

The University of Reading

Design and Evaluation of Web Applications and Processes

by

Daniel Rodríguez García

Submitted for the Degree of Doctor of Philosophy

Department of Computer Science

The University of Reading

July 2002

Declaration

I confirm that this is my own work and the use of all material from other sources has been

properly and fully acknowledged.

To my family and Eva

 i

Acknowledgements

I would like to thank Prof. Rachel Harrison and Dr. Manoranjan Satpathy for their

supervision and constant encouragement throughout the duration of my research. I truly

believe, without their help and guidance this thesis would never have been completed. If I

haven’t learnt enough to become a good researcher, it’s my fault.

Thanks to the University of Reading for financial support and to Southampton University

where I spent the first 6 months before moving to Reading. Special thanks to Dr. Javier

Dolado (University of the Basque Country) for allowing me to join the SEGESOFT

research group, supported by CICYT TIC 99-0351 (Spain), a work that will continue

even after the completion of this thesis under the ARGO project CICYT TIC2001-1143-

C3.

I would like to thank everyone in the Applied Software Engineering research group for

their support and friendship; special thanks to Steve, Rachel (McCrindle), Gerard, Sue,

Shirley, James, Pat and others in the Department office. Thanks also to all the participants

in the interviews.

Thanks to those who replied to my e-mails with all sort of problems, doubts, comments,

papers etc. I should mention the names of E. Mendes, L. Olsina, G. Rossi, D. Pfahl, I.

Laconsole and J. Aguilar-Ruiz. My special thanks to B. Kitchenham for giving me a

demonstration of the MiniSQUID tool.

I also would like to thank those friends, I made during the way of this thesis, for making

my life a bit more enjoyable; To name a few pairs: Sissy and Simeon, Eugenia and

Roberto, Anthy and George. I have spent many interesting hours with Joffry, Fuji and

Darren. Nils has changed a ‘bit’ our way of living by making it healthy and organic, and

made our transition to GNU/Linux much smoother. Very special thanks to Hitesh and

Conchi who have never allowed us to miss our families.

 ii

Abstract

The popularity and widespread use of Web applications require that the process of Web

application development be based on sound software engineering principles, and that the

Web applications must satisfy the expected quality needs. This thesis concerns the design

and assessment of Web processes and applications.

To begin with, we conducted a series of interviews with Web practitioners with the aim of

finding out and characterizing the problems faced by practitioners (Web designers and

developers) in industry. The analysis of the results of our interviews suggested areas for

further research. Our analysis revealed that it was necessary to formalise Web

development processes. We have formalised the Web development process though the

definition of a new methodology, called the Parallel Framework. All of the design steps

of this methodology can be carried out using the UML (Unified Modelling Language).

Our proposed design method is modular and therefore its use can alleviate problems.

Next, for the assessment of Web development processes, we designed a Quality

Framework. Our Quality Framework is based on a process model called the Typed

Generic Process Model (TGPM), and it, unlike most of the existing quality frameworks,

makes the relationship between processes and products explicit. We have also developed

tool support for our Quality Framework based on a project management tool which

supports, including the usual project management features, the use of Bayesian Belief

Networks (BBNs) and System Dynamics.

In the latter part of the thesis, we discuss how to generate BBNs from project data, their

validation, and how BBNs can be used to predict the outcome of Product-Process-

Dependency Models under the PROFES methodology.

 iii

Main Contributions

The major contributions of this thesis are as follows:

1. Design of a new methodology, called the Parallel Framework, for Web

Development Process (WDP).

o The methodology modularises the WDP through independent and

parallel development of the authoring part and the infrastructure part.

This could be seen as an attempt towards modularisation of the WDP.

o The methodology is based on UML; so, current tools can be used.

o This methodology addresses the three major issues as regards to WDP,

which are: (i) a clear design architecture that reflects the structure of

the Web application at conceptual level, (ii) modular approach to

development, and (iii) maintainability.

2. This thesis presents a new perspective to quality. Here, by quality we mean

both process quality and product quality.

o We use the Typed Generic Process Model (TGPM) as the basis of our

quality framework. We have extended the TGPM for Web

applications. Our quality framework makes the relationship between

process attributes and product attributes transparent.

o Our quality framework addresses important aspects of individual

processes of Web development through the use of instantiated process

models.

o We also provide a tool support for our quality framework.

3. Development of a proof-of-concept Project Management Tool (PMT).

o Our PMT uses TGPM as the quality framework.

o Internal structure of a process is represented in a graphical notation.

o The PMT uses modern estimation/prediction/analysis techniques such

as Bayesian networks and data mining.

To summarise, we have applied some novel software engineering techniques to Web

arena; in this sense, this thesis presents some new contributions to Web Engineering.

 iv

Publications

• A Generic Model and Tool Support for Assessing and Improving Web Processes", IEEE Metrics

Symposium 2002. (D. Rodriguez, R. Harrison, M. Satpathy)

• Tool Support for the Typed Generic Quality Model, In 11th Intl. Workshop on Software

Measurement (IWSM), 2001, Montreal (Rodriguez, D., Harrison, R., Satpathy M. and Dolado J.)

• An Investigation of Prediction Models for Project Management, IEEE Computer Software and

Applications Conference (COMPSAC), 2002, Oxford. (Rodriguez, D., Harrison, R., Satpathy M.

and Dolado J.)

• Investigation of Product Process Dependency Models through Probabilistic Modelling, Empirical

Assessment in Software Engineering (EASE), 2002 (Satpathy M., Harrison R. and Rodriguez D.)

• Integration of Information in a Training Environment for Software Project Management, Software

Quality Management (SQM) 2001 (Tuya, J., Fernández, P., Prieto, M. A., Aguilar, J., Ramos, I.,

Riquelme, J., Ferrer, F., Toro, M., Ruiz-Carreira, M., Rodriguez, D., Satpathy, M., Harrison, R.,

Ruiz de Infante, A., Dolado, J. J., Matilla, R. and Álvarez, M.)

• Generation of Management Rules through System Dynamics and Evolutionary Computation,

Product Focused Software Process Improvement (PROFES) 2002. (Aguilar-Ruiz, J. S., Riquelme,

J. C., Rodríguez, D. and Ramos, I.)

• Maintenance of Object Oriented Systems through Re-engineering: A Case Study, In Proceedings

of the IEEE International Conference on Software Maintenance (ICSM 2002), Montréal, 2002,

(Satpathy M., Siebel N. T. and Rodriguez D.)

• Latitudinal and Longitudinal Process Diversity, In Journal of Software Maintenance and Evolution

(JSME), 15(1), 9-25, Jan/Feb 2003, Siebel, N., Cook S., Satpathy, M., Rodríguez, D.)

• An Investigation on the use of Bayesian Networks in Project management, In International

Conference on Information Technology (CIT2002), Bhubaneswar, India, 2002 (D. Rodriguez, R.

Harrison and M. Satpathy)

• Practitioners Views on Web Development: An Industrial Survey by Semi-Structured Interviews, In

13th International Conference Software and Systems Engineering and their Applications

(ICSSEA), 2000, Paris (Rodriguez, D. and Harrison, R.)

• Les points de vue des praticiens sur le developpement des applications reposant sur le Web: Une

enquete aupres d'industriels, Genie Logiciel, Vol 56 pp. 2-11, 2001 (D. Rodriguez, R. Harrison)

• Un modele generique pour l’evaluation et l’amelioration des processus du developpement des

applications Web', Genie Logiciel, Vol. 62, pp. 49-56, 2002 (Rodriguez, D., Harrison, R. and

Satpathy, M.)

 v

Table of Contents

Acknowledgements...i

Abstract ..ii

Main Contributions .. iii

Publications...iv

Table of Contents ...v

List of Figures ..x

List of Tables ...xii

Chapter 1 Introduction ...1

1.1 Introduction ..1

1.2 Evolution of Web Applications from a Historical Perspective2

1.3 Web Applications Vs. Traditional Applications ..4

1.4 Web Technologies..6

1.5 Web Engineering..6

1.5.1 Evaluation of Web Processes and Applications ..7

1.5.2 What is Quality? What are Quality Models?...7

1.6 The Problem and our Approach ...9

1.7 Main Results...9

1.8 Related Work..10

1.9 Outline of the Thesis ..12

Chapter 2 An Investigation of Views on Web Development by Practitioners14

2.1 Introduction ..14

2.2 Empirical Assessment Frameworks ...14

2.2.1 Qualitative Evaluations via Interviews..15

2.3 Design of the Survey ..16

2.3.1 Aim ..16

2.3.2 Design of the Questionnaire ..16

2.3.3 Selection of Subjects ...17

2.4 Highlights of the Survey ..17

 vi

2.4.1 Project Management, Metrics and Quality Assurance18

2.4.1.1 Standard Certification ...18

2.4.1.2 Estimation ...19

2.4.1.3 Process Metrics ...19

2.4.1.4 Product Metrics...19

2.4.1.5 Resources ..20

2.4.2 Requirements ...21

2.4.3 Analysis and Design ..22

2.4.4 Reuse ...23

2.4.5 Maintenance...24

2.4.6 Technology ..25

2.4.6.1 From the Developers’ Point of View..25

2.4.6.2 From the Users' Point of View..25

2.4.7 Social Aspects..26

2.5 Lessons Learned...26

2.6 Discussion ..28

2.7 Conclusion..29

Chapter 3 A Parallel Framework for Web Development...30

3.1 Introduction ..30

3.2 Requirements for the Parallel Framework ...32

3.3 Related Work..33

3.3.1 Hypermedia Models ..33

3.3.2 Hypermedia Methodologies ..34

3.3.3 Hypermedia Processes...36

3.4 A Parallel Approach towards Web Development ..37

3.5 Description of the Individual Process Phases ..43

3.5.1 The SEISN Website...43

3.5.2 Requirements Capture and Preliminary Analysis..43

3.5.3 Domain Modelling...47

3.5.3.1 The Authoring Domain ...47

3.5.3.2 The Infrastructure Domain..48

 vii

3.5.4 Navigational Modelling...49

3.5.5 Interface Design...51

3.5.5.1 UI Authoring...52

3.5.5.2 UI Infrastructure..54

3.5.6 Detailed Design ...54

3.5.6.1 Detailed Design Authoring (AUTH) ..54

3.5.6.2 Detailed Design Infrastructure (INF)..55

3.5.6.3 AUTH-INF Interface Design ..55

3.5.7 Implementation..57

3.5.8 Integration and Testing..57

3.6 Feature Analysis...58

3.7 Discussion ..62

3.8 Conclusions ..63

Chapter 4 Development of a Project Management Tool ...65

4.1 Introduction ..65

4.2 Rationale for the USEGESOFT Tool...66

4.3 Requirements for our Project Management Tool ...67

4.4 Related Work..68

4.4.1 Project and Quality Management Environments...68

4.4.1.1 MILOS ..68

4.4.1.2 SQUID ..68

4.4.1.3 MiniSQUID...69

4.4.1.4 SEGESOFT...70

4.4.2 Products and Processes Quality Models ..70

4.4.2.1 The Typed Generic Process Model (TGPM) ..70

4.4.2.2 ISO/IEC 9126..75

4.4.2.3 Dromey’s Quality Framework ..76

4.4.2.4 The Capability Maturity Model (CMM)...77

4.4.3 The Goal-Question-Metric Method ...79

4.4.4 Application of Metrics in Industry ..80

4.4.5 Techniques for Software Project Management ...80

 viii

4.4.5.1 Estimation Techniques..80

4.4.5.2 Knowledge Discovery in Databases ...81

4.4.5.3 System Dynamics ...81

4.4.5.4 Bayesian Belief Networks...82

4.4.5.5 GANTT, PERT/CPM, Earned Value Management System82

4.5 Structure of USEGESOFT ...84

4.6 Functionalities Offered by the System...85

4.6.1 General System Architecture...86

4.6.2 System Database..88

4.7 Implementation of the Functionalities..90

4.7.1 Storing Data...90

4.7.2 Quality Control ..91

4.7.3 Simulation and Dynamic Modelling..97

4.7.4 Bayesian Belief Networks ...97

4.8 Feature Analysis...98

4.9 USEGESOFT in relation to the CMM ...102

4.10 Conclusions ..103

Chapter 5 Assessing and Improving Web Processes using the Typed Generic Process

Model ...105

5.1 Introduction ..105

5.2 Related Work..106

5.3 Evaluation of Web Processes ...108

5.4 Interpretation of Metric Measures..113

5.5 A GQM based Measurement Framework ..114

5.6 Conclusions ..118

Chapter 6 An Investigation of the Use of BBNs for Project Management......................120

6.1 Introduction ..120

6.1.1 Bayesian Belief Networks ...121

6.1.1.1 Inference Using Bayesian Belief Networks..124

6.1.1.2 BBN Modelling...125

6.2 Related Work..126

 ix

6.2.1 BBNs in Software Engineering ...126

6.2.2 Related Approaches to Estimation and Prediction ..127

6.3 Mining Software Engineering Data using BBNs ...129

6.3.1 Learning BBNs From Data..130

6.3.2 The Process of Creating BBNs from Data...131

6.4 Use of BBNs in Process Improvement...139

6.4.1 The PROFES Methodology...139

6.4.1.1 Evolution of a PPD Repository...142

6.4.2 Prediction of PPD Models through BBN ..142

6.5 Discussion ..145

6.5.1 Properties and Limitations of BBNs..145

6.5.2 BBNs vs. other Machine Learning Techniques...147

6.5.3 Further Extensions to BBNs ..148

6.6 A Validation Framework for BBNs ...149

6.7 Conclusions ..152

Chapter 7 Conclusions ...153

7.1 Summary of the Thesis...153

7.2 Main Contributions ..155

7.3 Future Work ...157

References..160

Appendix A Questionnaire Survey ..178

Appendix B Definitions of the Sub-factors of an Authoring Quality Model182

Appendix C Glossary and Acronyms ..186

 x

List of Figures

Figure 1.1 Types of Web Based Applications and their Technology4

Figure 3.1 Web Development Workflow...38

Figure 3.2 Actor’s Diagram ...44

Figure 3.3 Example of the Decomposition of a High Level UC45

Figure 3.4 UC Register Workshop...46

Figure 3.5 Overall Architecture of the Web Application ..47

Figure 3.6 Authoring Domain Model ..48

Figure 3.7 Class Diagram for the Infrastructure Domain ..49

Figure 3.8 ORM Diagram in the Infrastructure ...49

Figure 3.9 Navigational Class Model ..50

Figure 3.10 Navigational Structure Model ..51

Figure 3.11 Search for Related WS ...53

Figure 3.12 Display All Technical Papers ...53

Figure 3.13 Sequence Diagram to Represent Interaction between both Paths56

Figure 3.14 Generic Web Application Architecture ..56

Figure 3.15 The Use of Existing Models in the Parallel Framework61

Figure 4.1 Intermediate Products in the Testing Process...73

Figure 4.2 The CMM Levels ...78

Figure 4.3 Example of a GANNT Chart ..83

Figure 4.4 Earned Value Performance Measurement (EVPM) ...83

Figure 4.5 The USEGESOFT Environment ..85

Figure 4.6 General View of the System...86

Figure 4.7 General Structure and Main Components of the System87

Figure 4.8 Outline of the Database Structure...89

Figure 4.9 Accessing the Data from the Main Window ..90

Figure 4.10 XML File Corresponding to a Quality Model..91

Figure 4.11 Individual Process as an Instantiation of the Measurement Framework........92

Figure 4.12 UML Class Diagram of Quality Attributes ..93

 xi

Figure 4.13 Drag and Drop Mechanism of the Process Editor ..94

Figure 4.14 Accessing the Process Information from the Process Editor..........................96

Figure 4.15 Process Quality Attributes According to TGPM..96

Figure 5.1 Internal Process Structure of the Navigational ...110

Figure 5.2 Quality Tree Showing the Defect Trend Definition116

Figure 5.3 Metrics related with the Defect Trend Subfactor ...117

Figure 5.4 GQM Tree for an Improvement Goal...118

Figure 6.1 Example of BBN for Estimates of Residual Defects......................................122

Figure 6.2 Query mode without Observations...123

Figure 6.3 Run-mode with Observations ...124

Figure 6.4 Process Steps to Obtain BBNs from Data ..131

Figure 6.5 Learning Process using the BNPC Tool (Cheng, 2001).................................135

Figure 6.6 BBN generated from Mendes’ dataset ...136

Figure 6.7 Evidences Window of a BBN for Web Authoring Estimates137

Figure 6.8 Probabilities Window of a BBN for Web Authoring Estimates.....................137

Figure 6.9 Output Probabilities for the Variable Total Effort (TE)138

Figure 6.10 Probability Distribution with Minimum Values...139

Figure 6.11 BBN for PPD Model A...143

Figure 6.12 Analysis of BBN without Formal Inspection ...144

Figure 6.13 BBN Analysis with an Experienced Formal Inspection Team.....................144

 xii

List of Tables

Table 2.1 Participating Organisations..17

Table 2.2 Summary of Standards and Metrics...21

Table 2.3 Summary Requirements...22

Table 2.4 Approaches to Hypermedia Design ...23

Table 2.5 Reuse Summary ...24

Table 2.6 Approaches to Maintenance...25

Table 3.1 Stages in AUTH Process..38

Table 3.2 Stages in the INF Process ..39

Table 3.3 Parallel Web Development Process...40

Table 3.4 Process Customisation ...42

Table 3.5 Requirements of SEISN Example..44

Table 3.6 Example of the Use case/Scenario Register for the next Workshop46

Table 4.1 Types of Some Products ..71

Table 4.2 Types of Some Processes...71

Table 4.3 COCOMO Parameters ...81

Table 4.4 Summary per Activities ...101

Table 5.1 Process Steps of the Atomic Process Nav auth..110

Table 5.2 Quality Tree of the AUTH Process..111

Table 5.3 GQM to Assess the Estimates in the Authoring Process115

Table 5.4 GQM for Maintainability of the Authoring Process..116

Table 6.1 Size and Complexity Measures (Mendes et al, 2002)132

Table 6.2 Raw Dataset ...133

Table 6.3 Preprocessed Data..134

Table 6.4 Summary Statistics ..138

Table 6.5 PPD Model A (Pfahl and Birk, 2000)..141

Table 6.6 PPD Model B (Pfahl and Birk, 2000) ..141

 1

Chapter 1

Introduction

1.1 Introduction

The advent of the World Wide Web during the late 80’s and the beginning of the 90’s

resulted in the emergence of a novel type of application, the Web application. Since then,

Web applications have had a profound impact on business, education, entertainment and

personal life. They can be broadly defined as software applications which include within

their framework the plethora of services provided by the Internet; i.e. they are

conventional applications augmented with the capability of the Internet. Examples of

Web applications include Web Information Systems (WIS), electronic commerce, digital

libraries, distance learning systems etc. Furthermore, applications like Geographical

Information Systems (GIS), kiosks etc. attain their fullest capabilities when they are

elevated to the status of Web applications.

