.

Functional: Yes

Inverse: none

Domain: itil:Event

Range: itil:Lifecycle

Subproperties: none

Property: hasEventType

Ontology: ITIL (itil:)

Source: see the class itil:EventType.

Description: (itil:hasEventType itil:Event itil:EventType) means that the itil:Event has

the type itil:EventType.

Functional: Yes

Inverse: none

Domain: itil:Event

Range: itil:EventType

Subproperties: none

235

Property: hasIncidentGroup

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: (itil:hasIncidentGroup itil:IncidentRecord itil:IncidentGroupType) means

that the incident detailed in itil:IncidentRecord has been reported by a member of the

itil:IncidentGroupType.

Functional: Yes

Inverse: none

Domain: itil:IncidentRecord

Range: itil:IncidentGroupType

Subproperties: none

Property: hasIncidentRecord

Ontology: ITIL (itil:)

Source: itSMF International. (2007). ITIL V3: Glossary of Terms and Definitions.

Version to Workload. (Incident Record definition).

Description: (itil:hasIncidentRecord itil:Incident itil:IncidentRecord) means that the

itil:IncidentRecord contains the details of the itil:Incident.

Functional: No

Inverse: none

Domain: itil:Incident

Range: itil:IncidentRecord

Subproperties: none

Property: hasIncidentResponsible

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: (itil:hasIncidentResponsible itil:IncidentRecord oc:Agent-Generic) means

that the oc:Agent-Generic is the responsible of the incident detailed in

itil:IncidentRecord.

Functional: Yes

Inverse: none

Domain: itil:IncidentRecord

Range: oc:Agent-Generic

Subproperties: none

236

Property: hasIncidentStatus

Ontology: ITIL (itil:)

Source: see the class itil:IncidentStatusType.

Description: (itil:hasIncidentStatus itil:IncidentRecord itil:IncidentStatusType) means

that the incident detailed in itil:IncidentRecord has the status defined in

itil:IncidentStatusType.

Functional: Yes

Inverse: none

Domain: itil:IncidentRecord

Range: itil:IncidentStatusType

Subproperties: none

Property: hasInterfaceRelation

Ontology: ITIL (itil:)

Source: see the class itil:Process.

Description: (itil:hasInterfaceRelation itil:Process itil:InterfaceRelation) means that the

itil:Process has the itil:InterfaceRelation.

Functional: No

Inverse: none

Domain: itil:Process

Range: itil:InterfaceRelation

Subproperties: none

Property: hasInterfaceRelationType

Ontology: ITIL (itil:)

Source: see the class itil:InterfaceRelationType.

Description: (itil:hasInterfaceRelationType itil:InterfaceRelation

itil:InterfaceRelationType) means that the itil:InterfaceRelation has the type

itil:InterfaceRelationType.

Functional: Yes

Inverse: none

Domain: itil:InterfaceRelation

Range: itil:InterfaceRelationType

Subproperties: none

237

Property: hasITService

Ontology: ITIL (itil:)

Source: itSMF International. (2007). ITIL V3: Glossary of Terms and Definitions.

Version to Workload. (Service Package definition)

Description: (itil:hasITService itil:ServicePackage itil:ITService) means that the

itil:ServicePackage includes the itil:ITService.

Functional: No

Inverse: none

Domain: itil:ServicePackage

Range: itil:ITService

Subproperties: none

Property: hasITServiceProviderRelation

Ontology: ITIL (itil:)

Source: see the class itil:SLA.

Description: (itil:hasITServiceProviderRelation itil:SLA

itil:ITServiceProviderRelation) means that the itil:SLA has the

itil:ITServiceProviderRelation, used to specify the responsibilities of the

itil:ITServiceProvider in a specific itil:SLA.

Functional: Yes

Inverse: none

Domain: itil:SLA

Range: itil:ITServiceProviderRelation

Subproperties: none

Property: hasManagedEventType

Ontology: ITIL (itil:)

Source: see the class itil:ManagedEventType.

Description: (itil:hasManagedEventType itil:Event itil:ManagedEventType) means that

the itil:Event has the type itil:ManagedEventType.

Functional: Yes

Inverse: none

Domain: itil:Event

Range: itil:ManagedEventType

Subproperties: none

238

Property: hasMembers

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: (oc:hasMembers oc:Organization oc:Agent-Generic) means that the

oc:Agent-Generic is a member of the oc:Organization; typically, membership eligibility

is determined by the oc:Organizaiton and accepted with oc:Agent-Generic’s voluntary

affiliation. The predicate oc:hasMembers relates a particular organization to the agents

who are members of that organization. This predicate indicates ‘generic’ membership,

although there may be specialized kinds of membership in the same organization.

Functional: No

Inverse: none

Domain: oc:Organization

Range: oc:Agent-Generic

Subproperties: none

Property: hasMetricType

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Design. The Stationery Office (TSO), p. 77; OGC.

(2007). ITIL Continual Service Improvement. The Stationery Office (TSO), p. 72.

Description: (itil:hasMetricType itil:Metric itil:MetricType) means that the itil:Metric

has the type itil:MetricType.

Functional: Yes

Inverse: none

Domain: itil:Metric

Range: itil:MetricType

Subproperties: none

Property: hasPerformanceLevel

Ontology: ITIL (itil:)

Source: Steinberg, R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling -

the IT Service Management Metrics That Matter Most to IT Senior Executives. Trafford

Publishing, p. 24 and p. 29-30.

Description: (itil:hasPerformanceLevel itil:CSF itil:PerformanceLevel) means that the

itil:CSF or the itil:Outcome has the level itil:PerformanceLevel. In an itil:CSF, to

receive the performance level of ‘High’, all the associated itil:KPI(s) must have met or

exceeded their itil:Tolerance acceptable values. When one of the associated itil:KPI(s)

falls into an itil:Tolerance non-acceptable value, the itil:CSF performance level might

239

be ‘Medium’ or ‘Low’ depending on how the associated itil:KPI value fell within the

specified itil:Tolerance range for it.

On the other hand, itil:Outcome(s) can be associated with a performance indicator

(High, Medium or Low) that might reflect the likelihood of risk that the itil:Outcome

will occur. In our modeling approach for ITSMSs, the risk level is derived from the

mean average of the itil:CSF performance levels. Scoring for an itil:Outcome runs

opposite to how the itil:CSF(s) are calculated. If a itil:CSF scores ‘Low’, meaning the

likelihood of achieving that itil:CSF is low, then the itil:Outcome would score ‘High’.

This means that the risk of the itil:Outcome occurring is high because the itil:CSF

achievement was low.

Functional: Yes

Inverse: none

Domain:

itil:CSF

itil:Outcome

Range: itil:PerformanceLevel

Subproperties: none

Property: hasProblemRecord

Ontology: ITIL (itil:)

Source: itSMF International. (2007). ITIL V3: Glossary of Terms and Definitions.

Version to Workload. (Problem Record definition).

Description: (itil:hasProblemRecord itil:Problem itil:ProblemRecord) means that the

itil:ProblemRecord contains the details of the itil:Problem.

Functional: Yes

Inverse: none

Domain: itil:Problem

Range: itil:ProblemRecord

Subproperties: none

Property: hasProcess

Ontology: ITIL (itil:)

Source: see the class itil:ServiceStage.

Description: (itil:hasProcess itil:ServiceStage itil:Process) means that the

itil:ServiceStage includes the itil:Process.