In the following, we will discuss the evolution of Web applications, their similarities and

differences with traditional applications, and the issues and challenges of building Web

applications. The various Web specific terms and acronyms which we have used in our

thesis have been defined in Appendix C.

 2

1.2 Evolution of Web Applications from a Historical

Perspective

Web applications started began as static Web sites; i.e. simple pages containing texts,

images and sound arranged as hypertext, and navigation from one page to another was

achieved by following links. User requests such as following a link were handled by a

program called the Web server. Soon, users were given the capability to interact with

databases and other programs by means of forms and CGIs (Common Gateway

Interface). Gradually, newer technologies like agents, distributed architectures with

loosely coupled databases, object servers and such were incorporated into Web

applications.

This evolution also reflects how Web applications are classified in relation to the domain

and technology point of views. From the functional point of view, Web applications can

be broadly classified into the following categories (Isakowitz et al, 1998; Powell et al,

1998):

(i) Static Web Presence. Web site presence is focused on retrieving static

information. Examples are corporate information pages or personal home

pages etc. Web development consists of an authoring process only.

(ii) Dynamic Information Sites. Data intensive Web sites or database driven

applications fall within this group, where the Web has a user interface (UI)

for retrieving information from back-end databases. There are tools which

allow us to deploy these applications very fast (e.g. Macromedia

Drumbeat, MS Access, etc).

(iii) Web Information Systems (WIS). WIS are Web applications in which a

workflow process has to be followed; e.g., order entry automation,

customer care support systems, etc. Sometimes these Web applications act

as front-ends of other legacy systems, where the browser provides the user

interface. Takahashi and Liang (1997) enumerates the following essential

characteristics of WIS:

• Navigation structure designed to support specific workflow.

 3

• Structured data model(s) representing relationships among pieces

of information.

• Features enabling users to process business data interactively.

• Support for distributed collaboration work style.

• Referential integrity for mission critical tasks.

(iv) Electronic Commerce. These are also transaction oriented, but they are

external to an organisation and require a greater level of security. E-

commerce applications are usually classified into three classes: (i)

business-to-business; (ii) business-to-customer and (iii) customer-to-

customer.

In our thesis, whenever we refer to Web applications, they will mostly fall into the

categories from (i) to (iii) of Isakowitz’s classification scheme. We are not directly

addressing the category (iv) because they involve business standards and some specific

communication protocols, which we do not deal with in our thesis.

From the technology point of view, Orfali et al (1999) classify Web applications as a

variant of client-server computing. In Figure 1.1 we show how different types of Web

applications and related technologies have evolved since the inception of the Web.

 4

Static Web Presence

Client/Server N-tier Client/Server Distributed
 and
Collaborative

Database Publication/
Data Intensive web sites

E-Commerce:
B2B
B2C
C2C

URL based file server

Application Servers, OMTs
CORBA Objects, ORBs interactions

Agents

Dynamic HTML
Servlets, Scripts, ASP
JavaBeans/ActiveX

Forms, CGI,
Server specific APIs

Architecture

Type of application
(increasing complexity / maturity)

Transaction Processing:
Interactive web-applications

Customer care systems

XML, SXL, XLink

1990 2000

1990

2000

Figure 1.1 Types of Web Based Applications and their Technology

1.3 Web Applications Vs. Traditional Applications

Web applications differ from traditional applications from both the product and the

process point of view. As products, they differ from traditional systems in the following

ways (Pressman, 2000; Deshpande et al, 1999; Lowe and Hall, 1999) :

• Web based applications are distributed and component based, and are part of the

client/server paradigm in the sense that they are composed of a number of

components such as servers, databases, middleware etc.

• High reliability: Web applications in general and, e-commerce applications in

particular, must have high reliability; i.e. servers must be available all the time.

• High scalability: Web applications have the potential of attracting and reaching a

very wide audience.

• High usability: The users of Web applications are usually members of the general

public, not technical experts. A Web application must have the potential to attract

such users. Hence, usability of Web products must be high. Also, there are no

 5

geographical boundaries and so cultural and language issues need to be borne in

mind.

• Security: In many Web applications like e-banking, e-commerce etc., security is

of prime concern.

• Saleability (advertising, Web-site popularity etc.). Marketing is a stimulus behind

many Web applications, so marketing ideas may need to be incorporated.

• Customisation: Web applications should be customisable with respect to various

factors like user preferences (e.g. languages), device independence, mobility

scenarios etc.

Web applications also differ from traditional applications from the process point of view,

such as (Pressman, 2000; Lowe and Hall, 1999):

• Technologies from a wide spectrum (HTML, XML, network protocols,

multimedia, Java, and script languages) are involved in Web applications, and

thus, many roles (authors, developers, graphic designers, legal issues etc.) have to

be managed.

• Shorter time to market and shorter product life cycles.

• Hypermedia characteristics have to be taken into account. These include

navigational design, aesthetics, cognitive aspects and user centred design.

• Testing Web applications is more complicated because of their heterogeneous,

distributed, and concurrent nature (Powell et al, 1998).

• Web applications have an inherently dynamic nature in which maintenance is a

continuous process. Practitioners have reported that “most Web sites change their

look and feel once a year to stay attractive. Minor changes in the look and feel of

a site several times a year are common, and major modifications occur

frequently” (Kirda et al, 2001). Lowe uses the Web gardening analogy to describe

Web evolution (Lowe, 1999).

 6

1.4 Web Technologies

We can define Web technologies as a set of languages, protocols and tools that allow us

to create Web applications. Web technologies include Web authoring tools, content

management systems, publishing, database integrators etc.

From the technology point of view, we can say that Web applications are a kind of

client/server application. However, they are attracting interest because they have a

number of advantages over traditional client/server applications in the sense of the

following:

• Ubiquity: The Web enables software to run over any user's desktop irrespective of

its location; it makes information and services easily available to the widest

possible audience.

• Simplicity: HTML, XML and related standards are mark-up languages that are

much easier to learn than other programming languages. In addition, HTTP is a

simple text-based protocol.

• User Interface: Browsers are available for all platforms in the sense that provide a

universal user interface and cross platform independence.

• Central Administration: All processing activities reside on the server, which

transports data content and results to the client as and when needed. The platform-

independence of a Web client eliminates the ongoing need to install and upgrade

specific versions of applications.

• Low Cost: Web technology offers an inexpensive and easy way to share

information across an entire organisation.

• Scalability: Standard-oriented infrastructure offers availability of low-cost tools

such as Web server, indexing and search tools, middleware and third party

applications etc.

1.5 Web Engineering

Web engineering concerns the development, deployment and maintenance of Web-based

systems and applications through the use of scientific, engineering and management

 7

principles (Murugesan and Deshpande, 2001). Web engineering has its own issues and

challenges. As discussed earlier, Web applications possess many unique aspects from the

technology and economic viewpoints. Technology, in relation to Web applications, is

evolving at great pace and it may also involve integration of a number of third-party

products. Web applications are rich in quality requirements. Offutt (2002) surveyed

managers and practitioners of Web applications and found that the three most important

factors are reliability, usability and security. Other important criteria include availability,

scalability, maintainability and time to market. Orthogonally, the process of Web

engineering must also be rich in terms of process quality requirements. It is also

necessary to evaluate Web applications and processes as to whether they possess the

required quality needs and to what degrees.

1.5.1 Evaluation of Web Processes and Applications

Web applications need evaluation to verify how good they are as products and how good

they are in terms of quality requirements. The process of Web engineering needs

evaluation to find out how good the process is in terms of cost and efficiency. Evaluations

produce indicators which may offer guidance for addressing the deficiencies that the Web

application or the process may have. Moreover, evaluation is necessary to identify tools

and methods that are ideal for a given organisation or for a given task.

Evaluation of a product or a process is usually based on a measurement framework and

quality models. The measurement framework identifies metrics, which provide indicators

to evaluate a product or a process. In short, evaluation helps us in (i) understanding what

is happening during development and maintenance; (ii) controlling what is happening on

projects; and (iii) improving processes and products after evaluation.

1.5.2 What is Quality? What are Quality Models?

Quality of a product or a process is defined in terms of a set of characteristics that the

concerned object should have; for instance, a product should be defect free and it should

also satisfy user needs. Similarly a process should produce a product in scheduled time

 8

and assigned budget. Such quality characteristics are formally defined in terms of quality

models.

Garvin (Garvin, 1988) suggests five different perspectives of quality:

(i) the transcendent view, which reflects a feeling that quality changes with time;

(ii) The product-based view, which related quality with the inherent characteristics

of the product.

(iii) The value-based view, which relates the quality and value for money

(iv) The manufacturing view, which is related to the conformance to specification

definition.

(v) The user-based view, which relates to the fitness for purpose definition.

It is important to take into account all this views when developing quality models and

frameworks. Kitchenham et al (1987) and Gillies (1997) view of quality is based upon the

five views of quality set out by Garvin.

A quality model can be considered to be a framework for unifying different viewpoints of

quality requirements. Quality models are usually represented by a quality tree. Higher

level quality requirements are important attributes or factors. At the lower level, each

attribute (or factor) is composed of one or more subfactors, often known as internal

attributes. The internal attributes of a quality model are usually measured using standard

metrics. The most commonly cited quality model is the ISO 9126 standard (1991) which

is based on early works by McCall (1977) and Boehm (1978). These models concern the

quality of products.

There are also quality models for process assessment and improvement. The most

influential ones include the Capability Maturity Model (CMM) (Humphrey, 1992),

ISO/IEC 12207 (ISO, 1995), ISO/IEC 9000 (ISO, 1994), the BOOTSTRAP model

(Kuvaja, 1994), and the ISO/IEC 15504 – SPICE (ISO, 1998).

 9

1.6 The Problem and our Approach

We started with the belief that current approaches towards the development and

maintenance of Web applications have deficiencies and further, Web applications are still

deficient in terms of performance and quality. For example, a survey by Cutter

Consortium (2000) found the following problems with Web projects: (i) schedule delays

79% of the time; (ii) the delivered systems met business needs only 16% of the time; (iii)

project exceeded budget in 63% of the cases; (iv) system delivered did not have required

functionality in 53% of the cases, and (v) deliverables were of poor quality in 52% of the

cases. Therefore, the central motivation for the research presented in this thesis centres

around the improvement of the quality of Web processes and applications. We started our

research work with the following aims:

(i) To understand the current approaches to Web Engineering in industry and to

investigate deficiencies, if any, in them.

(ii) To develop a new methodology to address the existing deficiencies.

(iii) To understand the current approaches to evaluating Web processes and

applications.

(iv) To develop a measurement framework to cater to the specific issues of Web

processes.

(v) To support the measurement framework and evaluation methods with tools.

1.7 Main Results

The main results of this thesis can be summarised through the following points:

• In order to understand the current methodologies in relation to Web processes and

applications, we conducted semi-structured interviews with practitioners in

industry. From our interviews, we observed that (i) Web processes are becoming

more complex as more technologies are involved; (ii) Web applications require

new approaches to design and development as current methods do not have

adequate mechanisms for specifying hypermedia concepts, and (iii) although

measurement of software metrics is essential to ensure product and process

qualities, Web practitioners very rarely use them.

 10

• We developed a new methodology using the Unified Modelling Language (UML)

(Booch et al, 1999) notation for the development process of Web applications.

Our UML based approach ensures that currently available tools for UML can

provide tool support for our methodology. Our methodology is better than existing

methodologies in terms of (i) cleaner design architecture that reflect the structure

at conceptual level, (ii) modular approach to development, and (iii)

maintainability.

• We have developed a customised quality model for Web development process

which is based on the Typed Generic Process Model (TGPM) (Satpathy et al,

2000). Based on this quality model, we have defined a measurement framework

for Web processes. The central idea behind our customized model is that it makes

explicit the quality relationship between processes and products as regards to Web

applications.

• We have developed a project management tool which supports the TGPM, and

hence also our customised model. Moreover, the tool supports the integration of

different techniques such as Bayesian Belief Networks (Jensen, 1996) and System

Dynamics (Abdel-Hamid and Madnick, 1991) for exploring new ways of solving

problems in software engineering in general, and Web applications in particular.

For instance, we focused on Bayesian Belief Networks (BBN) to estimate quality

characteristics of both software processes and products.

• Creation of BBNs is an intellectual task. We have discussed how they can be

constructed from historical data using data mining techniques including their

advantages and limitations.

1.8 Related Work

In this section, we will discuss briefly how our research contribution stands in relation to

the work available in literature. However, work related to each chapter is discussed in the

respective chapters.

Barry and Lang (2001) have carried out an industrial survey and their results suggest that

no uniform approach exists to multimedia systems development and that practitioners are

 11

not using the multimedia models cited in the literature. They also conclude that

developers need new techniques that capture requirements and integrate them within a

systems development framework.

During the last decade, researchers have proposed hypermedia and Web methodologies

based on the Dexter Reference Model (Halasz and Schwartz, 1990, 1994) which provides

important abstractions (e.g., node, link, anchor etc.) found in a wide range of hypertext

systems. Relevant methodologies related to our work include: (i) the Object Oriented

Hypermedia Design Method (Schwabe and Rossi, 1998; Schwabe et al, 2001; Schwabe

and Rossi, 1995); (ii) the Relationship Management Methodology (Isakowitz et al, 1995);

(iii) Conallen’s model (1999; 2000); (iv) and the methodology by Baumeister et al

(1999). These models and methodologies will be considered in more detail in Chapter 3.

In relation to Web process improvement, Bazzana and Fagnoni (1999) describe PI3

(Process Improvement In Internet service providing), a process improvement plan for an

IT company. They used CMM (Humphrey, 1992) to improve key process areas (KPA) in

several issues: technical, business, organisational and cultural. However, we use the

TGPM (Satpathy et al, 2000) since it makes explicit the relationship between process and

product attributes as will be explained in Chapters 4 and 5.

If we consider that all the software engineering techniques are needed when developing

Web applications, we must also consider project management techniques. Project

management is defined as the application of knowledge, skills, tools and techniques to

project activity to meet or exceed stakeholder needs and expectations from a project

(PMI, 1996). From medium to large size projects, tool support for project management

becomes imperative. However, such tools usually deal with tasks, time and resources but

do not take into account quality issues. Our project management tools provide quality as

an orthogonal axis based on the TGPM.

Finally, the PROFES (PROduct Focused process improvement or Embedded Systems)

methodology (2002a) is related to our work in the sense that we demonstrate how to make

use of BBNs to predict the outcome of the improvement actions which are identified from

 12

a PPD (Product Process Dependency) repository (PROFES, 2002b). This methodology

identifies important quality goals of the final product which need to be improved through

actions that are identified in the PPD repository.

1.9 Outline of the Thesis

Chapter 2 is concerned with the semi-structured interviews that we conducted with Web

practitioners. It describes a qualitative survey aimed at analysing the processes involved

in the development of Web applications in industry. The findings of this interviews

identified areas of subsequent research which are covered in the following chapters.

Chapter 3 discusses a new development framework for Web applications. This chapter

also describes how this development framework addresses many deficiencies of the

existing methodologies.

Chapter 4 describes the design and development of a project management tool which

provides mechanisms for constructing processes and dealing with different quality

metrics generated during the development of a project. In addition, it provides an

integrated framework in which different techniques such as Bayesian Belief Networks,

System Dynamics etc. can be used. We have also discussed how the toolset fits into the

CMM (Capability Maturity Model) framework.

Chapter 5 uses the TGPM for evaluating Web processes and products which makes the

relationship that exists between products and processes explicit. The aim is to perform

process assessment by using techniques from empirical software engineering such as the

GQM (Goal/Question/Metric) method.

Chapter 6 describes how to generate BBNs from project data and BBNs advantages and

limitations. We also discuss how BBNs can be used to predict the outcome of PPD

(Product-Process-Dependency) models under the PROFES methodology (2002a) and

hence the impact of the associated improvement actions. Finally, it also discusses their

 13

advantages and limitations and how BBNs can be validated using a framework proposed

by Kitchenham et al (2002).

Chapter 7 summarises the results of this thesis and discusses future research.

 14

Chapter 2

An Investigation of Views on Web

Development by Practitioners

2.1 Introduction

This chapter reports on a series of semi-structured interviews which were conducted with

Web practitioners in several organisations. A semi-structured questionnaire was used to

investigate their development processes, quality assurance (including metrics used), tool

support etc. The main objectives behind this study were:

(i) To study the current development processes and to determine their

deficiencies, if any.

(ii) To determine whether the current practices meet necessary quality

requirements from both product and process point of views.

(iii) To suggest ways for improving any deficiencies.

2.2 Empirical Assessment Frameworks

Investigation of a technique, tool or method involves an evaluation exercise. Fenton and

Pfleeger (1997) consider three ways of organising an evaluation exercise:

 15

• Survey is a retrospective study of a situation to try to document relationships and

outcomes.

• Case study is a research technique in which the investigator identifies key factors

that may affect the outcome of an activity and then documents the activity.

• Formal experiment is a rigorous, controlled investigation of an activity, where key

factors are identified and manipulated to document their effects on the outcome.

Formal experiments, case studies and surveys can be done either quantitatively or

qualitatively. Qualitative research is concerned with studying objects in their natural

surrounding. Qualitative research aims at interpreting a phenomenon based on

explanations by people (Denzin, 1994). Quantitative research is mainly concerned with

quantifying a relationship or to compare two or more groups. The aim is to identify a

cause-effect relationship (Creswell et al, 1996). Daly (1996) points out the value of using

all three forms of empirical assessment to support each other in generating hypotheses

and establishing the results. The qualitative survey contributes to the formulation of a

relevant hypothesis, formal experiments confirm if a relationship exists, and finally, case

studies determine whether the results can be generalised. In addition, Perry et al (2000)

suggest empirical studies can be used not only retrospectively to validate ideas, but also

proactively to direct research, identifying and justifying its potential value.

2.2.1 Qualitative Evaluations via Interviews

Interviews are a qualitative method used to collect historical data from the memories of

the interviewees (Seaman, 1999). They can be of several types: (i) a structured interview

consists of an interview where “the questions are in the hands of the interviewer”; (ii) in

unstructured interviews, “the interviewee is the source of both questions and answers”

and the objective is to get as much information as possible from a topic; (iii) semi-

structure interviews consist of open-ended questions to elicit both the information

foreseen and unexpected questions.

 16

The analysis of the qualitative data can be twofold: generation of a theory or confirmation

of a theory. Generation of a theory is performed by extracting from a set of field notes a

statement or preposition that is supported by the data. Basili et al (1999) also state that

surveys help in the formulation of hypotheses and in finding out areas for further

investigation. In addition, empirical assessment techniques need to be used to check the

results of the interviews. In order to generate a theory, the constant comparison method

can be used (Glaser and Strauss, 1967; Seaman, 1999). This consists of adding codes to

field memos, grouping the information according to the codes and writing a field memo

synthesising the findings.

2.3 Design of the Survey

2.3.1 Aim

The aim of our survey was to explore the experiences of practitioners directly in order to

discover the main issues involved in the development of Web applications. In particular,

we wanted to identify issues surrounding the activities, artefacts and metrics that are

needed when developing these kinds of applications. This survey can be seen as the first

stage of a multi-method approach to assessment and improvement of Web applications

(Daly, 1996).

2.3.2 Design of the Questionnaire

Our survey was conducted by semi-structured interviews based on a questionnaire

presented in Appendix A. Our interview was semi-structured because we wanted to

determine to what extent best practices in literature were followed in industry and further

what were the customised variations. The questionnaire was structured following the

software process life cycle in order to facilitate the analysis and coding of the results as

per the constant comparison method (Seaman, 1999). Members of the Applied Software

Engineering group at the University of Reading reviewed the questionnaire and their

feedback prompted some changes to it.

 17

2.3.3 Selection of Subjects

There is always a trade-off between an extensive but superficial survey and an in-depth

but possibly unrepresentative survey. With a small set, a wider exploration of the topic

and a higher level of confidence in the answers are possible. We selected a few successful

companies involved in Web applications in order to get subjects with experience in Web

development. Companies of different sizes and types were selected so that the set of

subjects interviewed would be a representative one.

Participating organisations were initially contacted by email with a brief outline of our

aims and the questions that would be asked. The interviews were structured around an

open-ended questionnaire but the interviewees were encouraged to digress and elaborate

on topics as much as they felt necessary. Table 2.1 shows a list of the practitioners who

were interviewed. In organisation A, we were able to carry out three different interviews

at two different departments.

ID of the
organisation

Type of Web Apps Type of interviewee Org. Size Size Typical Project
(people)

A Web IS
(3interviews/2dep’t.)

Software engineers 1,500 2-3

B Software Systems Project manager 450 12
C Consultancy and Systems

Manufacturer
Sales consultant >100,000 3 to hundreds

D ISP and Web design Software engineer 15 2
E Insurance Web solutions Software engineer 18 6
F Financial and Pharmaceutical

Web solutions
Project manager 25 4-5

G Web Design Web designer 6 2
H Government IS Project manager 20,000 50 (Size of the project

carried out at the time
of the interview)

Table 2.1 Participating Organisations

2.4 Highlights of the Survey

Our results were obtained from a limited sample. Therefore, the results were viewed as a

starting point for further research.

 18

2.4.1 Project Management, Metrics and Quality Assurance

It is usually believed that Web projects are managed in a way similar to other software

projects. However, we observed that the pace of change, the reduced time to market, fast

turnaround and fast prototyping of Web applications add additional challenges to

management. For example, an interviewee in organisation A commented: a problem that

has frequently occurred is that a prototype has been rushed into production either at the

customer’s insistence, or at the wish of our own management, with lots of resultant

problems.

Our view of these problems is that they are not specific to Web development but they are

more severe in this type of application than other application domains. One interviewee

from organisation A and another from B noted that more research in project management

would be beneficial.

2.4.1.1 Standard Certification

Organisations B, C, D and some departments in A had ISO certification. Organisation B

was expected to reach CMM Level 2 within the next two months. Regarding standard

certification, one of the interviewees suggested that ISO certification does not necessarily

mean a good and well defined development process, and having defined key process

areas, as in CMM could be more useful. This is consistent with the observation made by

Bazzana that in a European-wide awareness survey 65% of the respondents agreed that

certification against ISO 9000 is not enough to guarantee the quality of software products

(Bazzana et al, 1993). From the collected data, we observed that the bigger the company,

the more standards and procedures were defined. For example, configuration management

and reuse are more ad-hoc in small organisations than in the large ones.

In general, quality is only seen in two ways: the absence of errors and customer

satisfaction.

 19

2.4.1.2 Estimation

The surveyed companies estimate schedules, cost and resources by analogy using

judgement and experience from previous projects, adding some risk factors depending on

the use of novel technologies (e.g., using XML for the first time). The interviewees

commented that estimation involving new technologies may be very difficult and the

estimates only become more accurate after experience with similar projects. The common

technique is to create a WBS (Work Breakdown Structure) as accurately as possible,

which in turn would help in planning estimation, milestones setting, and resources

assignment.

From our point of view, this poor use of process estimation methods in contrast to modern

methods like COSMIC Function points (Abran, 1999), Bayesian Belief Networks

(Jensen, 1996) etc. means that there is a lack of rigor in process activities. Furthermore,

we noticed that small companies did not use project management tools.

2.4.1.3 Process Metrics

All organisations but E and G surveyed collect metrics related to time and effort by

means of timesheets, which are used for billing clients and/or for better estimations in

future projects. Other common measures in large organisations were related to

maintenance, such as the number of phone calls received by help desks and bug-fixes

when the system was operational, as this contributed to users’ perception of the

usefulness of the system. A well-defined pattern observed from the surveyed companies

is that processes were better measured in larger companies.

2.4.1.4 Product Metrics

The use of product metrics is quite sporadic in industry and in general, a measurement

program is seen with little respect. The two main reasons raised from the interviews are

that metrics are not found to be good value for money. Furthermore, interviewees from

organisation A and D were of the opinion that metrics pertaining to product quality are

simply common sense. One interviewee at organisation A commented: “At various times

 20

I have worked in groups where they were tried, but they were not found to be value for

money”.

Two of the interviewees commented that quality metrics judgements are really a matter of

common sense and this seems to be especially true with Web systems. One of them used

the readability example where readability is seen as a very subjective measure. Another

commented on the example of user interface performance, where downloads are at the

mercy of the intervening networks. Company B measures the basic attributes such as use

cases, lines of code etc. When the systems are in production, the metrics collected by the

Web server are extensively used to analyse the users. Most of the organisations used this

facility.

In general, few metrics are collected in relation to products under development and these

metrics are the ones that are easy to collect and automate, i.e., broken links, page size etc.

2.4.1.5 Resources

A pattern that arises from our interviews is that, in general, there is a clear distinction

between the front-end and back-end of the development process. According to an

interviewee in organisation A, this is very beneficial in separating presentation from

functionality. In organisation H, a very large organisation, developers in the front-end

only have the high-level view of the application. They need only to know about the high-

level functions to calls; for example, ASP pages that called functions in the backend

processing. On the other hand, back-end developers work at the object level. The

interviewee of the organisation commented that this was quite different from traditional

systems where developers are more homogeneous. In the smaller companies where their

projects consist of static Web sites or small database driven applications, the distinction is

between the authoring/design role and the application development role. An interviewee

in organisation B commented that more technologies (Java, JavaScript, HTML, CORBA

etc.) are involved in Web-based applications than in traditional development. Thus, more

roles are involved and staff with more skills are required.

 21

Table 2.2 summarises the findings related to project management, metrics and quality

assurance for all the organisations.

Orgn Estimation Standards Process Metrics Product Metrics
A experience

(without historic data)
None Only ‘ad-hoc’ for

particular projects
Logs server checked
No quality models defined

B Not defined (new
projects at that time)

ISO Cost and programmer
productivity

LOC, # Use Cases (UC).
No quality models defined

C experience
(with historic data)

ISO Basic cost metrics
without detail

(Unknown by the interviewee)

D Experience
(without historic data)

ISO Timesheets No.

E experience
(without historic data)

No No Web visits related to policies
sold and quotes given.
No quality models defined

F Experience
(without historic data)

No Timesheets Logs server checked
No quality model defined

G Experience
(without historic data)

No No Not collected but check
readability, page size, …

H Experience
(with historic data)

ISO Timesheets, data from
conf. management sys.
and call centre

No

Table 2.2 Summary of Standards and Metrics

2.4.2 Requirements

The most common way of eliciting requirements is by means of use cases, which are used

by the companies B, C and F. Company C uses standard questionnaires based on their

customised methodology as well. Requirements are generally recorded just with

documents in paper and no special tools are used. However, company B uses Rational

Suite (Rational, 2002) to support requirements elicitation. In addition, prototypes and

developmental releases of Web sites are used in companies D and F (and sometimes in A)

to match client’s required functionality. Table 2.3 summarises the findings.

 22

Orgn Requirement capture approaches
A No tools.
B Rational Requisite Pro from Rational Inc.
C Standard questionnaires
D Nothing specific. No tools
E No tools. Role of the IT Manager
F No tools.
G No tools
H MS Project for the PM

Table 2.3 Summary Requirements

2.4.3 Analysis and Design

There are new activities and roles to manage the content, design and structure of Web

applications; however, approaches found in the academic literature such as the Object-

Oriented Hypermedia Design Methodology (OOHDM) (Schwabe et al, 2001; Schwabe

and Rossi, 1995) and Relationship Management Methodology (RMM) (Isakowitz et al,

1995) were not strictly followed in any of the organisations; however, some of the

companies use some concepts of both of these methodologies, one example being the

navigational modelling.

The most common technique was to create flowcharts and storyboards of navigation

using a top-down approach. Company C used patterns as a starting point. In comparison,

companies B and H defined prescriptive tasks, which constituted procedures and

guidelines to be followed. The whole Rational Unified Process was followed by company

B, and UML Activity Diagrams were used in order to model the hypermedia structure.

One interviewee from organisation A commented that new artefacts would be beneficial

in representing the hypermedia domain. He commented that current methods work well

when the number of relationships is small, but they are poor notations for modelling large

Web sites. In the literature, the same observation has been made by Noack and

Schienmann (1999). Table 2.4 summarises the findings.

 23

Orgn Hypermedia Design
A Storyboards (Web hierarchy)
B Rational Unified Process
C Rational Rose and Holosofx
D Storyboards and prototypes
E Ad-hoc
F UML and Use Cases
G Storyboards
H Procedures, guidelines

Table 2.4 Approaches to Hypermedia Design

2.4.4 Reuse

Only company C (the largest one) is using a process for reuse supported by the use of

Lotus Notes as a database of work products from previous projects. Company B is now

implementing a reuse process and there is emphasis on document artefacts to be reused in

future.

One interviewee in B pointed out that reuse within a process is very important; however,

sometimes components are developed from scratch because they do not trust the quality

of the components. One subject in F commented that they only bought components from

trusted sources, i.e., companies that are expected to be in the market for a long time.

Another interviewee in organisation A commented that “it is really important when

choosing the servers and software that you know that the people who support them are

reliable, experienced with the product and not likely to change job (internally or

externally) for the next few years. This is why it is often better from the user's point of

view to have older technology used rather than the latest thing”.

Reuse within the small companies (D and G) is also high but ad-hoc. This is because

many of the applications or the structures of Web sites are very similar. In addition, many

applications can be open source and a lot of their work consists of customising and

integrating them. However, this knowledge is dispersed around the people in the company

without following any process. An interviewee from A commented that the constant

adoption of new technologies makes it difficult to reuse any pre-existing material. Some

 24

of the ideas from Design Patterns (Gamma, 1995) can be incorporated but everything else

needs to be done from scratch. The interviewee at company B commented about the

different treatment for different parts of the application. With Web applications,

frameworks and components that will be reused should be developed more carefully and

more attention should be paid to them. Table 2.5 summarises the findings related to reuse.

Orgn Extent of Reuse
A No process. Mainly ideas (using an integrated tool)
B There are designs, guidelines and procedures, which

are reused
C Reuse is built into processes, databases of artefacts

from previous projects
D Reuse of Open source software
E Components refactoring code
F Components and documentation
G Reuse of Open Source software
H Components

Table 2.5 Reuse Summary

2.4.5 Maintenance

Some of the organisations interviewed use configuration management procedures and

tools; three out of the eight companies do not use any kind of configuration management

procedures. Usually sites are database driven and toolsets are used to manage links, for

example IBM WebSphere Studio (IBM, 2002). Company C is using their own tools and

the Tivoli suite for configuration management. Company B is using the Rational Suite

Test Studio and Rational TeamTest.

As discussed in Section 2.4.1.4, metrics related to the Web server’s logs are also used for

maintenance in the sense of checking the use of the system, broken links, type of users

etc. In organisation A, occasionally, metrics like maximum turnaround time for user

queries and bug fixes are measured, as they would contribute to user’s perception of the

usefulness of the system. Organisation H also collects metrics from the help desk. Table

2.6 summarises the findings related to maintenance.

 25

Orgn Maintenance
A Ad-hoc. No configuration management
B Ad-hoc. Rational Clear case for configuration management
C Maintenance Team. Database driven toolsets used to manage links
D No maintenance unless the client ask for it. No configuration management
E Ad hoc. MS Visual Source safe as configuration management tool
F Procedures. MS Visual source safe
G No maintenance unless the client ask for it. No configuration management
H Procedures. MS Visual source and home-developed tools

Table 2.6 Approaches to Maintenance

2.4.6 Technology

2.4.6.1 From the Developers’ Point of View

In one case (organisation A) the project used an integrated package for Web development.

This integrated package provided limited functionality that sufficed as long as no extra

‘out-of-the box’ functionality was required. When this happens, the interviewee said: we

are continually fighting against some severe limitations and restrictions. Furthermore, he

recommended avoiding such integrated tools in future and opting for more general

pluggable systems.

In general, device independence is considered highly important in order to get universal

user interfaces and cross platform independence; for instance, features specific to

Netscape and Internet explorers should be avoided.

In addition, two of the organisations (E and F) have projects that involve the use of WAP

technology and other devices such as kiosks. In these cases, the interviewees commented,

user interface tests were hard to perform.

2.4.6.2 From the Users' Point of View

Interviewees were of the opinion that most users look for the most effective way of

getting their jobs done. An interviewee from organisation A commented “always

remember that the customers do not get excited about novel technology, just about doing

the job they are there to do better, faster and more easily”. In addition, regarding

 26

customer satisfaction, the same interviewee stated: “The ultimate quality of a system is

judged by whether the end user uses it regularly instead of their previous method of

working, as it speeds up and facilitates their own job, rather than because they are forced

to by lack of alternative or management pressure. It is easy to write a beautiful,

theoretically perfect system that the users just do not find attractive enough to use. In this

case, though technically successful, the project is a failure”.

2.4.7 Social Aspects

The last question of the questionnaire was whether there were any important issues that

were not covered. In this context, one interviewee raised the following social issues:

• Training users is much easier because users are familiar with the UI of the Web

and only need to understand the underlying data or some additional functionality.

Much of this can be done by means of on-line help.

• There are social changes in organisations; for instance, more democratisation of

the information (more information is more accessible to more people). The

drawback is that users may become more anonymous.

2.5 Lessons Learned

From the findings of these interviews and from the literature, we can conclude that there

are two main problems when developing Web applications. They were used to identify

initial research of this thesis. The first problem is related to authoring, i.e., hypermedia

development of Web applications. The second, which is more general, is related to their

management and quality characteristics. In relation to hypermedia development, there is a

lack of guidance and artefacts concerning the design of hypermedia components in a

standard way.

We can highlight the following points from the interviews:

• Web applications have two distinct domains: the hypermedia and the application.

In industry, these are often known as the front-end and the back-end of a Web

 27

application. Our observation is that both domains need different approaches to

development and require different skills. Thus, the natural question is whether we

can develop both the domains separately, possibly by different development

teams, and then link them together to obtain the full Web application. This will

not only make the development process and application modular but also the skills

of the developers could be used more effectively. We will address such issues in

Chapter 3.

• From an interviewee from organisation A and from the literature (Noack and

Schienmann, 1999; Barry and Lang, 2001), we can conclude that there is a lack of

methods, activities and artefacts to realise hypermedia characteristics such as

structure, content and navigation. For example, Noack and Schienmann (1999)

report after introducing object-oriented technology in a banking organisation: “the

combination of OO modelling and Web design presents some challenges. […] We

need both methodological guidance and new work products completing the UML

modelling kernel to reflect hypermedia, HTML, and XML pages and navigational

links in analysis and design”. Research methodologies like RMM, HDM and

OOHDM address such issues; however they do not follow any standard approach

(e.g. UML) to modelling and therefore, as we observed, industries do not use

them. It would be better if such methodologies followed a standard such as UML

for modelling. We are of the opinion that recent approaches by Conallen (1999;

2000) and Baumeister et al (1999), in which they have enriched UML for

modelling hypermedia applications, could be beneficial to industry.

• Maintenance of Web applications is more difficult than that of traditional

applications because in addition to the maintenance of the Web applications which

require more technologies than traditional applications, a large amount of content

and different media also need to be under control management (Dart, 1999).

Technologies such as content management tools, version control systems and

standards such as XML should be used for better maintenance.

• As we observed, reuse is carried out in the industries studied in an ad-hoc manner.

Sometimes components are developed from scratch because developers do not

trust the quality of the components or the sources.

 28

The second problem faced by Web practitioners (and perhaps the software industry in

general) is the lack of guidance and support for project management issues and quality

framework for Web practitioners.

2.6 Discussion

We have used 8 companies within this survey, and this can be seen as both a strength and

a weakness. The strong points are:

• It is difficult to get companies to participate in a study of this kind, and in this

sense, eight is a good number.

• We had the opportunity of talking with the participants at length, which we did

through our semi-structured questionnaire.

However, there are some weaknesses of the study in the following sense:

• Our selection of eight companies is not a true representative of the whole

spectrum of Web practitioners.

• A shortcoming of our questionnaire is that we mostly asked about the Web

process but did not ask much about the success/failure of their products or

whether they had any problems with the quality of their work.

• A flaw in the design of the survey was that the participants were not asked directly

what problems they faced or what they felt they needed to help them with their

tasks.

In the light of the above, further studies of this kind need to be done to validate our

observations. May be our experience will enable a future interviewer to focus his/her

questions in a better manner.

It is our feeling that new and effective methods could be used in the course of Web

development which should not put more burdens on the practitioners. For instance, a Web

server can automatically collect some metrics as a part of Web server logs, and such

 29

metrics can be used to improve the Web applications. Naturally, further research is

required to investigate the effectiveness of such metrics.

Web applications are often expected to satisfy some special quality characteristics like

shorter time to market, security, satisfying a wide variety of users etc. (Barry and Lang,

2001). If such quality aspects are of paramount importance, then a measurement

framework must be in place to facilitate metric based assessment or improvement.