Functional: No

Inverse: itil:inServiceStage

240

Domain: itil:ServiceStage

Range: itil:Process

Subproperties:

(itil:hasStrategyProcess itil:ServiceStrategy itil:StrategyProcess) ->

inverse: (itil:inStrategyStage itil:StrategyProcess itil:ServiceStrategy)

(itil:hasDesignProcess itil:ServiceDesign itil:DesignProcess) ->

inverse: (itil:inDesignStage itil:DesignProcess itil:ServiceDesign)

(itil:hasTransitionProcess itil:ServiceTransition itil:TransitionProcess) ->

inverse: (itil:inTransitionStage itil:TransitionProcess itil:ServiceTransition)

(itil:hasOperationProcess itil:ServiceOperation itil:OperationProcess) ->

inverse: (itil:inOperationStage itil:OperationProcess itil:ServiceOperation)

(itil:hasCSIProcess itil:ContinualServiceImprovement itil:CSIProcess) ->

inverse: (itil:inCSIStage itil:CSIProcess itil:ContinualServiceImprovement)

Property: hasRoleRelation

Ontology: ITIL (itil:)

Source: see the class oc:IntelligentAgent.

Description: (itil:hasRoleRelation oc:IntelligentAgent itil:RoleRelation) means that the

oc:IntelligentAgent is assigned with the itil:RoleRelation.

Functional: No

Inverse: none

Domain: oc:IntelligentAgent

Range: itil:RoleRelation

Subproperties: none

Property: hasScorecardType

Ontology: ITIL (itil:)

Source: Steinberg, R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling -

the IT Service Management Metrics That Matter Most to IT Senior Executives. Trafford

Publishing, p. 25-28.

Description: (itil:hasScorecardType itil:CSFRelation itil:ScorecardType) means that

the itil:CSFRelation has the type itil:ScorecardType.

Functional: Yes

Inverse: none

Domain: itil:CSFRelation

241

Range: itil:ScorecardType

Subproperties: none

Property: hasSequenceFlowConditionType

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:hasSequenceFlowConditionType wf:SequenceEdge

wf:SequenceFlowConditionType) means that the wf:SequenceEdge has the type

wf:SequenceFlowConditionType.

Functional: Yes

Inverse: none

Domain: wf:SequenceEdge

Range: wf:SequenceFlowConditionType

Subproperties: none

Property: hasServiceLifecycle

Ontology: ITIL (itil:)

Source: see the class itil:ITService.

Description: (itil:hasServiceLifecycle itil:ITService itil:ServiceLifecycle) means that

the itil:ITService is managed according to the itil:ServiceLifecycle.

Functional: Yes

Inverse: itil:inITService

Domain: itil:ITService

Range: itil:ServiceLifecycle

Subproperties: none

Property: hasServicePortfolioType

Ontology: ITIL (itil:)

Source: see the class itil:ServicePortfolioType.

Description: (itil:hasServicePortfolioType itil:ServicePortfolio

itil:ServicePortfolioType) means that the itil:ServicePortfolio has the type

itil:ServicePortfolioType.

Functional: Yes

Inverse: none

Domain: itil:ServicePortfolio

242

Range: itil:ServicePortfolioType

Subproperties: none

Property: hasSLAIncidentResolution

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: (itil:hasSLAIncidentResolution itil:SLA itil:SLAIncidentResolution)

means that the itil:SLAIncidentResolution contains the specification of the incident

resolution times for the itil:SLA.

Functional: No

Inverse: none

Domain: itil:SLA

Range: itil:SLAIncidentResolution

Subproperties: none

Property: hasSLP

Ontology: ITIL (itil:)

Source: itSMF International. (2007). ITIL V3: Glossary of Terms and Definitions.

Version to Workload. (Service Package definition); OGC. (2007). ITIL Service

Strategy. The Stationery Office (TSO), p. 209.

Description: (itil:hasSLP itil:ServicePackage itil:SLP) means that the

itil:ServicePackage is composed of the itil:SLP.

Functional: No

Inverse: none

Domain: itil:ServicePackage

Range: itil:SLP

Subproperties: none

Property: hasStage

Ontology: ITIL (itil:)

Source: see the class itil:Lifecycle.

Description: (itil:hasStage itil:Lifecycle itil:Stage) means that the itil:Lifecycle is

composed of the itil:Stage.

Functional: No

Inverse: itil:inLifecycle

Domain: itil:Lifecycle

243

Range: itil:Stage

Subproperties:

(itil:hasServiceStage itil:ServiceLifecycle itil:ServiceStage) ->

inverse: (itil:inServiceLifecycle itil:ServiceStage itil:ServiceLifecycle)

Property: hasSupportingService

Ontology: ITIL (itil:)

Source: itSMF International. (2007). ITIL V3: Glossary of Terms and Definitions.

Version to Workload. (Core Service definition and Supporting Service definition).

Description: (itil:hasSupportingService itil:CoreService itil:SupportingService) means

that the itil:CoreService includes the itil:SupportingService to enable or enhance the

delivery of the service.

Functional: No

Inverse: none

Domain: itil:CoreService

Range: itil:SupportingService

Subproperties: none

Property: hasTechnicalManagementType

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Operation. The Stationery Office (TSO), p. 222-

223.

Description: (itil:hasTechnicalManagementType itil:Event

itil:TechnicalManagementType) means that the itil:Event has the type of intervention

specified in itil:TechnicalManagementType.

Functional: No

Inverse: none

Domain: itil:Event

Range: itil:TechnicalManagementType

Subproperties: none

Property: implementedByApplication

Ontology: ITIL (itil:)

Source: see the class itil:Activity.

Description: (itil:implementedByApplication itil:Activity itil:Application) means that

the itil:Activity is implemented by the itil:Application.

244

Functional: Yes

Inverse: itil:implementsActivity

Domain: itil:Activity

Range: itil:Application

Subproperties: none

Property: implementsActivity

Ontology: ITIL (itil:)

Source: see the class itil:Activity.

Description: (itil:implementsActivity itil:Application itil:Activity) means that the

itil:Application implements the itil:Activity.

Functional: Yes

Inverse: itil:implementedByApplication

Domain: itil:Activity

Range: itil:Application

Subproperties: none

Property: inActivityGroup

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:inActivityGroup wf:Activity wf:Group/wf:Lane) means that the

wf:Activity is included in the wf:Group/wf:Lane.

Functional: No

Inverse: wf:hasActivities

Domain: wf:Activity

Range:

wf:Group

wf:Lane

Subproperties: none

Property: inArtifactsContainer

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:inArtifactsContainer wf:Artifact wf: ArtifactsContainer) means that

the wf:Artifact is part of the wf:ArtifactsContainer.

245

Functional: Yes

Inverse: wf:hasArtifacts

Domain: wf:Artifact

Range: wf:ArtifactsContainer

Subproperties: none

Property: inBpmnDiagram

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:inBpmnDiagram wf:MessagingEdge/wf:Pool wf:BpmnDiagram)

means that the wf:MessagingEdge/wf:Pool is part of the wf:BpmnDiagram.

Functional: Yes

Inverse: wf:diagramComposedOf

Domain:

wf:MessagingEdge

wf:Pool

Range: wf:BpmnDiagram

Subproperties: none

Property: includesMeasurement

Ontology: ITIL (itil:)

Source: Steinberg, R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling -

the IT Service Management Metrics That Matter Most to IT Senior Executives. Trafford

Publishing, p. 22.

Description: (itil:includesMeasurement itil:Metric itil:Measurement) means that the

itil:Measurement is used in the computation of the itil:Metric. The itil:Metric may not

be clear understood purely by their names. Usually these require a small definition or

explanation such that the itil:Metric is understood. For this reason, itil:Metric(s) and

their associated itil:Measurement(s) (calculations) should be documented.

Functional: No

Inverse: none

Domain: itil:Metric

Range: itil:Measurement

Subproperties: none

246

Property: includesPBA

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO), p. 206.

Description: (itil:includesPBA itil:UP itil:PBA) means that the user profile itil:UP

supports the pattern of business activity itil:PBA.

Functional: No

Inverse: none

Domain: itil:UP

Range: itil:PBA

Subproperties: none

Property: incomingEdges

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:incomingEdges wf:Vertex wf:SequenceEdge) means that the

wf:Vertex is the target of the wf:SequenceEdge.