However, it may put additional burden on the practitioners. Therefore, the extent of the

measurement framework should be defined in relation to the quality needs. Adequate tool

support could be used to minimise the burden on the practitioners.

2.7 Conclusion

In this chapter, we have described how we selected Web practitioners from eight

organisations of varying dimension and performed semi-structured interviews. The main

objective was to understand their current practices as regards to Web development and to

identify deficiencies in them. We also discussed the lessons learned from our semi-

structured interview identifying a few important deficiencies with current practices. We

will address some of these issues in subsequent chapters.

 30

Chapter 3

A Parallel Framework for Web

Development

3.1 Introduction

Web applications deliver a complex array of contents and functionalities to a broad

population of end users. Web applications usually incorporate hypermedia capabilities

into other traditional systems such as information systems, real-time systems etc. They

usually cover a broad range of application areas of varying dimensions – from static site

presence for marketing purposes to Web Information Systems (WIS) that allow tasks like

commerce, banking, groupware systems etc. This broad range also reflects how the Web

has matured since its inception, from static Web sites to complex applications involving

databases, CGIs (Common Gateway Interface), agents, distributed architectures with

loosely coupled databases, object servers etc. Since Web applications do not totally

abandon the traditional development process, the same software engineering techniques

are still needed but the process should take into account their differences as stated in

Chapter 1 and Chapter 2. Furthermore, Web development should rely on engineering

approaches based on well-defined standards employing systematic, disciplined and

quantifiable approaches to development, operation and maintenance (Lowe and Hall,

1999). Therefore, they require new approaches to design and development to handle the

 31

hypermedia aspects. At the same time, they continue to face the same issues and

challenges of traditional systems.

This chapter presents a development framework which is a meta-model for the

development of Web application. As discussed in Chapter 2, our interviews revealed that

there was a lack of methods, activities and artefacts to reflect hypermedia characteristics

(structure, content and navigation), and therefore, Web applications created did not scale

up or were not maintainable. In addition, the conception of many Web applications can be

seen, in many cases, as a process of integrating hypermedia functionality and some

elements of a business domain. Therefore, most projects require some underlying

infrastructure to create Web based systems, and so it is preferable to differentiate

infrastructure development from hypermedia functionality. Keeping these results in mind,

we propose a framework that classifies the overall Web development process into two

almost independent sub-processes or activities: the authoring process (AUTH process)

and the process of developing the infrastructure (INF process). By an authoring process

we mean the process of providing hypermedia contents (hypermedia pages with

appropriate links between them). The infrastructure development process provides

technological support like interfacing the Web pages with databases, security protocols,

applets, agents, enterprise servers etc. This separation of concerns defines a parallel path

where the AUTH and INF processes can be developed simultaneously and independently

with minimal interaction between them. Any such interaction will be dealt at an abstract

level (Rodriguez et al, 2001a).

The Parallel Framework identifies the process steps and the artefacts involved in Web

projects. It will further help us to define quality models for both products and processes in

relation to Web applications. As a result, product improvements as well as process

improvement tasks will be more systematic and focussed. We will illustrate our approach

through a running example.

This framework has benefits from both the process point of view and the application point

of view. From the process point of view, it modularises the development. Such

modularisation should lead to better maintenance of the Web process. Furthermore,

 32

because of the formalised structure of the process, quality aspects of the individual sub-

processes can be addressed effectively (Rodriguez et al, 2002). In addition,

modularisation can lead to development of individual modules by third-party providers.

From the application point of view, the modular approach leads to a clear separation of

concerns. Our modularisation approach can be seen as a method to integrate hypermedia

functionality into conventional applications, which leads to enhanced maintainability and

portability of Web applications. For instance, there are applications such as billing

systems, in which a company want may want to provide facilities like on-line payment,

invoice checking etc. Initially, such applications could have been developed without

taking the Web into account. Therefore, the hypermedia ‘plug-in’ capabilities need to be

incorporated into the existing application. Furthermore, the division of the development

process with a flexible interface layer between provides the ideal basis for customisation.

We also aim at following an object-oriented (OO) approach to cover the whole of the

hypermedia development process and the specification of the process itself. The UML is

the standard language to model OO applications (Booch et al, 1999); so, it would be

natural to use UML for specifying Web applications. In this chapter, we will show how

UML, with its extension mechanism, could be used to model various activities of the

parallel framework. Such extension mechanisms are: stereotypes, tagged values and

constrains using the Object Constrain Language (Warmer and Kleppe, 1999).

We view our Parallel Framework as a major contribution to the field of Web engineering;

we will elaborate more about this in the concluding section of this chapter.

3.2 Requirements for the Parallel Framework

From the results of the interviews reported in Chapter 2 and the research literature, we

can highlight the most important requirements that our framework should provide:

• The framework should be model driven in the sense that it can be based upon

models and techniques already used in the hypermedia, information systems, and

software engineering fields. The modelling language of the method should be the

 33

UML in accordance with industry standards so that: (i) it can be used with current

CASE and modelling tools and (ii) UML profiles can be defined extending the

core modelling elements to the hypermedia domain, i.e., high-level specification

of the hypermedia domain.

• The framework should be aligned with object oriented life-cycle models such as

the Open Process (Henderson-Sellers and Unhelkar, 2000) or the Unified

Software Development Process (Jacobson et al, 1999) so that: (i) it enables

project-specific tailoring using their customisation properties. Web architectures

will influence micro-processes (Booch, 1994) defining new activities, artefacts,

and roles for those generic processes; and (ii) it covers all the software

development life cycle, i.e. requirements capture, analysis, design,

implementation, testing and maintenance.

• The framework should allow the reuse of hypermedia or domain components.

• The framework should be able to integrate the different ways of modelling the

domain (object oriented, data centric using the entity relations model, XML etc.)

as well as being able to reuse (within and externally) hypermedia design and

components.

• Well defined artefacts so that evaluation criteria can be devised.

• The framework should permit the separation of application and hypermedia

domains in the way that industry addresses front-end and back-end developments.

• Since maintenance is one of the most difficult tasks when dealing with Web

application (Brereton et al, 1998), the framework should facilitate this aspect

through modular design.

3.3 Related Work

3.3.1 Hypermedia Models

The Dexter Reference Model (Halasz and Schwartz, 1990, 1994) captures important

abstractions found in a wide range of hypertext systems. It was conceived after examining

important hypermedia applications such as Augment, Concordia, Hypercard, Notecards

 34

etc.; so it can provide a standard terminology and standards for interoperability among

hypermedia systems. The Dexter model divides a hypertext system into 3 layers that

allow modifications and extensions of one layer without affecting the others. Those layers

are: (i) the Runtime Layer for the presentation of the hypertext, (ii) Storage Layer, a

database containing nodes and links; and (iii) Within Component Layer which handles the

internal content/structure of hypertext nodes.

The Hypermedia Design Model (HDM) (Garzotto et al, 1994; Garzotto et al, 1993)

provides a model for high-level hypertext design called authoring-in-the-large. HDM is

based on the ER model, but extends the concept of entity and introduces new primitives

as nodes and links. The authors distinguish the following dimensions in the analysis of

hypermedia applications: content, structure, presentation, dynamics and interaction.

The hypermedia and Web methodologies which are in use today are mostly based on the

concepts defined by these two models. These models were quite complete and only a few

extensions have been proposed to deal with some of the limitations of these models. For

example, the Amsterdam Hypermedia Model (AHM) of Hardman et al. (1994) is an

extension of the Dexter model which adds timing and context aspects to multimedia

applications.

3.3.2 Hypermedia Methodologies

The two most well-known hypermedia methodologies available today are the

Relationship Management Methodology (Isakowitz et al, 1995), and Object Oriented

Hypermedia Design Method (Schwabe and Rossi, 1995; Schwabe et al, 2001; Schwabe

and Rossi, 1998).

The Object Oriented Hypermedia Design Method (OOHDM) divides the development

process into four steps: domain design, navigational design, abstract interface design and

implementation.

 35

• Domain Design: a model domain is described using a object-oriented class

diagrams.

• Navigational Design: navigational structures are described through predefined

types of navigational classes and access structures. Then, navigation objects are

grouped into sets called contexts to specify their access structure.

• The Abstract Interface Design specifies how users perceive navigational objects

through the interface, the way different navigational objects will look and

interface transformations.

• Implementation of the navigational design and the abstract interface design

models into concrete objects available in the chosen implementation environment.

These steps, where the order is only indicative rather than prescriptive, can be used in a

mix of iterative, incremental and prototype-based styles of development following an

object-oriented approach.

The Relationship Management Methodology (RMM) considers hypermedia applications

in three layers: storage, logical and presentation level: storage level describes how

information is stored; logical level describes the structure of information that the

application manipulates; and presentation level deals with what information is presented

to users and how to navigate it. The RMM provides a language based on the Entity-

Relationship mechanisms, called RMDM (Relationship Management Data Model) for

describing information objects and the navigation mechanisms.

A problem with these hypermedia methods is that they do not clearly identify the

separation of authoring domain, the conceptual domain (underlying data and business

logic) and their mapping mechanism. They impose their own embedded mapping

mechanism (Lopistéguy et al, 1997) and use their own notation, where in practice,

different approaches could be considered (e.g., object-oriented and entity-relationship

approaches). Both OOHDM and RMM use proprietary notations that are not supported by

current modelling tools, e.g. Rational Rose (Rational, 2000). There have been attempts to

 36

extend UML to specify hypermedia applications to gain the benefits of following a

standard (Conallen, 2000; Baumeister et al, 1999).

Baumeister et al (1999) proposed a UML profile to model hypermedia and Web

applications. The authors model the navigation and the user interfaces of hypermedia

systems using the UML and the ideas of the OOHDM method. Their process comprises a

conceptual, navigational and presentational model. The conceptual model consists of a

class diagram of the problem domain. The navigational model describes the navigation

structure using a class diagram specifying navigational nodes and an object diagram

showing how navigational nodes are visited. Finally, the presentational model describes

the abstract user interface.

Conallen (1999) defines architectures and UML stereotypes for modelling Web

applications, but this does not constitute a method for hypermedia design as it lacks of

navigational models etc. It includes stereotypes for components, classes, methods and

associations, such as server and client components, server and client pages, forms, links

etc. An extension exists for Rational Rose called WAE (Web Application Extension) that

handles these stereotypes (Rational, 2000).

3.3.3 Hypermedia Processes

Lowe and Hall (1999) provide a framework for the hypermedia development process,

which includes domain analysis, product modelling, process modelling, project planning,

development and documentation. Product modelling consists of choosing a model for the

final product. The framework supports three different product models: programming

language-based, model-based and information-centred approach. Process modelling

consists of selecting phases, activities and artefacts for the development and establishes

how these are integrated into the specific development process. Activities performed

during the development process are system analysis, design, production, verification and

testing as well as maintenance. Some guidelines are suggested such as incremental

development and prototyping.

 37

The Hypermedia Flexible Process Modelling (HFPM) presented by Olsina (1998) is

another engineering-based approach, which includes analysis-oriented descriptive and

prescriptive process modelling strategies. It describes existing processes giving guidelines

for planning and managing of hypermedia projects.

3.4 A Parallel Approach towards Web Development

The Web development process can be broadly classified into two almost independent sub-

processes or activities, the authoring process (AUTH) and the process of developing the

infrastructure (INF). The authoring process adds the hypermedia metaphor to the

information. It includes the presentation and linking structure of information and

associated components. It also includes the process of developing the content such as

audio, video etc. The INF process provides the technological support and includes

activities such as interfacing with databases, security protocols and other components not

belonging to the Web application. In a Web application, it is necessary to decide how

much functionality is performed on each side of the partition.

Each of the AUTH and the INF processes can be modelled using phases such as

requirements capture, domain modelling, interaction modelling, detailed design,

implementation and testing. Figure 3.1 summarises the various process phases. The idea

behind the parallel development process can be summarised as follows. The requirements

capture phase collects all the Web-related user requirements, from which the

requirements for the AUTH process and the requirements for the INF process could be

derived. We will call them Req auth and Req inf respectively. After this separation, both the

processes can proceed in parallel and almost independently in order to generate two

independent implementation modules which are also tested independently. After that both

modules are integrated through an interface module and the integration is then tested to

obtain the final product.

Figure 3.1 also reflects the usual way for developing applications in industry, in which an

application is divided into a front-end and a back-end. While the front-end relates the

 38

application to the client side (i.e., the part of the application that the user interacts with),

the back-end is related to the core of the application (linkage with legacy systems,

databases etc). This is very beneficial in separating the presentation from functionality,

where developers of the front-end only have the high-level view of the application. They

need only to know about the calls to the high-level functions (for example, ASP pages

that call functions in the backend processing). On the other hand, back-end developers

work at the object level. This is in contrast to traditional systems development. Thus, our

partition of the Web development process reflects the distinction between the front-end

and back-end processes. Although we present the parallel framework as a linear sequence

of activities, in practice, each path may undergo through several iterations.

Req Interface

Dom inf Impl inf

Impl auth Test auth

Test inf

Integration Test
Integration

UI inf

UI
auth

Nav
auth

Dom auth

Des
inf

Des
auth

Design ImplementationRequirements TestingAnalysis

Req

auth

Req inf

Figure 3.1 Web Development Workflow

We will now discuss the individual phases of the AUTH process and the INF process.

Table 3.1 briefly outlines each of the activities of the AUTH process.

Name Activity
Req auth Req auth obtained from the overall Web requirement.
Dom auth From Req auth, identify classes, relationships between them and obvious attributes.

Produce a preliminary class diagram for authoring.
Nav auth From the authoring class diagram, obtain a navigational model (Baumeister et al, 1999). This

model describes navigational structure between the Web pages.
UI auth Describe how the navigational structure is presented to the user.
Des auth
(Detailed Design)

Complete the preliminary class diagram.

Impl auth Implement contents (pages, sounds, pictures, etc) and links.
Test auth Syntactic testing, image-related problems, document structure etc. (functionality, performance,

compatibility, reliability, security etc. need be verified after integration)

Table 3.1 Stages in AUTH Process

 39

Table 3.2 outlines the stages of the INF process. The parallel path for the INF process is

similar to the traditional development process.

Name Activity
Req inf Obtain Req inf from the overall Web requirement.
Dom inf Form domain model (preliminary class diagram) to establish the context of the system.
UI inf Produce user interface model for INF (if required).
Des inf
(Detailed Design)

Create the design model (interaction diagram, state diagram, complete class diagrams)

Impl inf Write code modules from the Des inf.
Test inf Produce test cases and plan for INF components. Remaining testing is to be done after

integration.

Table 3.2 Stages in the INF Process

The parallel paths of both the processes (AUTH and INF) join at the integration phase

(see Figure 3.1); i.e. the implementation of the AUTH part and the INF part are integrated

during this phase through the implementation of the interface. In the Figure 3.1, the

module with the label ‘interface’ implies the logical description of the interface between

the AUTH module and the INF module. The integrated product is tested and one round of

the process life cycle terminates. The phases may be iterated several times until the Web

application stabilises.

Table 3.3 describes the phases of Web development in a formal manner. In the table, ‘∪’

means the independent specification/design/development etc of its constituents; for

instance, the expression Des Web= Des auth ∪ Des inf means that the design of the Web

application consists of the independent design of the authoring and infrastructure path.

.Integration (IMPL auth , IMPL inf) means the integration of the modules of the AUTH part

and those of the INF part through the implementation of an interface. Testing Web involves

testing of the Impl auth, Impl inf and that of their integration. Similarly, maintenance of the

application involves maintaining the AUTH, INF part, and the maintenance of the

integrated artefacts.

 40

Web Development Process
Req Web = Req auth ∪ Req inf
Dom Web = Dom auth ∪ Dom inf
Nav Web = Nav auth
UI Web = UI auth ∪ UI inf
Des Web= Des auth ∪ Des inf
Impl Web = Integration (Implauth , Implinf)
Test Web=Test (Implauth) ∪ Test (Implinf) ∪ Test (Integration(Implauth, Implinf))
Main Web = Main auth ∪ Main inf ∪ Main auth, inf

Table 3.3 Parallel Web Development Process

Each process or process phase generates or modifies certain artefacts. As mentioned

above, not all the process steps are needed for all projects but every project should define

what process phases are needed and the corresponding artefacts. Every project should

define for each process phase:

(i) pre-conditions or entrance criteria

(ii) objectives and participants

(iii) artefacts created and modified and who is responsible of them

(iv) tools, standards, guidelines, rules etc. to be used, and how they would be

used

(v) post-conditions or exit criteria for the process phase. Such post-conditions

need to include quality gates. This will prevent that a process steps ends

without the necessary exit conditions satisfied. Such quality gates allow us

to have a fine control over the quality of the output artefacts.

It is not easy to specify every sub-process or artefact because some artefacts occur in

more than one process phase, and all such phases may modify or refine the same artefact.

For example, the same class diagram for the INF process may be modified by domain

modelling, detailed design etc.

We also need to define a generic process model i.e., an abstract representation of a

software process, which can be used in many similar projects and organisations, sharing

 41

common properties and characteristics (Dermiame et al, 1998). Classical life-cycle

formalisations are examples of generic process models. Later, every organisation and

project will carry out a process model customisation refining a generic process model to

tailor specific needs. There are several levels of customisation. A customised process

model is more detailed and is usually derived from a generic model taking into account

specific local characteristics, e.g. the application domain. An enactable process model

defines the process model to be followed by an organisation and an enacting process

model is the model in place, supporting the actual project (Dermiame et al, 1998).

For the definition of the generic process model and its customisation, we have followed

the approach by Satpathy et al (2002; 2000). Table 3.4 gives an example of further

customisation from the generic model, where different criteria of each process step are

defined. Further customisation will be necessary to create the enacting process model.

 42

Req auth Preconditions: Global requirements are collected

Post-conditions: UC model relevant for authoring created
Objectives: Identify UC for authoring from the overall requirements
Artefacts: UC Model for authoring
Tools: UML toolkit
Standards: UML
Roles: Requirements engineer
Quality gate: Req for authoring is analysed for consistency, completeness, generality etc.