Functional: No

Inverse: wf:vertexTarget

Domain: wf:Vertex

Range: wf:SequenceEdge

Subproperties: none

Property: incomingMessages

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:incomingMessages wf:MessageVertex wf:MessagingEdge) means

that the wf:MessageVertex is the target of the wf:MessagingEdge.

Functional: No

Inverse: wf:messageVertexTarget

Domain: wf:MessageVertex

Range: wf:MessagingEdge

Subproperties: none

247

Property: inEvent

Ontology: ITIL (itil:)

Source: see the class oc:Event.

Description: (itil:inEvent oc:Event1 oc:Event2) means that oc:Event1 is a part, or

subevent, of oc:Event2.

Functional: Yes

Inverse: oc:subEvents

Domain: oc:Event

Range: oc:Event

Subproperties: none

Property: inGraph

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:inGraph wf:SequenceEdge/wf:Vertex wf:Graph) means that the

wf:SequenceEdge/wf:Vertex are part of the wf:Graph.

Functional: Yes

Inverse: wf:graphComposedOf

Domain:

wf:SequenceEdge

wf:Vertex

Range: wf:Graph

Subproperties: none

Property: inITService

Ontology: ITIL (itil:)

Source: see the class itil:ServiceLifecycle.

Description: (itil:inITService itil:ServiceLifecycle itil:ITService) means that the

itil:ServiceLifecycle is used for the management of the itil:ITService.

Functional: No

Inverse: itil:inITService

Domain: itil:ServiceLifecycle

Range: itil:ITService

Subproperties: none

248

Property: inLifecycle

Ontology: ITIL (itil:)

Source: see the class itil:Stage.

Description: (itil:inLifecycle itil:Lifecycle itil:Stage) means that the itil:Stage is part of

the itil:Lifecycle.

Functional: No

Inverse: itil:hasStage

Domain: itil:Stage

Range: itil:Lifecycle

Subproperties:

(itil:inServiceLifecycle itil:ServiceStage itil:ServiceLifecycle) ->

inverse: (itil:hasServiceStage itil:ServiceLifecycle itil:ServiceStage)

Property: inPool

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:inPool wf:Lane wf:Pool) means that the wf:Lane is part of the

wf:Pool.

Functional: Yes

Inverse: wf:composedOfLanes

Domain: wf:Lane

Range: wf:Pool

Subproperties: none

Property: inServicePortfolio

Ontology: ITIL (itil:)

Source: see the class itil:ServicePortfolio.

Description: (itil:inServicePortfolio itil:ITService itil:ServicePortfolio) means that the

itil:ITService is part of the itil:ServicePortfolio.

Functional: No

Inverse: itil:detailsITService

Domain: itil:ITService

Range: itil:ServicePortfolio

Subproperties: none

249

Property: inServiceStage

Ontology: ITIL (itil:)

Source: see the class itil:Process.

Description: (itil:inServiceStage itil:Process itil:ServiceStage) means that the

itil:Process is part of the itil:ServiceStage.

Functional: No

Inverse: itil:hasProcess

Domain: itil:Process

Range: itil:ServiceStage

Subproperties:

(itil:inStrategyStage itil:StrategyProcess itil:ServiceStrategy) ->

inverse: (itil:hasStrategyProcess itil:ServiceStrategy itil:StrategyProcess)

(itil:inDesignStage itil:DesignProcess itil:ServiceDesign) ->

inverse: (itil:hasDesignProcess itil:ServiceDesign itil:DesignProcess)

(itil:inTransitionStage itil:TransitionProcess itil:ServiceTransition) ->

inverse: (itil:hasTransitionProcess itil:ServiceTransition itil:TransitionProcess)

(itil:inOperationStage itil:OperationProcess itil:ServiceOperation) ->

inverse: (itil:hasOperationProcess itil:ServiceOperation itil:OperationProcess)

(itil:inCSIStage itil:CSIProcess itil:ContinualServiceImprovement) ->

inverse: (itil:hasCSIProcess itil:ContinualServiceImprovement itil:CSIProcess)

Property: interfaceValue

Ontology: ITIL (itil:)

Source: see the class itil:InterfaceRelation.

Description: (itil:interfaceValue itil:InterfaceRelation itil:Process) means that the

itil:InterfaceRelation represents the itil:Process.

Functional: Yes

Inverse: none

Domain: itil:InterfaceRelation

Range: itil:Process

Subproperties: none

Property: isFeedback

Ontology: ITIL (itil:)

250

Source: OGC. (2007). The Official Introduction to the ITIL Service Lifecycle. The

Stationery Office (TSO). London, p. 21-22.

Description: (itil:isFeedback itil:ServiceStage1 itil:ServiceStage2) means that the

itil:ServiceStage1 is feedback of itil:ServiceStage2.

Functional: No

Inverse: itil:receivesFeedback

Domain: itil:ServiceStage

Range: itil:ServiceStage

Subproperties: none

Property: managesServicePortfolio

Ontology: ITIL (itil:)

Source: see the class itil:ITService.

Description: (itil:managesServicePortfolio itil:ITServiceProvider itil:ServicePortfolio)

means that the itil:ServicePortfolio is managed by the itil:ITServiceProvider.

Functional: Yes

Inverse: none

Domain: itil:ITServiceProvider

Range: itil:ServicePortfolio

Subproperties: none

Property: managedByProcess

Ontology: ITIL (itil:)

Source: see the class itil:Event.

Description: (itil:managedByProcess itil:ManagedEvent itil:Process) means that the

itil:Event is managed by the itil:Process.

Functional: No

Inverse: itil:managesEvent

Domain: itil:Event

Range: itil:Process

Subproperties: none

Property: managesCI

Ontology: ITIL (itil:)

251

Source: OGC. (2007). ITIL Service Design. The Stationery Office (TSO), p. 204.

Description: (itil:managesCI itil:ITService itil:CI) means that the itil:CI is necessary to

support the provision of the itil:ITService to the business.

Functional: No

Inverse: none

Domain: itil:ITService

Range: itil:CI

Subproperties: none

Property: managesEvent

Ontology: ITIL (itil:)

Source: see the class itil:Process.

Description: (itil:managesEvent itil:Process itil:Event) means that the itil:Process is the

responsible for managing the itil:ManagedEvent.

Functional: No

Inverse: itil:managedByProcess

Domain: itil:Process

Range: itil:Event

Subproperties: none

Property: measuredBy

Ontology: ITIL (itil:)

Source: see the class itil:Process.

Description: (itil:measuredBy itil:Process itil:Metric) means that the itil:Process is

measured by the itil:Metric.

Functional: No

Inverse: itil:measures

Domain: itil:Process

Range: itil:Metric

Subproperties: none

Property: measuredByKPI

Ontology: ITIL (itil:)

Source: see the class itil:CSF.

252

Description: (itil:measuredByKPI itil:CSF itil:KPI) means that the itil:KPI is used to

measure the achievement of the itil:CSF.

Functional: No

Inverse: none

Domain: itil:CSF

Range: itil:KPI

Subproperties: none

Property: measures

Ontology: ITIL (itil:)

Source: see the class itil:Metric.

Description: (itil:measures itil:Metric itil:Process) means that the itil:Metric is used to

measure the itil:Process.

Functional: No

Inverse: itil:measuredBy

Domain: itil:Metric

Range: itil:Process

Subproperties: none

Property: meetsPBA

Ontology: ITIL (itil:)

Source: see the class itil:SLP.

Description: (itil:meetsPBA itil:SLP itil:PBA) means that the itil:SLP meets the

itil:PBA.

Functional: Yes

Inverse: none

Domain: itil:SLP

Range: itil:PBA

Subproperties: none

Property: messageVertexSource

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:messageVertexSource wf:MessagingEdge wf:MessageVertex) means

that the wf:MessageVertex is the source of the wf:MessagingEdge.