Dom auth Preconditions: UC model for authoring completed
Post-conditions: A class model for authoring created
Objectives: Identify classes and relationships relevant for authoring
Artefacts: Authoring Domain Model
Tools: UML toolkit
Standards: UML
Roles: Author
Quality gate: Class model is analysed against the requirements in Req auth

Nav auth Preconditions: Authoring Domain Model created
Post-conditions: Use model relevant for authoring has been created
Objectives: Obtain a navigational model
Artefacts: Navigational model
Tools: UML toolkit
Standards: UML
Roles: Author
Quality gate: Navigational model is analysed for consistency and completeness

UI auth Preconditions: Navigational Models have been created
Post-conditions: User Interface models relevant for authoring has been created
Objectives: Describe how the navigational structure is presented to the user
Artefacts: UI presentation diagrams. Mock-ups etc.
Tools: UML toolkit
Standards: UML
Roles: Author
Quality gate: presentation diagrams, mock-ups, storyboards are analysed against UI requirements

Impl auth Preconditions: UI Models have been created.
Post-conditions: Use model relevant for authoring has been created
Objectives: Implement contents (pages, sounds, pictures, etc) and links
Artefacts: HTML pages, XHTML, XML and XSL documents, JavaScripts etc.
Tools: HTML editors, IDE (Integrated Development Environments) etc.
Standards: HTML, XML and related standards
Roles: Author, designer, media developers
Quality gate: Web interface and pages are checked against the requirements.

Test auth Preconditions: The implementation of the authoring is concluded
Post-conditions: The authoring components are tested and tests report created
Objectives: Perform usability, integrity and syntactic testing
Artefacts: Checklists, test reports
Tools: HTML Analysers, Client-side scripts analysers etc.
Standards: N/A
Roles: Testers, authors
Quality gate: Web pages and the Navigational model are checked against broken links, edge coverage
etc.

Table 3.4 Process Customisation

 43

3.5 Description of the Individual Process Phases

We will discuss each of the process step of the parallel framework though a running

example. Our example will be a Web application called SEISN (Software Engineering

and Information Systems Network).

3.5.1 The SEISN Website

The SEISN is a forum for academics and industrial practitioners in the area of software

engineering. The network provides a forum for colleagues in both the computer science

and management disciplines to discover links between academia and real-life problems.

The Web site http://www.seisn.rdg.ac.uk/ is a platform for communication between the

SEISN members and any visitor who wants to know about the SEISN activities.

3.5.2 Requirements Capture and Preliminary Analysis

In the proposed Parallel Framework, the starting point of the Web development process is

a set of user requirements (Req). In UML, these are expressed in terms of high-level use

cases and scenarios (Cockburn, 2000), i.e., the use cases at the Req stage are usually at a

higher level; such use cases and scenarios are to be separated into two groups called

Reqauth, the requirements of the authoring path, and Reqinf, the requirements of the

infrastructure path.

For the SEISN example, Table 3.5 describes some high-level requirements before our

splitting approach. We also identify who the actors are in Figure 3.2. An actor’s model is

a necessary before obtaining the use cases from the requirements.

 44

ID Req. description
#1 Visitors should be able to download meeting minutes in HTML or MS Word format.
#2 Visitors should be able to book on-line in order to attend the next workshop
#3 Users should be able to access a mailing list with information of news and related events.
#4 Visitor should be able to download presentations in several formats (pdf, word)
#5 The Web site should have a search facility
#6 A map site should be available

Table 3.5 Requirements of SEISN Example

U ser

V is itor A tte nd e e O rg anizer

Figure 3.2 Actor’s Diagram

Our claim is that any such high-level use case can be split into relatively low-level use

cases such that the low-level descriptions can be put either into the Reqauth or into Reqinf.

We illustrate this through an example. Consider the use case (UC): book for a workshop.

This high-level use case involves (i) the user fills in a registration form and then (ii)

commits the registration. A message is sent to acknowledge the registration and a receipt

may be generated in the process. Now we are in a position to divide this use case diagram

into low-level UCs and scenarios such that some of them fall into the category of Reqauth

and the others into the category of Reqinf. For example, the high-level use case book for a

workshop can be broken down into the following lower level of use cases:

(i) display the registration form and let the user complete it and submit it

(ii) the system validates the user inputs

(iii) the system generates positive or negative responses

(iv) the system updates necessary databases and generates a receipt

 45

It can be seen that the use cases (i) and (iii) belong to Reqauth; whereas (ii) and (iv) belong

to the Reqinf. Figure 3.3 (A) represents the high-level UC for our current example. Its

separation into low-level UCs and scenarios are shown in Figure 3.3 (B).

Our claim is that any high level UC can be broken down such that their division into

AUTH part and INF part is possible. This is so because the simplification process can go

on, possibly repeatedly, until the simpler form of use cases/scenarios fall into one of the

categories.

User Booking for a Workshop

A - High Level UC

Verify user details Generate response

Modify DB

User Fill up/ed it
 registration form

Authoring Use Cases

B - Refined UCs

Inf Use Cases

Figure 3.3 Example of the Decomposition of a High Level UC

As a further example, the UC Register for the next workshop can generate the following

scenario in Table 3.6, which can be divided into INF and AUTH as shown in Figure 3.4.

 46

USE CASE
Scenario

UC – Register for the next Workshop

DESCRIPTION Step Action
 1 The visitor opens registration page
 2 The visitor submits the booking form to the

organiser.
 3 Organiser receives the booking.
 4 Organiser evaluates the booking
VARIATIONS Branching Action
 5a Organiser confirms the booking.
 5b Organiser refuses the booking

Table 3.6 Example of the Use case/Scenario Register for the next Workshop

Fill up/edit form

Modify DB

Verify User Details

Generate Response

User
(from Actor Model)

Auth Inf

Figure 3.4 UC Register Workshop

Even at the user requirement level, some requirements can be clearly identified as

belonging to the authoring domain, and some other belonging to the infrastructure

domain. For example, the requirements related to languages (e.g., HTML, XML), the type

and number of different media used, the way the users can interact with them, support for

people with disabilities etc. fall into the authoring domain. Similarly, functional

requirements like financial transactions, data warehousing, CORBA application server,

and non-functional requirements like security, performance, scalability, caching etc.

mostly fall into the infrastructure domain. If some requirement is not immediately evident

as to which category it belongs to, we break this requirement, possibly repeatedly, into

sub-requirements until each sub-requirement can be put into one of the above categories.

To do this, we follow the use-case splitting approach as discussed in the previous section.

 47

3.5.3 Domain Modelling

At this level, we design the domain architecture in terms of packages. Such an

architecture is obtained from the use cases (which have already been separated into the

AUTH part and the INF part) and also from domain knowledge. The packages of the

authoring domain and those of the INF domain are linked by a special package called the

AUTH-INF interface. Figure 3.5 shows the overall architecture. The separation between

the authoring domain and the INF domain should be evident at this point.

Browse ServiceAdmin Service Search Service Booking Service

AUTH-INF
Interface

Custom Application
(Admin)

Archive DB

Auth

Inf

Figure 3.5 Overall Architecture of the Web Application

3.5.3.1 The Authoring Domain

The aim here is to identify entities for modelling the authoring requirements and

relationships between them. The authoring domain model must also provide information

for user navigation. For our authoring domain modelling, we follow the OOHDM. In

order to accommodate the authoring domain modelling in the UML, we follow the

approach by Baumeister et al (1999) who have extended the UML framework.

 48

Figure 3.6 represents the entities and relationships corresponding to the authoring domain

of the SEISN example. The diagram is self-explanatory; for instance, an archive is

composed of workshops and Technical papers. The workshops will consist of

presentations, and presentations are presented by authors and so on. All the entities from

the conceptual domain, which will be used to obtain the corresponding hypermedia

entities, are in turn used for navigation. Note that this model is a very simplified class

diagram which tries to incorporate the entities which are needed for authoring the Web

pages.

Author
areaOfExpertise

Presentation
title
abstract

1 1..n1 1..n

present

Visitor
(from Actor Model)

<<Actor>>

Attendee

Archivevisits TechPap
er

Organizer
(from Actor Model)

<<Actor>>

Workshop
date
title
location

Meeting Minutes
title
date
report Participant

name
affiliation

Figure 3.6 Authoring Domain Model

3.5.3.2 The Infrastructure Domain

This domain tends itself to more traditional design methods and conventional approaches

towards database modelling etc. Figure 3.7 shows the class diagram for the infrastructure

domain. In the diagram, the DB server class has (through aggregation) the database. For

designing the database, an entity relationship or ORM (Object Role Modelling) diagram

needs to be constructed (Halpin, 2001). Figure 3.8 shows such an ORM diagram.

 49

Service
(from Logical View)

QueryHandler DBServer
(from Logical View)

requests

Administrator
(from Actor Model)

DB

updates

Figure 3.7 Class Diagram for the Infrastructure Domain

WorkshopM eeting M inutes

Tech Papers

Author

Participant
has /is of

w rites /is w ritten by

Presentation

has /is of

attends /is attended by

w rites /is w riten by

Figure 3.8 ORM Diagram in the Infrastructure

3.5.4 Navigational Modelling

The purpose is to design how hypermedia objects are visited in a way that matches the

users’ needs. We use the approach by Baumeister et al (1999) for navigational design.

Starting with the Authoring Domain Model, the Navigational Class Model is obtained by

 50

removing classes not relevant to authoring. Relationships between classes are renamed in

the process. The navigational class model that we obtain from the authoring domain

model in Figure 3.6 is shown in Figure 3.9 where relationships are stereotyped as «link»

and classes as «navigation».

AuthorNav
<<navigation>>

MeetingMinutesNav
<<navigation>>

PresentationNav
<<navigation>>

1..n1..n

<<link>>

ArchiveNav
<<navigation>>

1..n1..n

WorkshopNav
<<navigation>>

1 11 1

<<link>>

1..n1..n

<<link>>

1..n1..n

<<link>> TechPaperNav
<<navigation>>1..n1..n

<<link>>

Figure 3.9 Navigational Class Model

From the Navigational Class Model, the Navigational Structure Model is constructed

through the addition of navigational classes like indexes, guided tours, index—guided

tours. Navigational contexts are also added to incorporate the information.

Figure 3.10 shows the navigational structure model, which represents the navigation from

the main menu. This diagram is obtained from the authoring domain to represent the

navigational aspects of the application. Note that Figure 3.10 represents an outline of the

complete navigational diagram for the SEISN case study where the UML package

notation represent contexts, i.e., packages are stereotyped as «navigational context».

 51

PresentationContext
<<naviagational context>>

MainMenu

ArchiveIndex
<<index>>

ArchiveContext
<<naviagational context>>

WorkshopContext
<<naviagational context>>

RelWSIndex

byRelatedWS

WSQuery
<<filter>>

IndexWSQ
uery

byTitleWS

MeetingMinutesContext
<<naviagational context>>

byWSMeetMin

PresentationInWS
<<index>>

byWSPresentation

AuthorContext
<<naviagational context>>

TechPaperContext
<<naviagational context>>

byPresentationAuth

AuthIndexTP
<<index>>

byNameAuth

TPIndexAuth
<<index>>

byRelatedTP

TPQuery
<<filter>>

TPIndex
<<index>>

byAuthorTP

TPIndex
<<index>>

byDateTP

WSIndex
<<index>>

byDateWS

PresIndexAuth
<<index>>

byAuthorPresentation

AuthNameIndex
<<index>>

byTPAuth

Figure 3.10 Navigational Structure Model

3.5.5 Interface Design

Hypermedia elements such as nodes, links, menus, indexes, guided tours etc. are needed

to design the user interaction with the application. This step shows how interface objects

(e.g., windows or screens, pictures, sounds etc.) compose the user interface and their

 52

behaviour. Such objects map to navigational objects (refer to Figure 3.10). Note that

many interface designs are possible with respect to a single navigational model.

3.5.5.1 UI Authoring

UI authoring represents which GUI objects compose the actual user interface and how

they interact with each other and with the system. UI authoring is created from the

navigational models and navigational contexts. We modify the approach taken by

Conallen (2000) for the design of the authoring interface from the navigational structure

model. We illustrate our approach through two examples.

Figure 3.11 considers the navigation in which we intend to find all related workshops in

relation to a given workshop. Assume we are at a search page from where we fill up a

form-page. Then a query is generated from the authoring domain. However, the answer to

the query lies in the INF domain. So a query is submitted to the AUTH-INF interface. We

assume that the interface will provide us with the answer. Such details we will discuss

later. Once the answer is obtained, the JSPServer builds up the page with appropriate

format for display. Figure 3.11 shows the whole scenario where SearchAllRelatedWS and

WSList represent Web pages, FormPage a Web form and JSP server a dynamic page.

 53

callToInterface

searchAllRelatedW
S

WSList

FormPage JSPserver

<<build>>

<<submit>>

AUTH-INFInterface
(from Logical View)

Figure 3.11 Search for Related WS

Figure 3.12 shows the UI authoring design for the navigation ‘display all technical papers

in the archive by date’.

WSContext AllTechPaperList

AllTechPaperSer
ver

<<link>> <<build>>

AUTH-INFInterface
(from Logical View)

callToInterface

Figure 3.12 Display All Technical Papers

 54

3.5.5.2 UI Infrastructure

Although the UI is always part of the authoring process, there may exist other type of

components like applets or ActiveX which can provide GUIs (Graphical User Interface).

The Web browser executes such components automatically when a Web page is loaded

providing an interface through which a user may interact. Although this approach

provides many benefits such as easier deployment, it does not have the generality of

hypermedia capability. Their design is not of much interest within the context of the

present discussion since such components do not use the Web technologies.

3.5.6 Detailed Design

3.5.6.1 Detailed Design Authoring (AUTH)

By now, we have most of the models required – navigational structure diagram, UI

authoring diagrams etc. – which will be used to design the layout of static and dynamic

HTML or XML pages. All the queries which will be made to the AUTH-INF interface are

obtained, and also the format of the queries.

To implement the authoring, technologies include not only HTML and XML (with their

editors) but also numerous technologies for creating dynamic pages; for example,

JavaScript or VBScript for creating dynamic pages on the client-side and JSP (JavaServer

Pages), ASP (Active Server Pages), PHP etc. for the server-side. In our methodology,

these pages must not refer to any low level calls like establishing a connection with a

database etc. Such calls must be at done a high level where technical details are hidden.

The AUTH-INF interface should take care of the translation of the high level calls to low

level calls.

 55

3.5.6.2 Detailed Design Infrastructure (INF)

The INF design involves generation of sequence diagrams, completion of the class

diagram, data base design using the entity-relationship diagram. However, since such

designs are very much similar to the design of conventional applications, we will not

elaborate them here. However, such a design approach must take into account of the

AUTH-INF interface meaning that this is the only interface for utilising the services

offered by the infrastructure part of the application.

3.5.6.3 AUTH-INF Interface Design

This interface can be seen as a server to the authoring part of the application. It will have

operations which will be called by the authoring parts. The implementation of these

operations will utilise the services offered by various components in the infrastructure

part of the application. The idea is that tags from server pages (for example JavaServer

Pages –JSP–) trigger methods in classes in the AUTH-INF interface, which in turn will

call methods in the classes in INF part. It can be implemented through the use of Proxy

and Façade design patterns (Gamma, 1995). The Proxy provides a surrogate for a remote

object through which access to the remote object can be made. The Façade pattern helps

in encapsulating low-levels calls and data from several classes into one single class.

The Figure 3.13 shows a sequence diagram which makes the importance of the AUTH-

INF interface clear. Figure 3.13 shows the sequence diagram for the UC ‘Searching for

an entity in the database’. In this step will be necessary to define the actual interface

between both paths of the UC defined previously in accordance with the architecture

defined.

 56

 :
AUTH-INFInterface : User :

searchAllRelatedWS

 : WSList

fill up form

 :
AUTH-INFInterface

 : DBFacade : DB

Figure 3.13 Sequence Diagram to Represent Interaction between both Paths

Figure 3.14 shows a generic architecture of a Web application, usually divided into

layers. The data layer stores the physical data required by the application. The data

access layer provides a logical view of the physical data and the application layer

implements the business logic. Client applications interact with the Web application

interface. The interface is responsible for receiving incoming messages, parsing such

messages and dispatching the request to the appropriate infrastructure component. The

interface is also responsible for sending the responses back to the client.

B
row

ser

Interface

A
pplication Facade

A
pplication

D
ata A

ccess

Physical D
ata

Figure 3.14 Generic Web Application Architecture

This generic architecture can easily incorporate our AUTH-INF interface approach. A

request from the AUTH part can be transferred to the AUTH-INF interface by making a

 57

local procedure call, and then the interface can interact with the appropriate Web service

listener.

3.5.7 Implementation

The detailed design is used for the implementation of contents, graphics, scripts,

databases etc. using appropriate technologies. Our Parallel Framework follows the MVC

(Model-View-Controller) pattern (Gamma, 1995), which can be implemented using Web

services and other current Web technologies. Web services (Curbera et al, 2002) are

building blocks for constructing Web applications based on Internet standards. The most

important feature is that Web services allow us to create interfaces and establish

communication between components using open standards such as HTTP and XML, i.e.,

the interface is specified in WSDL (Web Services Description Language), and SOAP

(Simple Object Access Protocol) is a protocol for exchange of information between

components. Current technologies for implementing Web services include Microsoft’s

.NET and Sun’s Java 2 Enterprise Edition (J2EE) (Singh and Johnson, 2001). Such

applications extend the standard two-tiered client and server model providing fully

scalable solutions. As an example, J2EE allow us to implement Web applications and

Web services using a range of technologies such as Servlets, JavaServer Pages (JSP)

pages, custom tags, JavaBeans etc. The choice of such technologies needs to consider

many factors which include in addition to the technical properties, many human factors

such as organisation’s experience and knowledge, partnerships, cost etc.

3.5.8 Integration and Testing

Testing of the Web application involves independent testing of Implauth and Implinf and

finally the testing of their integration.

Testing auth consists of testing related to the authoring such as:

 58

• Compatibility Testing: Different browser versions and multiple operating

systems associated with the Web application are tested for compatibility. Syntax

checking is done over the HTML, CSS, and XML codes.

• Navigation Testing: Navigational paths are checked for correctness. It also

involves checking of the various accessibility methods to the information.

• Testing Client-Side Functionality: Checklists for testing forms, client-side

scripts (JavaScript and VBScript) or client-side objects such as Java applets and

ActiveX controls.

• Usability: Various usability criteria are checked depending on the requirements.

Checking that the contents (information) are syntactically and semantically correct

and their granularity.

Testing inf mostly involves the traditional testing approaches; however, more emphasis is

given to security checks especially when it is an e-commerce application.

Some important tests need to be done after integration of Implauth and Implinf through the

implementation of AUTH-INF interface. The following are the prominent ones:

• Load Testing: It involves simulating how users will use the Web application in

the real world.

• Acceptance Testing: We need to make sure that the Web application fits the use

for which it was intended. One way to do this is by setting up a beta test for the

Web application.

3.6 Feature Analysis

In this section we analyse and compare the most important hypermedia models and where

our methodology deviates from them or borrows their concepts. Most of the existing

hypermedia and Web methodologies consider the following activities in different ways

(Lopistéguy et al, 1997):

(i) definition of the application domain model (e.g. UML models, E/R models

etc.);

 59

(ii) definition of the hypermedia domain model (e.g., nodes, links, landmarks,

guided tours etc.)