253

Functional: Yes

Inverse: wf:outgoingMessages

Domain: wf:MessagingEdge

Range: wf:MessageVertex

Subproperties: none

Property: messageVertexTarget

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:messageVertexTarget wf:MessagingEdge wf:MessageVertex) means

that the wf:MessageVertex is the target of the wf:MessagingEdge.

Functional: Yes

Inverse: wf:incomingMessages

Domain: wf:MessagingEdge

Range: wf:MessageVertex

Subproperties: none

Property: outgoingEdges

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:outgoingEdges wf: Vertex wf:SequenceEdge) means that the

wf:Vertex is the source of the wf:SequenceEdge.

Functional: No

Inverse: wf:vertexSource

Domain: wf:Vertex

Range: wf:SequenceEdge

Subproperties: none

Property: outgoingMessages

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:outgoingMessages wf:MessageVertex wf:MessagingEdge) means that

the wf:MessageVertex is the source of the wf:MessagingEdge.

Functional: No

Inverse: wf:messageVertexSource

254

Domain: wf:MessageVertex

Range: wf:MessagingEdge

Subproperties: none

Property: performedBy

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: (oc:performedBy oc:Action oc:Agent-Generic) means that the oc:Agent-

Generic deliberately does oc:Action. Note that an oc:Action can have multiple

deliberate performers (oc:Agent-Generic(s)).

Functional: No

Inverse: none

Domain: oc:Action

Range: oc:Agent-Generic

Subproperties: none

Property: processOwner

Ontology: ITIL (itil:)

Source: itSMF International. (2007). ITIL V3: Glossary of Terms and Definitions.

Version to Workload. (Process Owner definition).

Description: (itil:processOwner itil:Process itil:RoleType) means that the itil:RoleType

is the owner of the itil:Process. The process owner is a role responsible for ensuring

that a process is fit for purpose. The process owner’s responsibilities include

sponsorship, design, change management and continual improvement of the process and

its metrics. This role is often assigned to the same person who carries out the process

manager role, but the two roles may be separate in larger organizations.

Functional: Yes

Inverse: none

Domain: itil:Process

Range: itil:RoleType

Subproperties: none

Property: programCode

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

255

Description: (oc:programCode oc:ComputerProgram-CW oc:ComputerCode) means

that the code oc:ComputerCode is source or executable code for the program

oc:ComputerProgram-CW.

Functional: Yes

Inverse: none

Domain: oc:ComputerProgram-CW

Range: oc:ComputerCode

Subproperties: none

Property: programSpecifications

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: (oc:programSpecifications oc:ComputerProgram-CW

oc:ProgramSpecification) means that the oc:ProgramSpecification specifies how the

oc:ComputerProgram-CW should behave.

Functional: No

Inverse: none

Domain: oc:ComputerProgram-CW

Range: oc:ProgramSpecification

Subproperties: none

Property: providerOfService

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: (oc:providerOfService oc:ServiceEvent oc:Agent-Generic) means that the

oc:ServiceEvent is performed or provided by the oc:Agent-Generic. Typically, the

oc:Agent-Generic acts in order to serve the oc:recipientOfService in oc:ServiceEvent.

Functional: Yes

Inverse: none

Domain: oc:ServiceEvent

Range: oc:Agent-Generic

Subproperties: none

Property: proposesChange

Ontology: ITIL (itil:)

256

Source: see the class itil:RFC.

Description: (itil:proposesChange itil:RFC itil:Change) means that the request for

change documented in the itil:RFC propose the itil:Change in the service.

Functional: Yes

Inverse: none

Domain: itil:RFC

Range: itil:Change

Subproperties: none

Property: receivesFeedback

Ontology: ITIL (itil:)

Source: OGC. (2007). The Official Introduction to the ITIL Service Lifecycle. The

Stationery Office (TSO). London, p. 21-22.

Description: (itil:receivesFeedback itil:ServiceStage1 itil:ServiceStage2) means that

the itil:ServiceStage1 receives feedback from itil:ServiceStage2.

Functional: No

Inverse: itil:isFeedback

Domain: itil:ServiceStage

Range: itil:ServiceStage

Subproperties: none

Property: recipientOfService

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: (oc:recipientOfService oc:ServiceEvent oc:Agent-Generic) means that the

oc:Agent-Generic is a recipient of the oc:ServiceEvent. Thus, the service in question is

done for or performed on the oc:Agent-Generic, and the oc:Agent-Generic is

correspondingly affected by it.

Functional: No

Inverse: none

Domain: oc:ServiceEvent

Range: oc:Agent-Generic

Subproperties:

(itil:doneForCustomer itil:ITService itil:Customer)

257

Property: requiresOperationalMetric

Ontology: ITIL (itil:)

Source: Steinberg, R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling -

the IT Service Management Metrics That Matter Most to IT Senior Executives. Trafford

Publishing, p. 22.

Description: (itil:requiresOperationalMetric itil:KPI itil:OperationalMetric) means that

the itil:OperationalMetric is needed to compute the itil:KPI. The itil:KPI(s) are

calculated or derived from one or more itil:OperationalMetrics. The results of these

calculations are then compared to an itil:Tolerance range to identify whether those

results fall within acceptable levels.

Functional: No

Inverse: none

Domain: itil:KPI

Range: itil:OperationalMetric

Subproperties: none

Property: responsibleFor

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: If (oc:responsibleFor oc:Agent-Generic oc:Situation) holds at time ‘t’, this

means that, sometime prior to time ‘t’ the oc:Agent-Generic deliberately performed an

action which was instrumental in bringing about the oc:Situation to the extent that,

other things being equal, if the action had not been performed, the oc:Situation would

not have come about. This sense of ‘responsibility’ is stronger than causal

responsibility, i.e., it requires that the oc:Agent-Generic play more than an unwitting

causal role in bringing about the oc:Situation. However, it is probably weaker than full-

blown moral responsibility, since even though the oc:Agent-Generic intended to

perform the action which brought about the oc:Situation, the oc:Agent-Generic might

not have intended to bring about the oc:Situation.

Functional: No

Inverse: none

Domain: oc:Agent-Generic

Range: oc:Situation

Subproperties: none

Property: roleAction

Ontology: ITIL (itil:)

Source: see the class itil:RoleRelation.

258

Description: (itil:roleAction itil:RoleRelation oc:PurposefulAction) means that the

itil:RoleRelation is participating in the oc:PurposefulAction.

Functional: Yes

Inverse: none

Domain: itil:RoleRelation

Range: oc:PurposefulAction

Subproperties: none

Property: roleCode

Ontology: ITIL (itil:)

Source: see the class itil:RoleRelation.

Description: (itil:roleCode itil:RoleRelation itil:RoleType) means that the

itil:RoleRelation has the type itil:RoleType.

Functional: Yes

Inverse: none

Domain: itil:RoleRelation

Range: itil:RoleType

Subproperties: none

Property: roleRACI

Ontology: ITIL (itil:)

Source: see the class itil:RoleRelation.

Description: (itil:roleRACI itil:RoleRelation itil:RACICode) means that the

itil:RoleRelation has the itil:RACICode.

Functional: No

Inverse: none

Domain: itil:RoleRelation

Range: itil:RACICode

Subproperties: none

Property: source

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:source wf:Association wf: Artifact) means that the wf:Artifact is the

source of the wf:Association.

259

Functional: Yes

Inverse: wf:hasArtifacts

Domain: wf:Association

Range: wf: Artifact

Subproperties: none

Property: specifiesActivity

Ontology: ITIL (itil:)

Source: see the class oc:Specification.

Description: (itil:specifiesActivity oc:Specification itil:Activity) means that the

oc:Specification provides the description of the itil:Activity.

Functional: No

Inverse: itil:coordinatedBySpecification

Domain: oc:Specification

Range: itil:Activity

Subproperties: none

Property: subEvents

Ontology: OpenCyc (oc:)

Source: OpenCyc Browser.

Description: (oc:subEvents oc:Event1 oc:Event2) means that oc:Event2 is a part, or

subevent, of oc:Event1. The oc:Event(s) can be decomposed into subevents temporally,

spatially, and in other ways.The oc:subEvents property is the most general instance of

oc:SubEventPredicate. This predicate relates a given oc:Event to the oc:Event(s) that

are its parts.

Functional: No

Inverse: itil:inEvent

Domain: oc:Event

Range: oc:Event

Subproperties: none

Property: supportedByOLA

Ontology: ITIL (itil:)

Source: see the class itil:SLA.

260

Description: (itil:supportedByOLA itil:SLA itil:OLA) means that the itil:SLA is

supported by the itil:OLA in order to meet the service agreements.

Functional: No

Inverse: none

Domain: itil:SLA

Range: itil:OLA

Subproperties: none

Property: supportedByUC

Ontology: ITIL (itil:)

Source: see the class itil:SLA.

Description: (itil:supportedByUC itil:SLA itil:UC) means that the itil:SLA is supported

by the itil:UC in order to meet the service agreements.

Functional: No

Inverse: none

Domain: itil:SLA

Range: itil:UC

Subproperties: none

Property: supportsITService

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO), p. 340.

Description: (itil:supportsITService itil:Application itil:ITService) means that the

itil:Application is software that underpin the itil:ITService.

Functional: No

Inverse: itil:hasApplication

Domain: itil:Application

Range: itil:ITService

Subproperties: none

Property: supportsPBA

Ontology: ITIL (itil:)

Source: OGC. (2007). ITIL Service Strategy. The Stationery Office (TSO), p. 204.

Description: (itil:supportsPBA itil:ITService itil:PBA) means that the itil:ITService

supports the pattern of business activity itil:PBA.

261

Functional: No

Inverse: none

Domain: itil:ITService

Range: itil:PBA

Subproperties: none

Property: target

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:target wf:Association wf: AssociationTarget) means that the

wf:AssociationTarget is the target of the wf:Association.

Functional: Yes

Inverse: wf:hasAssociations

Domain: wf:Association

Range: wf: AssociationTarget

Subproperties: none

Property: undertakesActivity

Ontology: ITIL (itil:)

Source: see the class itil:Event.

Description: (itil:undertakesActivity itil:Event itil:Activity) means that the itil:Event

undertakes the tasks defined in the itil:Activity in order to manage the related event.

Functional: Yes

Inverse: none

Domain: itil:Event

Range: itil:Activity

Subproperties: none

Property: usedForNegotiation

Ontology: ITIL (itil:)

Source: itSMF International. (2007). ITIL V3: Glossary of Terms and Definitions.

Version to Workload. (Service Level Requirement definition).

Description: (itil:usedForNegotiation itil:SLR itil:ServiceLevelTarget) means that the

itil:SLR is used to negotiate the agreed itil:ServiceLevelTarget.

Functional: No

262

Inverse: itil:basedOnSLR

Domain: itil:SLR

Range: itil: ServiceLevelTarget

Subproperties: none

Property: vertexSource

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:vertexSource wf:SequenceEdge wf:Vertex) means that the wf:Vertex

is the source of the wf:SequenceEdge.

Functional: Yes

Inverse: wf:outgoingEdges

Domain: wf:SequenceEdge

Range: wf:Vertex

Subproperties: none

Property: vertexTarget

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: (wf:vertexTarget wf:SequenceEdge wf:Vertex) means that the wf:Vertex

is the target of the wf:SequenceEdge.

Functional: Yes

Inverse: wf:incomingEdges

Domain: wf:SequenceEdge

Range: wf:Vertex

Subproperties: none

263

Datatype Properties

Property: adhoc

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: The specific value that represents whether a particular wf:Subprocess is

adhoc.

Functional: Yes

Domain: wf:SubProcess

Range: boolean

Property: agentDescription

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to describe a specific oc:Agent-Generic.

Functional: Yes

Domain: oc:Agent-Generic

Range: String

Property: agentName

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to name a specific oc:Agent-Generic.

Functional: Yes

Domain: oc:Agent-Generic

Range: String

Property: agreementCustomer

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to represent the specific customer of the

itil:Agreement.

Functional: No

264

Domain: itil:Agreement

Range: String

Property: agreementDescription

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to describe a specific itil:Agreement.

Functional: Yes

Domain: itil:Agreement

Range: String

Property: agreementITServiceProvider

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to represent the specific IT service provider

of the itil:Agreement.

Functional: Yes

Domain: itil:Agreement

Range: string

Property: agreementName

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to name a specific itil:Agreement.

Functional: Yes

Domain: itil:Agreement

Range: string

Property: agreementResponsibility

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned that represents a responsability of a specific

itil:Agreement.

265

Functional: No

Domain: itil:Agreement

Range: string

Property: agreementService

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned that represents a managed service in a

specific itil:Agreement.

Functional: No

Domain: itil:Agreement

Range: string

Property: agreementTarget

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned that represents a target in a specific

itil:Agreement.

Functional: No

Domain: itil:Agreement

Range: string

Property: appDescription

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to describe a specific itil:Application.

Functional: Yes

Domain: itil:Application

Range: string

Property: appName

Ontology: ITIL (itil:)

Source: Pilot project documentation.

266

Description: The character string assigned to name a specific itil:Application.

Functional: Yes

Domain: itil:Application

Range: string

Property: ciDescription

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to describe a specific itil:CI.

Functional: Yes

Domain: itil:CI

Range: string

Property: ciName

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to name a specific itil:CI.

Functional: Yes

Domain: itil:CI

Range: string

Property: computerLanguage

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The characther string assigned to represent the computer language used in

a specific oc:ComputerCode.

Functional: Yes

Domain: oc:ComputerCode

Range: string

Property: corePackage

Ontology: ITIL (itil:)

Source: Pilot project documentation.

267

Description: The specific value that represents whether a particular itil:ServicePackage

is considered a core package.

Functional: Yes

Domain: itil:ServicePackage

Range: boolean

Property: customerResponsibility

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The characther string assigned to represent a responsibility of an

itil:Customer in a specific itil:SLA.

Functional: No

Domain: itil:CustomerRelation

Range: string

Property: diagramAuthor

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: The characther string assigned to represent the author of a

wf:BpmnDiagram.

Functional: Yes

Domain: wf:BpmnDiagram

Range: string

Property: diagramTitle

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: The characther string assigned to represent the title of a

wf:BpmnDiagram.

Functional: Yes

Domain: wf:BpmnDiagram

Range: string

268

Property: elementID

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: The character string assigned to identify a specific wf:Identifiable.

Functional: Yes

Domain: wf:Identifiable

Range: string

Property: incidentImpact

Ontology: ITIL (itil:)

Source: itSMF International. (2007). ITIL V3: Glossary of Terms and Definitions.

Version to Workload; Pilot project documentation.

Description: The integer value that represents the impact of a specific itil:Incident. The

itil:incidentImpact is a measure of the effect of an itil:Incident, itil:Problem or

itil:Change on business processes. The itil:incidentImpact is often based on how service

levels will be affected. The itil:incidentImpact and itil:incidentUrgency are used to

assign itil:incidentPriority. In our pilot project, the impact represents the number of

users affected by the itil:Incident.

Functional: Yes

Domain: itil:IncidentRecord

Range: int

Property: incidentLevel

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The integer value that represents the level of importance of a specific

itil:Incident. In our pilot project, the itil:IncidentLevel is calculated from the

itil:incidentUrgency and the itil:incidentGroupType that reported the itil:Incident

(itil:hasIncidentGroup property). The level codes range from 0 to 5 (5 is the highest

level of importance).