(iii) definition of the relationships between application and hypermedia domains.

In industry, they are often referred to as the front-end (hypermedia domain) and the back-

end (application domain). Therefore, we will take these three activities when analysing

hypermedia methods as well as our parallel framework.

The Dexter model is the most referenced model because it provides features that many

hypermedia systems do not have even at present, e.g., it is capable of modelling multi-

way links and composites that are not supported by current Web applications. Therefore,

we should take it into account when updating current UML profiles for modelling Web

applications. For example, features such as bidirectional links will be introduced by the

XLink and XPath standards and new stereotypes can use the Dexter terminology.

Although HDM is defined as a design model, it implicitly defines activities to create the

model, so it could be considered as a design method (Lowe and Hall, 1999). Its

importance lies in being the base for the most important hypermedia methods (RMM and

OOHDM). HDM model extends a domain defined in a similar way to E/R model with

hypermedia features (entity, component, perspective, unit, and relationship). The HDM

hypermedia model is fixed and not enriched. The mapping between the domain and the

hypermedia navigation is also fixed, e.g., units relate to nodes etc.

The OOHDM method is based on HDM, but extends it by applying object oriented

concepts. OOHDM divides the system in a way that can address separately domain

aspects, hypermedia aspects and navigational semantics. This allows different linking

topologies (according to the user profile) over the same domain and different interfaces

over the same navigational schema. In fact it is usually extended with some primitives

such as attribute perspectives. The hypermedia model is defined by means of concepts

based on classes: node, class of node, link, link class, anchor, navigational context,

navigational classes and access structures. However, these extensions are based on a

proprietary notation. The mapping between the application domain and the hypermedia

 60

domain are suggested but they are not mandatory. OOHDM only focuses on design. As

Baumeister et al, we have used their process steps to define the authoring path in our

parallel framework.

Although RMM defines a series of steps in the life cycle of the application, it focuses on

the design keeping open aspects as requirements etc. The domain is specified by means of

the E/R model, which is enriched with hypermedia features to create the hypermedia

model. Therefore, it merges the domain and hypermedia models so the correspondences

are fixed and it is not possible to extend hypermedia elements with specific capabilities.

Moreover, this method do not support different perspectives over the same domain. As a

consequence, as stated by the authors, RMM is only suited for applications with a regular

structure of the domain and where there is a frequent content modification of the

database. This method has an associated modelling tool, called RM-Case (Díaz and

Isakowitz, 1995).

The interface modelling of Baumeister et al uses the UML notation for representing

physically the placement of the interface objects. For example, they use nested classes to

represent where the visual object should be located, i.e. a class stereotyped with

«presentation class» contains other classes (e.g. «picture», «link» etc.) to represent the

relative position within the node of such objects. We believe that this approach does not

comply with the purpose of UML. First, in our opinion the authors are using UML to

represent mock-ups of the interface windows; moreover, the relationships of those classes

are not shown using their notation. Conallen approach is more convenient for this task;

hence we have used this approach for the interface design.

Conallen models Web Applications without taking into account any traditional

hypermedia methodologies and focuses on the implementation. Therefore, his proposal

loses some of the hypermedia characteristics such as navigational modelling or support

for customisation. As a consequence, these stereotypes are appropriate to model layout

and implementation aspects, but not for defining the navigation structure of the Web

application. An interesting Web architecture is presented in this work. Conallen treats

 61

HTML pages (and client and server scripts) as pieces of code that are modelled using

UML that can be used to replace the step in the user interface design by Baumeister.

Our framework intents to provide a way to clearly differentiate both the hypermedia and

application domain in a more flexible way than previous methods. It uses many of the

ideas provided by previous methods, extending and adapting them to current standards.

For example, the Parallel Framework covers the whole software development life-cycle

from requirements to testing in line with current generic process models. It also uses the

UML to specify all hypermedia artefacts. With the exception of Conallen and Baumeister,

hypermedia methods propose their own notations for all or for part of their models, so

they do not facilitate the use of standard modelling tools.

Figure 3.15 summarises how and where the Parallel Framework utilises the existing

OOHDM design method and the notations of Conallen (1999). We follow the OOHDM

process steps after the requirements are separated into the requirements of authoring and

the infrastructure. However, we have modified the OOHDM notation so as to describe the

artefacts in UML. We have used the notation of Baumeister et al for modelling the

navigational steps and that of Conallen for implementation.

Reqauth

Reqauth
Domauth
Navauth

Implauth

Interface

Infrastructure

Baumeister et al

Notation

OOHDM

Method AuthoringDomain

Conallen

Relationships between Domain and Authoring

Requirements

Figure 3.15 The Use of Existing Models in the Parallel Framework

 62

3.7 Discussion

The main benefits of our methodology are:

• Modular design. The designs of the authoring and that of infrastructure are like

two independent components of the Web application, both interacting with each

other through the AUTH-INF interface. The benefits are that both components can

be developed independently, possibly by different developers. It is worth to note

that our methodology provides a higher level approach towards modular design of

Web applications; and further modularisation can be done within authoring and

infrastructure components.

• Better Maintainability. Any fault in a Web application can be immediately

identified whether it belongs to the authoring part or to the infrastructure part.

This helps in corrective maintenance (Fenton and Pfleeger, 1997; Satpathy et al,

2002b). If we want to add a new use case, by following our methodology, the

same use case can be partitioned into AUTH and INF parts. Therefore we get a

better picture of what to add and where. Furthermore, our methodology

encourages a cleaner design structure, and better documentation improving

perfective maintenance. Since the AUTH part does not directly interact with the

INF part, it is possible to upgrade the INF component whilst the authoring

component remains unchanged and vice versa. Therefore, adaptive and preventive

maintenance are improved.

• Model Driven Methodology. Our methodology is model driven in the sense that

we encode all the artefacts during our development process in UML notation.

Therefore, standard commercial tools like Rational Rose (Rational, 2000) can be

used to develop and maintain the artefacts of the application. In this sense the

artefacts of the application can be easily understood and modified by new

developers. Furthermore, documents can also be better maintained.

• Ease of Integration/Testing. In the integration phase, the authoring and the inf

components are integrated to build an Web application. However, in our

methodology, integration is nothing but the correct implementation of the AUTH-

INF interface. Therefore integration effort is very much localised. Furthermore,

 63

testing also becomes easier. Since the individual components and the interface can

be tested independently, testing is to some extent compositional.

• Better Distribution of Development Skills. INF and the AUTH components of a

Web application have their own idiosyncrasies, and so, they require different

skills. Therefore, it is better to isolate and allocate them to developers with

appropriate skills. That is what our methodology advocates.

In view of the above benefits of the Parallel Framework, we are of the view that, this is a

significant contribution to the field of Web engineering.

Our study has also the following limitations.

• The SEISN website as it is now is a static one; therefore, it cannot be a considered

as a typical example. However, the design and implementation of this website has

given us reasonable amount of experience of the issues involving Web

development. We intend to apply our methodology over larger Web applications

(i.e. with complex infrastructure component) in future.

• In our research, we have not dealt directly with issues such as security and

performance. These issues, although of primary importance, were not within the

scope of our short study. The degrees of interactivity, maintenance and traffic in

the SEISN Web site were also low. We are of the belief that our approach is

scalable as we have already analysed the uses cases of large applications and

separated them into UCinf and UC auth. Splitting is a major task and our experience

is that the rest of the development will not create much problem with the

exception of testing when both are integrated. This needs further research.

3.8 Conclusions

In this chapter, we have discussed a parallel framework for the development of Web

application which separated, starting from the requirement analysis phase, the

development of the authoring and the infrastructure component of the Web applications.

The individual components are developed independently and then they are integrated to

 64

build the whole of the Web application. The approach towards the design is very much

compositional. We have also demonstrated the effectiveness of our methodology through

the running example of a small Web application. However, the efficacy of our

methodology needs to be validated by using it to build large scale Web applications. The

benefits of our methodology are many. The prominent among them are:

(i) Modular design facilitates better maintainability.

(ii) The methodology promotes a cleaner architecture of the design.

(iii) The whole development process is carried out in the UML framework.

So far, we have discussed the problems with current approaches to Web development and

presented a meta-model to address the issues concerned. Constructing complex large

scale Web applications is a difficult task, and efficient tool support can only help

developers to meet the challenge. In the remaining chapters, we will discuss such a tool

for managing Web projects. In addition, we will discuss the assessment and improvement

of Web processes. Such assessment and improvement approaches are essential for

enhancing the quality of Web processes and applications.

 65

Chapter 4

Development of a Project Management

Tool

4.1 Introduction

Development of Web applications in particular and of any software in general, requires

proper management of the various processes and the associated artefacts such that the

final product is developed ‘on time and within budget’ and that it must satisfy the desired

quality needs. Project management involves the selection and systematic application of a

number of software engineering principles and techniques. Improved techniques

concerning estimation, tracking, data interpretation etc. will lead a project closer to its

goal. In actual management settings, the manager has to take decisions in relation to an

approximate and often abstract picture of the project environment. The fact that much of

the information about past projects is usually unknown or uncertain makes it more

difficult to ascertain the final project parameters. Moreover, the available data comes

from multiple sources and the integration of all such data may not be easily performed

with the available software tools.

In this chapter we describe the design and development of a proof-of-concept project

management tool which provides an environment where project management and quality

 66

aspects are given due importance. Current project management tools mostly deal with

time, tasks and resources. Note that, currently, our tool does not have its full capability.

At this stage, the tool can be seen as a proof of research ideas.

4.2 Rationale for the USEGESOFT Tool

The motivation behind USEGESOFT, our new project management tool, can be

summarised as follows:

• Project management tools usually deal with tasks, time and resources but do not

adequately address quality issues. Our tool stores and manipulates quality

information for making important managerial decisions. By quality we mean both

product quality as well as process quality. Current tools mostly address product

quality, not process quality. Our tool links process quality with product quality by

taking as reference some recent quality models like the TGPM (see Section 4.2.2).

Information about this relationship is crucial for making process improvement

decisions. Addressing quality aspects is of paramount importance to Web

applications (Chapter 1: Section 1.3). Therefore, our tool will be useful for

handling Web applications and processes.

• For performing process assessment and process improvement, it is necessary to

have a clear understanding of the process details (Fugetta et al, 1998). Without a

clear knowledge of the structure of the process, process improvement will look

like black-box actions. Our PMT defines process structure details in a graphical

notation (Rodriguez et al, 2001b; Satpathy and Harrison, 2002).

• The subprocesses of a development process usually have their specific

characteristics. Our PMT can address the quality needs of individual processes by

using instantiated process models which are obtained from the generic model

TGPM.

• USEGESOFT incorporates new modelling techniques like Bayesian networks and

data mining.

 67

4.3 Requirements for our Project Management Tool

The idea of this tool is to provide support for basic software project management

activities and to create a platform for research in these issues. From the literature, we can

summarise software project management activities into project inception, execution and

wrap-up (Jalote, 2002).

Therefore, the USEGESOFT should provide support to handle different project entities

and activities during project inception including:

• Definition of processes, project structure, resources, milestones, temporal

sequences, quality models and quality objectives.

• Calculation of cost and effort estimates.

• Risk management.

During the execution of the project, the USEGESOFT tool should support activities for

controlling, measuring and evaluating activity performance towards planned objectives

including:

• Project tracking and monitoring.

• Quality metrics collection and monitoring.

• Project adjustments.

At the end of the project, the USEGESOFT tool should give support for post-mortem

analysis and reporting activities. Examples of such analysis are:

• GQM based process assessment and improvement

• Prior analysis of improvement actions

Among the non-functional requirements, it is important to provide an intuitive and

friendly graphical user interface. However, other non-functional requirements such as

performance, security and internationalisation have not been taken into account at this

stage. These issues will be important in subsequent releases of our project management

tool.

 68

4.4 Related Work

4.4.1 Project and Quality Management Environments

4.4.1.1 MILOS

The MILOS (Minimally Invasive Long-term Organisational Support) project (Maurer et

al, 2000) is an environment for modelling, planning and execution of software

development processes. This system follows a dynamic model for coping with changes by

providing a notification mechanism which tracks product changes and informs the

concerned people of the change. There are four major components in the MILOS system:

(i) the resource pool; (ii) the process model; (iii) the project plan and (iv) the workflow

engine. Although this system copes with processes and products related to the different

processes, it does not cover quality aspects.

4.4.1.2 SQUID

SQUID (Bøegh et al, 1999) is a metric based analysis environment which can be used

during project management. It handles some important aspects of project management.

The tool identifies what are the metrics to be measured, their target/expected values and at

what point they should be measured. After performing measurements, it outputs an

analysis report like whether the deviations from expected values were acceptable or not.

Consistency of the analysis is ensured by projecting the current attributes/values against

past but similar projects. The Squid Data Model (SDM) and the Squid Quality Process

(SQP) together provide a rigorous environment for identifying, defining, collecting and

analysing quality measures.

The SDM identifies essential characteristics of a development process which includes the

development model, and identification of model objects like activities, deliverables and

review points; quality measures of the deliverables are taken at review points. Different

parts of a product, SQUID calls them product portions, have different quality

 69

characteristics. The measures associated with the quality attributes can have actual values,

estimated values and target values. In addition, SQUID prescribes measurement protocols

which specify the conditions under which measurements should be taken.

The SPM is composed of the following four steps:

(i) quality specification: It involves selection of a quality model like the ISO

9126, identification of product portions, their quality requirements (external

attributes) based on the selected quality model, targets values of the external

quality attributes and feasibility analysis of the targets by comparing them

against past projects.

(ii) quality planning: Different development processes may be adopted for

different product portions. Quantitative target values are assigned to internal

quality attributes of the deliverables and they are associated with the

concerned activities.

(iii) quality control i.e.: Progress is monitored throughout the development.

Measurements are taken at review points and deviations from target values are

identified. Software components with unusual values are identified in the

process.

(iv) quality evaluation : Based on the measures taken, the actual values of the

external attributes are compared against their target values and any shortfall in

the quality requirements of the product portions are reported.

4.4.1.3 MiniSQUID

Kitchenham et al (2001) have proposed a standard for storing project data and their

subsequent analysis. Software datasets which may come from multiple sources need to be

trustworthy, comparable and repeatable. The proposed standard centres around the notion

of storing adequate amount of metadata along with measured values (or datasets) so that

the datasets when analysed in conjunction with the stored metadata, it will minimise the

risk of misanalysis. They have proposed an Entity-Relationship data model which allows

complex software data sets to be modelled and their data values stored. They have also

 70

developed a prototype tool called MiniSQUID which supports most of the features of

their standard.

4.4.1.4 SEGESOFT

We developed SEGESOFT, a project management tool (Tuya et al, 2001), which

integrates simulation and dynamic modelling, knowledge discovery, quality models etc so

that a manager can obtain and manipulate a broad spectrum of information associated

with various projects. We have also improved this tool to produce the Upgraded

SEGESOFT (or USEGESOFT). The detailed discussion on USEGESOFT is the subject

matter of this chapter.

4.4.2 Products and Processes Quality Models

By a software process we will mean any software activity associated with the

development and maintenance of software: from requirement analysis through to

maintenance. A product is an entity, which a process (e.g. any software activity) produces

as output. Products may also be fed to processes as inputs.

One of the important motivations behind USEGESOFT is that it must provide a

framework for metric based software engineering practices. Therefore, quality models, of

process as well as of products, need to be a part of the tool design. Since TGPM is the

reference process model of USEGESOFT, we will discuss it in detail and we will briefly

outline a few important quality models here.

4.4.2.1 The Typed Generic Process Model (TGPM)

4.4.2.1.1 Products and Processes

Satpathy et al (2000) in their description of TGPM (Typed Generic Process Model) give

types to products and processes. For example, Table 4.1 enumerates some of the products

and their types. Product rd belongs to the set of requirement documents, spc belongs to

 71

the set of specifications and so on. TGPM models the set of requirements by the set

PRE_ELICIT_REQ. TGPM defines a process as a relation from a set of products to

another set of products; the set of relations from m input products to n output products is

denoted by:

IP1 × IP2 ×… × IPm ↔ OP1 × OP2 ×… × OPn,

where IPi and OPj are the types of the i-th input product and the j-th output product

respectively. Table 4.2 shows the types of a few processes. A process may have many

type definitions. For example, if an organisation develops formal specifications from

requirements only, then the type of the formal specification process (FS process) is:

RD ↔ FS. On the other hand, if an organisation (in relation to a project) also decides to

interview the users for developing a FS, then the type of FS process would be:

PRE-ELICIT-REQ × RD ↔ FS.

req: PRE-ELICIT-REQ // Set of pre elicitation requirements
rd: RD // Set of requirement documents
spc: SPC // Set of specifications
des: DESIGN // Set of designs
doc: DOC // Set of documentations
impl: IMPL // Set of implementations
Des: DESIGN // Set of designs

Table 4.1 Types of Some Products

Requirement analysis: PRE-ELICIT-REQ ↔ RD
Specification: RD ↔ SPEC
Formal design: RD × FS ↔ FD
Maintenance: RD × SPEC × DES × IMPL × DOC↔ RD× SPEC × DES × IMPL × DOC

Table 4.2 Types of Some Processes

4.4.2.1.2 The Internal Process Model

TGPM assumes that the internal structure of a process is well defined. A process may be

composed of subprocesses. A subprocess is also a process in the sense that it takes a

product set as input and gives out a product set as output. Whether a process should be

 72

decomposed into subprocesses or not is decided by the process designer. When

considered from a process point of view, the inputs and outputs of subprocesses are called

intermediate products. A subprocess which is not decomposed further is called an atomic

process. An atomic process is defined as a set of process steps, like the steps of an

algorithm. The steps usually do not have rigorous definitions: a process executer usually

has degrees of flexibility while executing them. Figure 4.1 shows the internal details of

the testing process. An organisation is expected to have its own definition of the internal

structure of a process.

In Figure 4.1, the testing process takes an implementation (a set of program modules) and

a set of test cases as input and produces a tested implementation and Test results as

output. As shown in the Figure 4.1, the testing process consists of two subprocesses: unit

testing and integration testing. Unit testing consists of two atomic processes: black box

testing and white box testing. Integration testing is an atomic process. Black box testing

and white box testing can proceed in parallel, both producing their respective test results.

For simplicity, we will consider the only scenario where the implementation passes the

test cases. After the unit testing, the program modules are integrated by the integration

process. Since the process of integration is not a part of the testing process, following the

notations of TGPM, it has been shown outside the scope of the testing process. The

integrated modules and the test cases are then fed to the subprocess integration testing

which produces a tested implementation along with test results.

There are three aspects to the steps of an atomic process: what are its process steps, who

will execute those process steps and how they will be done? An atomic process is defined

in terms of process steps and each process step is in turn defined by a set of flexible

guidelines. Further, some resources like supporting tools may be needed to execute the

process steps. All of these contribute to the ‘how’ part of the questions. Each atomic

process, in addition to its input and output product sets, will have its starting and ending

conditions. They correspond to the ‘what’ part of the questions. The ‘who’ part will be

taken care of by a person or some automatic tool. ISO/IEC 12207 (ISO, 1995) follows a

similar (though less formal) approach to process modeling.

 73

Black Box
Testing

White Box
Testing

 UNIT TESTING

Integration
Testing

 TESTING

Intermediate Products

Integration

Figure 4.1 Intermediate Products in the Testing Process

The TGPM that we are going to describe is always viewed in relation to well defined

internal structure of processes.

4.4.2.1.3 The TGPM and its Instantiation

The TGPM is a generic process model, which could be instantiated to obtain the process

quality model for an individual process. The TGPM is defined in terms of eight factors:

Functionality, Usability, Efficiency and Estimation, Visibility and Control, Reliability,

Safety, Scalability, and Maintainability; each subfactor is in turn defined by a set of

subfactors. The definitions of the subfactors of TGPM can be found in (Satpathy et al,

2000). The most important aspect of TGPM is that it defines attributes from a dual

perspective. Consider, for instance, the understandability attribute. The two perspectives

are (i) the logical concepts of a process should itself be understandable to the process

executer and further (ii) the process should make its output product sets understandable.

When we consider the formal specification process, the method of creating the formal

specification and the formal specification language itself must be understandable to the

specifier, and further the specification process must make the formal specification

understandable to its users. In conclusion, any process assessment must consider such a

dual perspective. Of course since we are looking at product attributes from the process

 74

quality point of view, we may miss out some important product factors which are not

directly addressed by process quality factors. In order to alleviate this problem, the

TGPM uses major product quality models (like ISO 9126) as references while defining

our generic process quality model.

TGPM could be seen as a template with three parameters:

TGPM (input-product-set-type, output-product-set-type, application-domain)

The input product and the output product sets have been discussed earlier. By application

domain we mean whether it is a safety-critical application, a real-time application, a

business application etc.

The customisation of TGPM proceeds in two steps: (i) the substitution step and (ii) the

refinement step. In the substitution step, we substitute the parameters with their actual

bindings. Let us take the example of the FS process and let its type be: RD ↔ FS. The

substitution is illustrated by the expression:

TGPM [RD / input-prod-set-type] [FS / output-prod-set-type]

What the above expression signifies is that, all occurrences of the input product set in the

definitions of the factors and the subfactors in the definition of TGPM are substituted by

RD (requirement document). Similarly, all occurrences of output product set are

substituted by FS (formal specification). Thus, at the end of the substitution step, we have

a crude definition of each of the subfactors of the process concerned.

For the application-domain parameter, suppose we have a safety critical application.

Now, with the knowledge that we are dealing with a FS process in a safety critical

application, the refinement step refines the crude definitions that we have obtained after

the substitution step. The result then will be the customised quality model for the FS

process. As an illustration, consider the first part of the subfactor ‘completeness’. After

the substitution step, we obtain the following definition: the degree to which the process

 75

transforms all of the functionalities of the RD into the FS. In the refinement step we know

that it is the FS process and the application domain is the ‘safety critical application’.

Further FS process achieves transformation through specification; and at the RD level, a

functionality is understood by a ‘feature’. So the refined definition is: the degree to which

the FS process specifies all of the features (including the safety critical features) of the

RD in the FS.

The distinctive feature of TGPM is the dual perspective of a process attribute. In plain

terms, it says how good a process attribute is in relation to the process itself and then how

it is related to the output product(s) of the process and also to the end-product. This

duality point of view identifies certain process features such as (a) process faults, (b)

process understandability, (c) process scalability, (d) process reliability, (e) process

stability etc. These features were not properly addressed by any of the previous process

models.

4.4.2.2 ISO/IEC 9126

ISO/IEC 9126 (ISO, 1991) is a product quality model describing a generic model for

specifying and evaluating the quality of software products. The model isolates six factors,

called Functionality, Usability, Reliability, Efficiency, Maintainability and Portability;

and the quality of a product is defined in terms of the quality of the above factors. Each

factor may in turn be defined by a set of subfactors. The FURPS+ model (Grady and

Caswell, 1987) used by HP is quite similar to ISO 9126. Kichenham and Pfleeger (1996)

point out that the models like ISO 9126 have problems as regards to consistency and

completeness; i.e. the selection of quality characteristics and subscharacteristics are to

some extent arbitrary, and further, it is not clear as to how the low-level metrics

associated with the subcharacteristics are composed to obtain an assessment of high level

characteristics.

Focusing on product quality alone may not guarantee that an organisation will deliver

products of good quality as a result of software processes. So, based on an orthogonal

view that improving the quality of a process will deliver products of good quality, many

 76

models have been developed. Prominent among them are the CMM (Humphrey, 1992)

and ISO/IEC 9001 (ISO, 1994). Models like BOOTSTRAP (Kuvaja, 1994) and ISO/IEC

15504 – SPICE (ISO, 1998) are variants of the CMM. ISO/IEC 12207 (ISO, 1995) does a

classification of all processes associated with the software development and offers

general guidelines which can be used by software practitioners to manage and engineer

software. The scope of most of these standards covers an entire organisation.

4.4.2.3 Dromey’s Quality Framework

The ISO 9126 standard takes a top-down approach towards formulating a quality model

for software products; a set of high-level quality attributes are identified, and each such

high-level attribute is then decomposed into a set of low-level attributes. Dromey points

out that the relationship between the low-level internal attributes and the high-level

quality attributes is never well defined under ISO 9126; i.e. there exists a semantic gap

between the high-level and low-level quality attributes (Dromey, 1995, 1996). In order to

bridge this semantic gap, Dromey’s quality framework takes a top-down view and a

bottom-up view of software quality. A product has a structural form in the sense that it

can be decomposed into components and then components can be decomposed further

into sub components. This process may have to be repeated to reach at atomic

components. The entities at the atomic level have some quality-carrying properties, which

influence the high-level quality attributes of the product. For instance, giving meaningful

names to variables and subroutines influence the maintainability of the product. If any of

the quality carrying properties of a structure is violated, then this will lead to a quality

deficiency at the next higher level structure and therefore to a deficiency in the quality of

the product. Therefore, quality can be built into the software by ensuring that all the

quality-carrying properties associated with each structural form are satisfied. And hence,

detecting quality defects in software reduces to systematically checking whether, for each

structural form, any of the quality carrying properties is violated. Thus, Dromey’s model

makes the context of a high-level quality attribute transparent.

 77

Dromey takes the view that, we cannot ignore the process when addressing product

quality. Therefore, to ensure that quality-carrying properties of a product are adequately

addressed, the process must have a level of maturity.

One problem that we have observed with Dromey’s model is that he assumes that the

composition of components satisfies the compositional property which may not be the

case. If the composition is not compositional, then correctness of components may not

establish the correctness of the composition and therefore it must be addressed explicitly.

4.4.2.4 The Capability Maturity Model (CMM)

The SEI (Software Engineering Institute) has suggested the Capability Maturity Model

(Paulk et al, 1993; Humphrey, 1992) to classify software organisations in relation to the

processes adopted by the organisation. The CMM deals with the capability of a software

organisation to consistently and predictably produce high quality products. The model

defines five maturity levels: from Level 1 to Level 5. A maturity questionnaire assesses

the following three areas of the organisation: (i) organisation and resource management,

(ii) software engineering process and its management and (iii) the tools and technology;

and based on the assessment the model certifies that the organisation is at certain maturity

level. The model also identifies the weak areas (called Key Process Areas or KPAs) and

prescribes a set of guidelines; following those guidelines, an organisation can address

those areas and attain the next higher maturity level. Measurement, quantitative feedback

from the processes and continuous process improvement are some of the highlights of the

model. Figure 4.2 shows the five levels of maturity.

 78

Level 1:
Initial

Level5:
Optimizing

Level 4:
Managed

Level3:
Defined

Level 2:
Repeteable

Project management

Engineering management

Process discipline

Change management

Quantitative management

Process definition

Process control

Continuous process improvement

Figure 4.2 The CMM Levels

Level 1 – The Initial Level. At this level, an organisation typically has an unstable and

disorganised process. Success depends entirely on having a very good manager and an

experienced and effective software team.

Level 2 – The Repeatable Level. Organisations establish policies for managing a software

project and procedures to implement those policies. New projects are planned and

managed based on experience with similar projects but the internal processes are

unknown; i.e. they are like black-box processes. The KPAs at Level 2 include (Paulk et

al, 1993):

• Requirements Management

• Software Project Planning

• Software Project Tracking

• Software Subcontract Management

• Software Quality Assurance

• Software Configuration Management

Level 3 – The Defined Level. At this level, the standard process for developing and

maintaining software across the organisation is implemented. The KPAs at Level 3

include (Paulk et al, 1993):

 79

• Organisation Process Focus.

• Organisation Process Definition

• Training Program

• Integrated Software Management

• Software Product Engineering

• Inter-group Coordination

• Peer Reviews

Level 4 – The Managed Level. Software processes are instrumented with measurements,

which allow the evaluation of the projects’ software processes and products. The KPAs at

Level 4 focus on (Paulk et al, 1993):

• Quantitative Management

• Software Quality Management

Level 5 – The Optimising Level. At this level, the entire organisation is focused on

continuous process improvement. Software project teams analyse defects to determine

their causes. The KPAs at Level 5 cover (Paulk et al, 1993):

• Defect Prevention

• Technology Change Management

• Process Change Management

4.4.3 The Goal-Question-Metric Method

The Goal-Question-Metric (GQM) method (Basili et al, 1994; Solingen and Berghout,

1999) proposes a measurement method for assessing or improving the quality of entities

like products, processes or people. It starts with a set of business goals and the goals are

progressively refined through questions until we obtain some metrics for measurement.

The measured values are then interpreted in order to answer the goals. Existing

approaches choose a quality model from those that exist so as to generate the business (or

the primary) goals of the GQM formulation for any individual product or process.

 80

4.4.4 Application of Metrics in Industry

Application of Metrics in Industry (ami) (Kuntzmann-Combelles et al, 1996) combines

CMM and the GQM method, and the result is that it provides a complete framework for

process improvement. The ami approach is iterative, goal-oriented, quantitative, involves

everyone in the organisation and integrates necessary management commitment. It covers

the whole of the process improvement cycle. CMM or other standards like Bootstrap,

SPICE, ISO 9001 etc. are used to identify weak areas in the development process. This

information along with the business and environment specific objectives is used to define

some software process goals. The goals are validated and then refined into sub-goals. The

sub-goals are further refined into metrics and a measurement plan is made to collect data.

The data are then analysed and related to the original goal. Based on the data collected an

action plan may be made to improve the development process. New goals are then

defined and the cycle is repeated.

4.4.5 Techniques for Software Project Management

In our tool we use the following techniques and methodologies which are available in

literature.

4.4.5.1 Estimation Techniques

The basic COCOMO (Boehm, 1981) model calculates relationships between product size,

project effort and project duration. It predicts the total effort (eff) that would be necessary

to generate a source program of certain complexity. It is represented by the equation:
bLceff ⋅= , where eff is the effort in man months, L is the code size in KLOC, c and b are

constants dependent on the complexity of the problem. COCOMO defines that the

complexity of a problem can be organic, semi-detached or embedded. And the respective

values of c and b are given in Table 4.3.

 81

Complexity C B
Organic 2.4 1.05
Semi-detached 3.0 1.125
Embedded 3.6 1.2

Table 4.3 COCOMO Parameters

The intermediate and detailed COCOMO models make plans (effort and schedule

estimates) for each development phase of the standard software project using a set of so-

called cost driver attributes (with associated effort multipliers). The detailed COCOMO

model differs from the intermediate COCOMO model in that it uses different effort

multipliers for each phase of a project. The phase dependent effort multipliers yield better

estimates than the intermediate model.

4.4.5.2 Knowledge Discovery in Databases

The use of computational techniques and tools for extracting useful knowledge from

databases is known as machine learning or Knowledge Discovery in Databases (KDD). In

general, KDD techniques try to extract in an automatic way the information useful for

decision support or exploration of the data source (Fayyad et al, 1996). This will be

discussed in detail in Chapter 6.

4.4.5.3 System Dynamics

System Dynamics (Forrester, 1961) is a method for studying how complex systems

change over time where internal feedback loops within the structure of the system

influence the entire system behaviour. The application of system dynamics to software

projects provides the perspective of considering them as complex socio-technological

dynamic systems, whose evolution will be determined by their internal structure as well

as the relations established inside the working team. This allows the development of

dynamic models to describe the feedback structure of the system being modelled as well

as the mental process followed by project managers in making decisions. It is to be noted

that decision making has been traditionally based on a manager’s experience. The

 82

building of a dynamic model for a software project is based on the evolution of the

project. Therefore, the attainment of the project goals such as meeting the deadlines, a

project phase being within budget etc. depends on: (i) the initial estimations of the

necessary resources; (ii) the management policies to be applied; (iii) the characteristics of

project; and (iv) the characteristics of the organisation.

4.4.5.4 Bayesian Belief Networks

A Bayesian Belief Network (BBN) (Jensen, 1996; Fenton and Neil, 2000) is a directed

graph in which the nodes represent uncertain variables and the arcs represent the causal

relationship between the variables. Each node has a probability table, which stores the

conditional probabilities for each possible state of the node variable in relation to each

combination of its parent state values. For a node without any parent, such a table stores

the marginal probabilities for each possible state of that node. If the state of certain node

is known then its probability table is altered to reflect this knowledge. Such knowledge is

then propagated to determine the changed probabilities of (of all possible values

associated with) other nodes. Note that the initial probabilities of the nodes in a BBN are

obtained from expert judgment and/or past project data. In fact, tools are available to help

in the generation of BBNs from historical project data (Tiga, 2002; Cheng et al, 1997).

We will discuss BBNs in greater detail in Chapter 6.

4.4.5.5 GANTT, PERT/CPM, Earned Value Management System

Program Evaluation and Review Technique (PERT) or (Critical Path Method) CPM

charts depict tasks, duration and their dependencies using a network diagram consisting

of numbered nodes representing events or milestones linked by vectors representing tasks

in the project.

A GANTT chart is a matrix where the horizontal axis represents time and the vertical axis

lists all tasks to be performed (see Figure 4.3). Horizontal bars of varying lengths

represent the sequences, timing, and time span for each task. There are various ways of

representing the bars to include resources, skills or progress when the project in under

 83

way. PERT and GANTT techniques must be augmented with a system in which effort,

cost and schedule are summarised in a way that can be easily understood by the project

manager.

Id task
1 T1
2 T2
3 T2
4 T4
5 T5
6 T6

100%
100%

100%

0%

0%

0%

W1 W2 W3 W4 W5 W6 W7

Figure 4.3 Example of a GANNT Chart

The Earned Value System or Earned Value Performance Measurement (EVPM)

(Flemming and Koppelman, 1996) allows us to monitor the actual status of a project and

extrapolate both cost and schedule for estimating the project completion in a graphical

way. Christensen enumerates several benefits of EVPM (Christensen, 1998) which

include: (i) single management system; (ii) integration of cost and schedule; (iii) early

warning of trouble; (iv) accurate predictor of final cost and (v) to reduce information

overload.

0
100
200
300
400
500
600
700

0 1 2 3 4 5 6 7

Week

Ef
fo

rt
 (H

ou
rs

)

BCWS
ACWT
BCWP
BCWS(est)
ACWT(est)

Figure 4.4 Earned Value Performance Measurement (EVPM)

 84

Figure 4.4 is an example of an EVPM graph. The horizontal axis represents time (weeks)

and the vertical axis representing accumulated effort. The BCWS (Budgeted Cost of

Work Scheduled) in relation to a project is obtained by adding the planning effort of all

the constituent tasks. The ACWP (Actual Cost of Work Performed) represents the

accumulated effort until the current time. Finally, the BCWP (Budgeted Cost of Work

Performed) measures the percentage of the job completed. For instance, the project in

Figure 4.4 is behind schedule but used less resources than planned.

4.5 Structure of USEGESOFT

The goal of this tool is to have a flexible structure so that analytical techniques can be

incorporated into the structure in an incremental manner. The system collects and records

both actual and simulated project data and implements different techniques such as

machine learning, project tracking, dynamic modelling etc. The tool also accommodates

the distinctive features of the TGPM for quality assessment and improvement, and

supports a database where all information associated with processes, products and their

relationships can be stored. It also provides a graphical editor for process representation.

The tool also helps in building and maintaining the internal structure of a process. Finally,

the USEGESOFT tool intends to provide an environment for training project managers.

The idea is that the project manager makes the initial plan, creating a process model,

artefacts needed for each activity and assigning resources to activities. The project

members would carry out their tasks and report their status to the project manager. They

would also collect necessary metrics as desired by the project manager (see Figure 4.5).

The USEGESOFT tool is intended to provide an environment to facilitate the above tasks.

 85

PPllaannnniinngg

Tasks

GGrraapphhss // TTrraacckkiinngg

QQuuaalliittyy PPllaannnniinngg

Project Members

Project Manager

Progress/Metrics

Tasks

USEGESOFT

Figure 4.5 The USEGESOFT Environment

From the point of view of the implementation, the development of this tool is centred on

open source development. Currently, the whole development is based on Java 2

environment. This approach allows us to reuse and extend software already developed

under open source licenses. This decision had many benefits in the subsequent

development, the most important being the incorporation of many a freely available

software utility.

4.6 Functionalities Offered by the System

The high level Use Case Diagram of Figure 4.6 shows the functionalities covered by the

system. The system provides functionality for representing processes and sub-processes

as defined by TPMG, the artefacts involved for each process and resources. In addition,

every entity (process step, artefact, and resource) may have relevant quality attributes. For

each project, effort and cost data are recorded. Data for tasks and resources are also

recorded in each version of the software project. The visualisation module can plot the

trends of the parameters recorded. Other capabilities of the system include visualisation

 86

techniques such as EVPM, GANTT charts etc. The system also provides simulation

capabilities using Bayesian Belief Networks and Systems Dynamics etc.

Segesoft System

Estimates

Tools
(from Actors)

Data Input and Retrieval

Visualization

Manage Project

<<include>>

<<include>>

Tracking Project

<<include>>

User
(from Actors)

Project Simulations

Figure 4.6 General View of the System

4.6.1 General System Architecture

The overall structure of the system is depicted in the package diagram of Figure 4.7. In

the figure, packages represent the individual components of the tool, and the arrows

represent relationships between the packages.