Functional: Yes

Domain: itil:IncidentRecord

Range: int

Property: incidentPriority

Ontology: ITIL (itil:)

269

Source: itSMF International. (2007). ITIL V3: Glossary of Terms and Definitions.

Version to Workload; Pilot project documentation.

Description: The integer value that represents the priority of a specific itil:Incident.

The itil:incidentPriority is a category used to identify the relative importance of an

itil:Incident, itil:Problem or itil:Change. The itil:incidentPriority is based on

itil:incidentImpact and itil:incidentUrgency, and is used to identify required times for

actions to be taken. For example an itil:SLA for a specific itil:Customer may state that

itil:Incident(s) with itil:incidentPriority equals to 10 must be resolved within 12 hours.

In our pilot project, the priority codes range from 0 to 10 (10 is the highest priority).

The itil:incidentPriority is calculated from itil:incidentImpact and itil:incidentLevel.

Functional: Yes

Domain: itil:IncidentRecord

Range: int

Property: incidentResolution

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to describe the resolution of a specific

itil:Incident.

Functional: Yes

Domain: itil:IncidentRecord

Range: string

Property: incidentResolutionDatetime

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string representing a point in time that designates the ending

of the period of resolution for the itil:Incident. This field is expressed using a

compacted ISO notation YYYYMMDDhhmmss.sss where YYYY represents a year in

values from 0000 to 9999, MM represents a month in values from 00 to 12, and DD

represents a day in values from 00 to 31, hh represents an hour in values from 00 to 23,

mm represents a minute in values from 00 to 59, and ss.sss represents the number of

seconds and milliseconds in values from 00.000 to 59.999. Note that all character

positions must be filled.

Functional: Yes

Domain: itil:IncidentRecord

Range: string

270

Property: incidentStartDateTime

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string representing a point in time that designates the

beginning of the period of resolution for the itil:Incident. This field is expressed using a

compacted ISO notation YYYYMMDDhhmmss.sss where YYYY represents a year in

values from 0000 to 9999, MM represents a month in values from 00 to 12, and DD

represents a day in values from 00 to 31, hh represents an hour in values from 00 to 23,

mm represents a minute in values from 00 to 59, and ss.sss represents the number of

seconds and milliseconds in values from 00.000 to 59.999. Note that all character

positions must be filled.

Functional: Yes

Domain: itil:IncidentRecord

Range: string

Property: incidentUrgency

Ontology: ITIL (itil:)

Source: itSMF International. (2007). ITIL V3: Glossary of Terms and Definitions.

Version to Workload; Pilot project documentation.

Description: The integer value that represents the urgency of a specific itil:Incident.

The itil:incidentUrgency is a measure of how long it will be until an itil:Incident,

itil:Problem or itil:Change has a significant impact on the business. The

itil:incidentImpact and itil:incidentUrgency are used to assign itil:incidentPriority.The

urgency codes range from 0 to 5 (5 is the highest urgency). The itil:incidentUrgency is

calculated from the itil:serviceImportanceCode.

Functional: Yes

Domain: itil:IncidentRecord

Range: int

Property: interfaceRelationDescription

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to describe a specific itil:InterfaceRelation.

Functional: Yes

Domain: itil:InterfaceRelation

Range: string

271

Property: internalProvider

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The specific value that represents whether an itil:ITServiceProvider is an

internal service provider in the organization.

Functional: Yes

Domain: itil:ITServiceProvider

Range: boolean

Property: internalService

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The specific value that represents whether an itil:ITService is an internal

service of the IT service provider.

Functional: Yes

Domain: itil:ITService

Range: boolean

Property: isDefault

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: The specific value that represents whether a particular wf:SequenceEdge is

considered the default edge.

Functional: Yes

Domain: wf:SequenceEdge

Range: boolean

Property: isTransaction

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: The specific value that represents whether a particular wf:Subprocess

represents a transaction.

Functional: Yes

Domain: wf:SubProcess

272

Range: boolean

Property: looping

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: The specific value that represents whether a particular wf:Activity

represents a loop.

Functional: Yes

Domain: wf:Activity

Range: boolean

Property: lifecycleDescription

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to describe a specific itil:Lifecycle.

Functional: Yes

Domain: itil:Lifecycle

Range: string

Property: lifecycleName

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to name a specific itil:Lifecycle.

Functional: Yes

Domain: itil:Lifecycle

Range: string

Property: measureDescription

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to describe a specific itil:Measurement.

Functional: Yes

Domain: itil:Measurement

273

Range: String

Property: measureName

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to name a specific itil:Measurement.

Functional: Yes

Domain: itil:Measurement

Range: String

Property: metricDescription

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to describe a specific itil:Metric.

Functional: Yes

Domain: itil:Metric

Range: string

Property: metricName

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to name a specific itil:Metric.

Functional: Yes

Domain: itil:Metric

Range: string

Property: metricValue

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The numeric value assigned to represent the value of a specific itil:Metric.

Functional: Yes

Domain: itil:Metric

Range: float

274

Property: objectDocumentation

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: The character string assigned that represents the documentation of a

specific wf:NamedBpmnObject.

Functional: Yes

Domain: wf:NamedBpmnObject

Range: string

Property: objectName

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: The character string assigned to name a specific wf:NamedBpmnObject.

Functional: Yes

Domain: wf:NamedBpmnObject

Range: string

Property: objectNcname

Ontology: Workflow (wf:)

Source: BPMN Modeler website: http://www.eclipse.org/bpmn/.

Description: The character string assigned that represents the nickname of a specific

wf:NamedBpmnObject.

Functional: Yes

Domain: wf:NamedBpmnObject

Range: string

Property: packageDescription

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to describe a specific itil:ServicePackage.

Functional: Yes

Domain: itil:ServicePackage

275

Range: string

Property: packageName

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to name a specific itil:ServicePackage.

Functional: Yes

Domain: itil:ServicePackage

Range: string

Property: pbaDescription

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to describe a specific itil:PBA.

Functional: Yes

Domain: itil:PBA

Range: string

Property: pbaName

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to name a specific itil:PBA.

Functional: Yes

Domain: itil:PBA

Range: string

Property: portfolioDescription

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to describe a specific itil:ServicePortfolio.

Functional: Yes

Domain: itil:ServicePortfolio

Range: string

276

Property: portfolioName

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to name a specific itil:ServicePortfolio.

Functional: Yes

Domain: itil:ServicePortfolio

Range: string

Property: preApprovedChange

Ontology: ITIL (itil:)

Source: itSMF International. (2007). ITIL V3: Glossary of Terms and Definitions.

Version to Workload.

Description: The specific value that represents whether an itil:Change is considered a

standard change that requires a little effort to implement, carries a low level of risk, has

pre-defined approval and does not require the intervention of the CAB (other changes

require the approval of the CAB).

Functional: Yes

Domain: itil:Change

Range: boolean

Property: processChallenge

Ontology: ITIL (itil:)

Source: itSMF International. (2007). Foundations of IT Service Management Based on

ITIL V3. Van Haren Publishing.

Description: The characther string assigned to represent the challenges for successful

itil:Process.

Functional: No

Domain: itil:Process

Range: string

Property: processInput

Ontology: ITIL (itil:)

Source: itSMF International. (2007). Foundations of IT Service Management Based on

ITIL V3. Van Haren Publishing.

277

Description: The characther string assigned to represent the input of an itil:Process.

Functional: No

Domain: itil:Process

Range: string

Property: processName

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to name a specific itil:Process.

Functional: Yes

Domain: itil:Process

Range: string

Property: processObjective

Ontology: ITIL (itil:)

Source: itSMF International. (2007). ITIL V3: Glossary of Terms and Definitions.

Version to Workload.

Description: The characther string assigned to represent the objectives of a specific

itil:Process. The itil:processObjective is the defined purpose or aim of an itil:Process,

an itil:Activity or an oc:Organisation as a whole. The itil:processObjective(s) are

usually expressed as measurable targets.

Functional: No

Domain: itil:Process

Range: string

Property: processOutput

Ontology: ITIL (itil:)

Source: itSMF International. (2007a). Foundations of IT Service Management Based on

ITIL V3. Van Haren Publishing.

Description: The characther string assigned to represent the output of an itil:Process.

Functional: No

Domain: itil:Process

Range: string

278

Property: processRisk

Ontology: ITIL (itil:)

Source: itSMF International. (2007). ITIL V3: Glossary of Terms and Definitions.

Version to Workload.

Description: The characther string assigned to represent the risks that may be

encountered with a specific itil:Process. An itil:processRisk is a possible itil:Event that

could cause harm or loss, or affect the ability to achieve itil:processObjective(s). An

itil:processRisk is measured by the probability of a threat, the vulnerability of the asset

to that threat, and the itil:incidentImpact it would have if it occurred.

Functional: No

Domain: itil:Process

Range: string

Property: processScope

Ontology: ITIL (itil:)

Source: itSMF International. (2007). ITIL V3: Glossary of Terms and Definitions.

Version to Workload.

Description: The characther string assigned to represent the scope of a specific

itil:Process. The itil:processScope is the boundary, or extent, to which an itil:Process,

applies.

Functional: No

Domain: itil:Process

Range: string

Property: processTechnology

Ontology: ITIL (itil:)

Source: itSMF International. (2007). Foundations of IT Service Management Based on

ITIL V3. Van Haren Publishing.

Description: The characther string assigned to represent the technology required to

deliver and support a specific itil:Process. For example, data storage technology such as

storage devices (disks, controllers, tapes, etc.) and Storage Area Networks (SANs),

designed to attach computer storage devices.

Functional: No

Domain: itil:Process

Range: string

279

Property: processValueToBusiness

Ontology: ITIL (itil:)

Source: itSMF International. (2007). Foundations of IT Service Management Based on

ITIL V3. Van Haren Publishing.

Description: The characther string assigned to represent the value of a specific

itil:Process.

Functional: No

Domain: itil:Process

Range: string

Property: questionBeingAnswered

Ontology: ITIL (itil:)

Source: Steinberg, R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling -

the IT Service Management Metrics That Matter Most to IT Senior Executives. Trafford

Publishing (Chapter 4 – Chapter 15).

Description: The character string assigned to represent the question that a specific

itil:KPI is trying to answer.

Functional: Yes

Domain: itil:KPI

Range: string

Property: serviceImportanceCode

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The integer value that represents the importance code of a specific

itil:ITService. In our pilot project, the importance codes range from 0 to 5 (5 is the

highest importance).

Functional: Yes

Domain: itil:ITService

Range: int

Property: serviceProviderResponsibility

Ontology: ITIL (itil:)

Source: itSMF International. (2007). Foundations of IT Service Management Based on

ITIL V3. Van Haren Publishing.

280

Description: The characther string assigned to represent a responsibility of an

itil:ITServiceProvider in a specific itil:SLA.

Functional: No

Domain: itil:ITServiceProviderRelation

Range: string

Property: serviceStageObjective

Ontology: ITIL (itil:)

Source: itSMF International. (2007). Foundations of IT Service Management Based on

ITIL V3. Van Haren Publishing.

Description: The characther string assigned to represent the objective of a specific

itil:ServiceStage.

Functional: No

Domain: itil:ServiceStage

Range: string

Property: serviceStageScope

Ontology: ITIL (itil:)

Source: itSMF International. (2007). Foundations of IT Service Management Based on

ITIL V3. Van Haren Publishing.

Description: The characther string assigned to represent the scope of a specific

itil:ServiceStage.

Functional: No

Domain: itil:ServiceStage

Range: string

Property: serviceStageValueToBusiness

Ontology: ITIL (itil:)

Source: itSMF International. (2007). Foundations of IT Service Management Based on

ITIL V3. Van Haren Publishing.

Description: The characther string assigned to represent the value of a specific

itil:ServiceStage.

Functional: No

Domain: itil:ServiceStage

Range: string

281

Property: serviceUsers

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The integer value that represents the number of users of a specific

itil:ITService.

Functional: Yes

Domain: itil:ITService

Range: int

Property: situationDescription

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to describe a specific oc:Situation.

Functional: Yes

Domain: oc:Situation

Range: string

Property: situationName

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to name a specific oc:Situation.

Functional: Yes

Domain: oc:Situation

Range: string

Property: slaIncidentPriority

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The integer value that represents the agreed priority of a specific itil:SLA.

In our pilot project, the priority codes range from 0 to 10 (10 is the highest priority).

Functional: Yes

Domain: itil:SLAIncidentResolution

282

Range: int

Property: slaIncidentResolutionTime

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The integer value that represents the agreed resolution time for a specific

priority (itil:slaIncidentPriority). The unit of measure is hours.

Functional: Yes

Domain: itil:SLAIncidentResolution

Range: int

Property: slpDescription

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to describe a specific itil:SLP.

Functional: Yes

Domain: itil:SLP

Range: string

Property: slpName

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to name a specific itil:SLP.

Functional: Yes

Domain: itil:SLP

Range: string

Property: slrBusinessObjective

Ontology: ITIL (itil:)

Source: itSMF International. (2007). Foundations of IT Service Management Based on

ITIL V3. Van Haren Publishing.

Description: The character string assigned that represents the business objective of a

specific itil:SLR.

283

Functional: No

Domain: itil:SLR

Range: string

Property: slrDescription

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to describe a specific itil:SLR.

Functional: Yes

Domain: itil:SLR

Range: string

Property: slrName

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to name a specific itil:SLR.

Functional: Yes

Domain: itil:SLR

Range: string

Property: slrResponsibility

Ontology: ITIL (itil:)

Source: itSMF International. (2007). Foundations of IT Service Management Based on

ITIL V3. Van Haren Publishing.

Description: The character string assigned that represents the responsibility of a

specific itil:SLR.

Functional: No

Domain: itil:SLR

Range: string

Property: slrTarget

Ontology: ITIL (itil:)

284

Source: itSMF International. (2007). Foundations of IT Service Management Based on

ITIL V3. Van Haren Publishing.

Description: The character string assigned that represents the target of a specific

itil:SLR.

Functional: No

Domain: itil:SLR

Range: string

Property: specDescription

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to describe a specific oc:Specification.

Functional: Yes

Domain: oc:Specification

Range: string

Property: specName

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to name a specific oc:Specification.

Functional: Yes

Domain: oc:Specification

Range: string

Property: stageDescription

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to describe a specific itil:Stage.

Functional: Yes

Domain: itil:Stage

Range: string

285

Property: stageName

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to name a specific itil:Stage.

Functional: Yes

Domain: itil:Stage

Range: string

Property: targetDescription

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to describe a specific

itil:ServiceLevelTarget.

Functional: Yes

Domain: itil:ServiceLevelTarget

Range: string

Property: targetName

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to name a specific itil:ServiceLevelTarget.

Functional: Yes

Domain: itil:ServiceLevelTarget

Range: string

Property: toleranceCode

Ontology: ITIL (itil:)

Source: Steinberg, R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling -

the IT Service Management Metrics That Matter Most to IT Senior Executives. Trafford

Publishing.

Description: The numeric value assigned to represent a specific tolerance of an

itil:KPI.

Functional: Yes

Domain: itil:Tolerance

286

Range: float

Property: toleranceServiceTarget

Ontology: ITIL (itil:)

Source: Steinberg, R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling -

the IT Service Management Metrics That Matter Most to IT Senior Executives. Trafford

Publishing.

Description: The numeric value assigned to represent a specific service target tolerance

(acceptable value) of an itil:KPI.

Functional: Yes

Domain: itil:Tolerance

Range: float

Property: toleranceWarningLevel

Ontology: ITIL (itil:)

Source: Steinberg, R.A. (2006). Measuring ITIL: Measuring, Reporting and Modeling -

the IT Service Management Metrics That Matter Most to IT Senior Executives. Trafford

Publishing.

Description: The numeric value assigned to represent a specific warning level tolerance

(non-acceptable value) of an itil:KPI.

Functional: Yes

Domain: itil:Tolerance

Range: float

Property: upDescription

Ontology: ITIL (itil:)

Source: Pilot project documentation.

Description: The character string assigned to describe a specific itil:UP.

Functional: Yes

Domain: itil:UP

Range: string

Property: upName

Ontology: ITIL (itil:)

287

Source: Pilot project documentation.

Description: The character string assigned to name a specific itil:UP.

Functional: Yes

Domain: itil:UP

Range: string

Property: urgentChange

Ontology: ITIL (itil:)

Source: itSMF International. (2007). Foundations of IT Service Management Based on

ITIL V3. Van Haren Publishing.

Description: The specific value that represents whether an itil:Change is considered

urgent in order to restore a service after the identification of a problem. The itil:Change

must be introduced as soon as possible to alleviate or avoid detrimental impact on the

business.

Functional: Yes

Domain: itil:Change

Range: boolean

Property: visibleToCustomer

Ontology: ITIL (itil:)

Source: itSMF International. (2007). Foundations of IT Service Management Based on

ITIL V3. Van Haren Publishing.

Description: The specific value that represents whether a particular itil:ITService

represents a third-party service that is visible to the customers.

Functional: Yes

Domain: itil:ITService

Range: boolean

288

Appendix III

Glossary

AMIS ≡ Availability Management Information System

API ≡ Application Programming Interface

AST ≡ Agreed Service Time

B2B ≡ Business-to-Business

BCP ≡ Business Continuity Plan

BEDSL ≡ Business Entities Domain-Specific Language

BIA ≡ Business Impact Analysis

BPD ≡ Business Process Diagram

BPDM ≡ Business Process Definifion Metamodel

BPO ≡ Business Process Owner

BPSS ≡ Business Process Specification Schema

BPE ≡ Business Process Engineering

BPM ≡ Business Process Modeling/Management

BPMI ≡ Business Process Management Initiative

BPMN ≡ Business Process Model and Notation

BRM ≡ Business Relationship Manager

BSM ≡ Business Service Management

BWW ≡ Bunge-Wand-Weber

CAB ≡ Change Advisory Board

CARS ≡ Compliance, Audit, Risk and Security

CASE ≡ Computer-Aided Software Engineering

CAU ≡ Centro de Atención al Usuario

CCTA ≡ Central Computer of Telecommunications Agency

CEO ≡ Chief Executive Officer

CHA ≡ Chief Architect

CFIA ≡ Component Failure Impact Analysis

CI ≡ Configuration Item

CIM ≡ Computation Independent Model

CIO ≡ Chief Information Officer

289

CMDB ≡ Configuration Management Database

CMIS ≡ Capacity Management Information System

CMMI ≡ Capability Maturity Model Integration

CMS ≡ Configuration Management System

COBIT ≡ Control Objectives for Information and related Technology

CPA ≡ Collaboration Protocol Agreement

CSF ≡ Critical Success Factor

CSI ≡ Continual Service Improvement

CSIP ≡ Continual Service Improvement Plan

CWA ≡ Closed World Assumption

DL ≡ Description Logics

DSL ≡ Domain-Specific Language

DSM ≡ Domain-Specific Modeling

EDOC ≡ Enterprise Distributed Object Computing

EMF ≡ Eclipse Modeling Framework

EPC ≡ Event Process Chain

eTOM ≡ Enhanced Telecom Operations Map

GMF ≡ Graphical Modeling Framework

GMP ≡ Graphical Modeling Project

GPL ≡ General Purpose Language

HA≡ Head IT Administration

HD ≡ Head Development

HO ≡ Head Operations

ICTD ≡ Information and Communication Technology Department

IE ≡ Information Engineering

IEC ≡ International Electrotechnical Commision

IM ≡ Incident Management / Incident Manager

ISMS ≡ Information Security Management System

ISO ≡ International Organization for Standardization

IT ≡ Information Technology

ITIL ≡ Information Technology Infrastructure Library

ITIMF ≡ Information Technology Information Management Forum

ITSCM ≡ Information Technology Service Continuity Management

ITSM ≡ Information Technology Service Management

290

itSMF ≡ IT Service Management Forum

ITSMS ≡ Information Technology Service Management System

JMI ≡ Java Metadata Interface

KBSI ≡ Knowledge Based Systems Inc.

KPI ≡ Key Performance Indicator

LOS ≡ Line of Service

M2M ≡ Model-to-Model

M2T ≡ Model-to-Text

MAS ≡ Multi-Agent Systems

MDA ≡ Model-Driven Architecture

MDE ≡ Model-Driven Engineering

MDD ≡ Model-Driven Development

MIS ≡ Management Information Systems

MOF ≡ Meta Object Facility

MTBF ≡ Mean Time Between Failures

MTRS ≡ Mean Time to Restore Service

MTTR ≡ Mean Time To Repair

OASIS ≡ Organization for Advancement of Structured Information Standards

OCL ≡ Object Constraint Language

OE ≡ Ontology Engineering

OGC ≡ Office of Government Commerce

OLA ≡ Operational Level Agreement

OMG ≡ Object Management Group

OMT ≡ Object Modeling Technique

OO ≡ Object-Oriented

OWA ≡ Open World 0Assumption

OWL ≡ The Web Ontology Language

OWL-S ≡ The Web Ontology Language for Services

PBA ≡ Pattern of Business Activity

PDCA ≡ Plan–Do–Check–Act

PIM ≡ Platform Independent Model

PMBOK ≡ Project Management Body of Knowledge

PR ≡ Problem Record

PSM ≡ Platform Specific Model

291

QVT ≡ Query/View/Transformation

RA ≡ Risk Analysis

RACER ≡ Renamed Abox and Concept Expression Reasoner

RBSLM ≡ Rule-Based Service Level Management

RDF ≡ Resource Description Framework

RDF-S ≡ RDF Schema

REA ≡ Resource Event Agent

REFSENO ≡ Representation Formalism for Software Engineering Ontologies

RFC ≡ Request for Change

SACM ≡ Service Asset and Configuration Management

SAN ≡ Storage Area Network

SCA ≡ Sustained Competitive Advantage

SCD ≡ Supplier and Contract Database

SDP ≡ Software Development Process

SE ≡ Software Engineering

SIP ≡ Service Improvement Plan

SKMS ≡ Service Knowledge Management System

SLA ≡ Service Level Agreement

SLM ≡ Service Level Management

SLP ≡ Service Level Package

SLR ≡ Service Level Requirement

SMART ≡ Specific, Measurable, Appropriate, Realistic and Time-bound

SME ≡ Small and Medium-sized Enterprise

SMO ≡ Software Measurement Ontology

SOA ≡ Service Oriented Architecture

SPM ≡ ServicePortfolioManagement

SPO ≡ Service Provisioning Optimization

SQWRL ≡ Semantic Query-Enhanced Web Rule Language

SSU ≡ Shared Services Unit

SUMO ≡ Suggested Upper Merged Ontology

SuS ≡ System under Study

SWRL ≡ Semantic Web Rule Language

TSO ≡ The Stationery Office

UML ≡ Unified Modeling Language

292

UP ≡ User Profile

VCD ≡ Variable Cost Dynamics

W3C ≡ World Wide Web Consortium

WfMC ≡ Workflow Management Coalition

WSBPEL ≡ Web Services Business Process Execution Language

WSDL ≡ Web Services Description Language

XML ≡ Extensible Markup Language