 87

Simulation Machine
Learning

<<subsystem>>
Measurement

<<subsystem>>

Estimation
<<subsystem>>

Tracking
<<subsystem>>

DataBase
<<subsystem>>

Quality
Assesment

<<subsystem>>

Training Scripts
<<subsystem>>

Visualization
<<subsystem>>

Figure 4.7 General Structure and Main Components of the System

• The Measurement module collects information about the metrics of the projects.

• The Estimation module provides the estimation methods like COCOMO, Function

Points etc.

• The Tracking module monitors the evolution of the project.

• The Modelling and Simulation module allows the user to model the organisation

by using approaches like the System Dynamics and the Bayesian Networks.

• Machine Learning module implements some common algorithms for summarising

high volumes of data. Those algorithms are based on data warehouse algorithms.

• Metrics Database is the core of the system. It maintains all relevant information

related to actual and past projects.

 88

• Visualisation module provides ways of presenting and representing meaningful

information in the forms of graphics and diagrams.

• Quality Assessment module implements some criteria for continuous assessment

of the quality of the project. Processes and products are assessed based on the

metrics collected.

• The Training Scripts module is used to train project managers.

4.6.2 System Database

For a given organisation, the project database contains all relevant information in relation

to a set of projects as shown in Figure 4.8. For each project, the following information is

stored:

• General data about the project, versions, initial estimations.

• Work-Breakdown-structure (WBS) which is composed of the hierarchy of tasks in

relation to a project.

• Resource-Breakdown-structure (RBS) is composed of project members and tools

which are related to process activities.

• Simulation-Breakdown-structure (SBS) stores the necessary parameters for the

simulation.

• Machine-Learning-Break-down-structure (MLBS) where the necessary

information for the Machine learning module is stored including management

rules.

• Metrics-Breakdown-structure (MBS) which contains the tree of factors, subfactors

and metrics for each entity.

 89

RBS

 Resources

WBS

 Task

Predecessor
Task

Resource
Allocation

Task
Progress

SBS MBSPRBS PBS

Effort
Metrics

Quality
Metrics

Size
Metrics

Project
Version

Project

Process
Baselines

Active
Projects

Project
Type

Organisation

Closed
Projects

MLBS

Reduced
Model

Extended
Model

ML Database

Management
Rules

Figure 4.8 Outline of the Database Structure

At the moment, our system is a standalone tool which stores information using data

serialisation of Java objects and XML files. As we will discuss later, this approach is not

scalable. Or future work involves moving all these information into a database and to

make use of current standards such as CORBA and Web services.

 90

4.7 Implementation of the Functionalities

Our project management tool integrates several modules using different technologies. In

the following subsections, we will present succinctly some of the implemented techniques

and the overall system structure.

4.7.1 Storing Data

At present all information is introduced to the system through a GUI and XML files.

Figure 4.9 shows the main GUI of the system and provides an idea about the structure of

the information which are recorded in the database. On the left-hand side of the main

window there is a uniform search facility for all entities of the projects in the organisation

(for modelling the process and quality metrics another window is opened). On the right-

hand side, related information, properties, subcomponents of each element are easily

accessed. It also shows some of the results generated with the techniques mentioned in

previous sections.

Figure 4.9 Accessing the Data from the Main Window

 91

Figure 4.10 shows a partial XML file that represents a quality model in XML.

Figure 4.10 XML File Corresponding to a Quality Model

4.7.2 Quality Control

Measurement is essential in order to manage, predict and improve the quality of software

products and processes. Current project management tools mostly deal with time and

resources and usually do not consider quality aspects. Our tool provides quality as an

additional axis in this respect. As discussed in Section 4.4, there are tools like SQUID and

MiniSQUID which provide environments for managing product quality metrics; however,

current project management tools do not usually provide facilities for dealing with such

metrics. As we would like to control the quality of products and processes, we need to

define quality models for both. For products, ISO 9126 is the standard quality model;

however, different products (intermediate or final) emphasise different quality aspects.

Therefore, for each product, the quality factors which are specific to the product are

considered. In Figure 4.11, the top row of boxes represent various processes, while the

 92

boxes in the middle row represent the artefacts associated with the processes of the first

row. For each artefact, our tool collects metrics which are specifically important to the

artefact. Note that for dealing with product metrics we borrow some of the ideas of

SQUID and MiniSQUID; however, at this stage our data collection, storage and analysis

mechanisms are not as rigorous as they are in those tools.

Requirements Test Implementation Analysis and
design

Use Cases

…

Design Models

…

Web pages

Hypermedia
Models

SW Code

Testing Model

Metrics for Internal Attributes

Quality Index for External Attributes

Figure 4.11 Individual Process as an Instantiation of the Measurement Framework

Figure 4.12 shows a UML diagram in which a quality object is related to an entity. A

quality object stores the important quality factors for the entity, in which each quality

factor is decomposed into quality sub-factors. Finally, metrics are direct measures that are

used to evaluate sub-factors.

 93

Measure

QFactor QMetric

1..n

QSubFactor

1..n 1..n

EObjectsQObject

0..10..1

1..n 1..n

1..n

All entities of the
project are subject
of EObject

Figure 4.12 UML Class Diagram of Quality Attributes

Metrics relating to various entities are stored in the project database and are used by

different software management techniques. USEGESOFT stores direct metrics, average

values, upper and lower thresholds etc. Figure 4.13 shows the testing process (refer

Figure 4.1) as created by the Process Editor of USEGESOFT. This editor is based on

JHotDraw (Gamma, 1995) which was extended and linked to USEGESOFT to provide a

tool support to the TPGM model (Rodriguez et al, 2001b).

 94

Figure 4.13 Drag and Drop Mechanism of the Process Editor

Processes usually have hierarchical structures (Satpathy et al, 2000). We need to store the

following four types of information in relation to a process following the conventions of

TGPM:

(i) A process is either an atomic process or it is defined in terms of sub-

processes. So, documentation is necessary to specify the process structure.

(ii) A process is defined as a relation between a set of input products and a set

of output products. Some documentation is necessary to say what such

products are.

(iii) A process can have a hierarchical structure (see Figure 4.13). Each process

or subprocess takes a set of input products and a set of output products. If

we follow the ISO 9126 product quality model, then each such product can

 95

have quality factors and subfactors. Further each subfactor may be

associated with metrics. So we need to store all such information which

may be associated with the products. Since a process can be hierarchical,

the number of such products and hence the volume of information

associated with them could be significant.

(iv) Any process can have an instantiated model (instantiated TGPM). In

relation to the instantiated model, each process will have quality factors

and subfactors. Further, corresponding to each subfactor there may be

metrics. So, each process should store all such information.

The USEGESOFT tool provides a good documentation mechanism to specify, store and

display all the four types of information which can be associated with a process or

subprocess. This information can remain hidden, or it can be displayed through a pop up

menu. For example, when a process component is selected in the Process Editor, a

context menu associated with it allows us to store or visualise all information associated

with that component. The snapshot of Figure 4.14 shows the high-level information of the

testing process through a pop-up menu. It is also possible to follow from the pop-up menu

in a nested fashion to extract further information, if any. Alternatively, information can

also be obtained by following the trail of entities from the main window.

 96

Figure 4.14 Accessing the Process Information from the Process Editor

Figure 4.15 shows how definitions of various process quality attributes according to the

TGPM, along with their dual definitions, can be obtained.

Figure 4.15 Process Quality Attributes According to TGPM

 97

USEGESOFT stores a lot of information in relation to a process and the associated

products. Depending on a requirement, we need to obtain relevant information from the

database, which stores all the documentation. Furthermore, we need to use this

information to obtain a graphical display or make inferences by using some statistical

modelling approach. Currently, as quality information is stored using the open standard

XML (Extensible Markup Language) (W3C, 1998), we are able to extract this

information manually or transform it using XSL (Extensible Stylesheet Language) (W3C,

1999). In this way it is possible to manipulate or display data using a spreadsheet or other

data processing applications.

4.7.3 Simulation and Dynamic Modelling

This module tries to mimic the main components and behaviour of already well-known

software applications such as Vensim (Vensim, 2003), Stella (Stella, 2004), Powersim

(PowerSim, 2003) etc. It is composed of a whiteboard for connecting the basic elements

of the system dynamics method: levels, flows, constants, auxiliaries and clouds. This

module implements a simplified dynamic model that can be used to simulate the temporal

behaviour of the project. It contains the controls for setting three groups of required

parameters: the parameters of the project (size, number of initial technicians etc.), the

parameters of the organisation (average delays related to hiring, dismissals etc.) and,

finally, the parameters controlling the simulation process.

Note that the System Dynamics module of USEGESOFT is not a part of this thesis; it has

been developed by project collaborators (Aguilar-Ruiz et al, 2001).

4.7.4 Bayesian Belief Networks

USEGESOFT supports modelling using Bayesian Networks. To do so, we have upgraded

the JavaBayes (Cozman, 2001) tool and linked it to USEGESOFT. BBNs will be

discussed in detail in Chapter 6.

 98

4.8 Feature Analysis

We list here the general features provided by currently available tools and compare those

with the ones covered by the USEGESOFT tool. There are specific tools available in the

market to cover specific areas of project management. They can be classified into tools

for project planning, software cost estimation, quality metrics, project risk analysis,

project reporting and process support (ESA, 1995).

Project planning tools should provide support for the project related activities like (ESA,

1995):

• Defining work packages and resources.

• Allocating resources to work packages.

• Defining the duration of work packages.

• Constructing activity networks using the PERT method.

• Defining the critical path.

• Defining the schedule in a Gantt chart.

The USEGESOFT provides most of the functionalities offered by commercial project

planning tools but in a less flexible way when compared with tools like MS Project

(2002) or MrProject (CodeFactory, 2002). This is because the current version of the

USEGESOFT do not provide different views of the information, printing facilities, export

and import facilities etc. From the functionality point of view, we have also found some

deficiencies when compared with commercial tools such as fixed rate scheduling; so it is

necessary to provide support to split tasks into different time frames.

Software cost estimation tools work in many different ways depending on the approach

used (COCOMO, analogy, case base reasoning, COSMIC FPP, etc) but in general, they

should allow managers to (ESA, 1995):

• Produce reliable estimates for entities like cost, effort, time etc.

• Provide explanations of how estimates were arrived at.

 99

• Provide reliable estimates even when part of the information is not readily

available.

The USEGESOFT tool has implemented the most general approaches, i.e., COCOMO,

Mark II estimation methods. The approach is to use a measure of software size such us

lines of code or function points to produce the initial estimate of effort. In addition, our

tool supports the use of Bayesian Networks which enable estimates to be calculated even

when part of the required information is not available. Furthermore, our tool, through the

use Bayesian Networks, can refine an estimate as and when more and more information

are available. Currently, only some specific estimation prototypes supports the use of

Bayesian Networks.

Project risk analysis tools are usually based on simulation using Monte Carlo, system

dynamics, or Bayesian Networks. Many available tools are based on heuristics and they

are supposed to handle common risks. Since they use static modelling, their estimates are

unlikely to be effective in a general scenario. The USEGESOFT tool uses dynamic

modelling approaches like System Dynamics and Bayesian Networks which can simulate

the temporal behaviour of a project; so, it is possible to make effective decisions as

regards to possible risks.

Project reporting tools should allow project managers to understand data recorded in a

user friendly way. The USEGESOFT tool only includes the Earned Value technique

(Christensen, 1998) as reporting tool but its integration with spreadsheets and statistical

packages is feasible.

Process Support Systems (PSSs), also called WFMSs (WorkFlow Management Systems),

help to synchronise and coordinate a project. PSS should provide the following

capabilities (ESA, 1995):

• Instantiation of the process model.

• Enactment of each process model instance.

• Viewing of the process model instance status.

 100

• Interfaces between the process model instance and the actors.

• Interfaces to project planning tools.

A process modelling tools should (ESA, 1995):

• Support the definition of procedures and processes.

• Contain a library of process templates.

• Make the process model available to a process support tools.

The USEGESOFT tool is able to model software processes using a graphical environment

and provides mechanisms to specify, store and display all types of information which can

be associated with a process or subprocess. However, at this stage, it does not provide any

integration with process support tools; i.e., a process engine capable of driving

development activities.

There are tools like SQUID and MiniSQUID (refer to Section 4.2) which provide

environments for quality planning, control and evaluation. MiniSQUID provides a robust

data model framework to store datasets with a lot of semantic information so that data

obtained from them can be reliable and trustworthy. At this stage, while storing metric

data in databases, we do not store much semantic information, and therefore our datasets

are not as rigorous as we expect them to be. One of our future works is to use the standard

proposed by Kitchenham et al (2001) for storing and analysing datasets. Tools like

SQUID and MiniSQUID mostly concentrate on product metrics; however, the

USEGESOFT gives equal importance to process metrics.

Product Metrics tools are used to collect information in an automatic manner from the

different artefacts generated during the software development. The general approach is to

parse code files to generate metrics such as lines of code, cyclomatic complexity etc. or

other object-oriented metrics. The USEGESOFT, at this stage, does not provide facilities

to collect such product metrics but it supports their storage and analysis.

 101

Table 4.4 summarises the specifications of the USEGESOFT tool, the types of tools that

are able to handle such requirements and the functionalities provided by the

USEGESOFT to do so.

 Activities Type of tool that

handle the activities
USEGESOFT
functionalities to handle
the activities

Project Planning Define project entities: work packages,
artefacts, resources and their availability

Project Planning
Tools

Core USEGESOFT

 Define quality models Quality Tools TGPM based tool support
 Conduct a risk assessment for the project Risk Analysis Tools BBNs
 Define duration and relationships among

work packages (predecessors and
successors tasks) and allocating
resources to work packages

Project Planning
Tools

Core USEGESOFT
PERT method
Gantt charts

 Calculate initial estimates Estimating Tools COCOMO and Mark II
BBNs
System Dynamics

 Plan report Project Reporting
Tools

Visualisation techniques ;
Earned Value technique,
Gantt PERT

Project
Execution

Project data collection Project Planning
Tools

Core USEGESOFT

 Quality Data collection Metrics tools TGPM based tool support
 Project Tracking Project Planning

Tools
Core USEGESOFT

 Planning adjustment Project Planning
Tools

Core USEGESOFT

Project
Wrap-up

Metrics updates Project Metrics tools Core USEGESOFT

 Final report Project Reporting
Tools

Visualisation techniques:
Earn Value technique,
Gantt PERT

Organisational Process Assessment
Process Improvement

Quality Tools
Process databases
Process Support
Tools

Project Database
Information can be used in
GQM analysis

Table 4.4 Summary per Activities

In the following, we will outline the relevance of the USEGESOFT tool in relation to the

requirements of a project manager.

1. A project manager needs to address to and interfere with a multitude of

managerial activities during software development. A project manager requires

tool support to deal with each individual activity (such as cost estimation, quality

estimation etc). The SEGESOFT tool integrates many of these individual tools in

a single environment; therefore, a project manager through a common interface

can analyse or obtain information about an individual task concerning projects,

 102

present or past. Further, this integrated environment makes it easy to produce

collated reports which range over multiple managerial tasks; for example, we can

assess the quality of a product, and at the same time we can find out possible

improvement actions which can enhance the product quality if there is a

deficiency (discussed in Chapter 6).

2. Each project management activity may have a lot of information associated with

it. The USEGESOFT tool intends to handle information of all such activities in a

common database.

3. An integrated database facilitates the use of data mining techniques; however,

excepting the construction of BBNs from past project data (discussed in Chapter

6), we have not addressed such techniques in this thesis.

4.9 USEGESOFT in relation to the CMM

In this section we discuss CMM levels and where the project management techniques of

USEGESOFT stand in relation to them.

Organisations at Level 1 do not have any measurement program; therefore, USEGESOFT

is only relevant for higher CMM levels.

At Level 2, a project is executed according to a project plan. An office package using

spreadsheets can be sufficient as this level. However, the core USEGESOFT tool can help

with software estimates and tracking of the software project.

At Level 3, the KPAs are mostly related to managerial issues and organisation-wide

standards. The USEGESOFT is very relevant here since it assumes that quality models

are based on TGPM and data are collected in a standard way throughout the organisation.

Moreover, data collection is integrated in the development process and at this level.

At Level 4, an organisational measurement program is established for measuring the

quality of the products and processes. The USEGESOFT can be used to store such

 103

information in a consistent manner since data collection is done in relation to the TGPM;

i.e. it is easy to know which product data is related to which process data. It is at this

level, where all the project management techniques like BBNs, System Dynamics etc.

attain their fullest capabilities.

At Level 5, measurement practices can be improved by automating the collection of

software metrics. Analytical tools must be used to carry out continuous process

improvement actions. The data stored in USEGESOFT in conjunction with the dynamic

techniques discussed in this chapter can be used for continuous process improvement

following methodologies such as GQM and ami. Since TGPM is the guiding principle

behind USEGESOFT, the relation between process quality and product quality can be

easily related from the collected data. Therefore product focused process improvement

can be implemented easily (Satpathy and Harrison, 2002).

4.10 Conclusions

The use of quantitative information tends to promote a more scientific approach to project

management, and use of project data can have considerable impact on the outcome of the

project. We have developed a proof of concept environment that allows us to manage a

project data and associated metrics and show how recent techniques can generate valuable

information which can guide a project effectively.

Quality aspects of the tool are based on the TGPM, which is instantiated to obtain process

models for individual processes. The amount of information that needs to be stored with

processes could be very high. USEGESOFT is a tool that provides a framework for

storing various artefacts associated with the instantiated process and quality models. We

have also discussed how different types of information can be stored and how, in

response to a specific requirement, relevant information can be retrieved to make

inferences. In addition, we have compared the features of USEGESOFT with those of

various specific tools (not necessarily project management tools), and further, we have

 104

analysed how the functionalities of the USEGESOFT are related to the various levels of

the CMM.

 105

Chapter 5

Assessing and Improving Web Processes

using the Typed Generic Process Model

5.1 Introduction

In Chapters 2 and 3, we discussed about the problems surrounding the development of

Web applications, and the design of a Parallel Framework for modular development of

Web applications. The management and evaluation of Web processes and applications

requires tool support. In Chapter 4, we discussed the development of a project

management tool which can support many of the managerial activities staring from

estimation up to quality assessment. Although this tool can be used during the

development of any kind of applications, in particular, it could also be used for Web

processes. In the present Chapter, we will focus on the assessment and improvement of

Web processes.

There are numerous reasons for improving Web applications. From the product point of

view, usability, reliability etc. have room for improvement. From the process point of

view, time to market, maintainability etc. need also to be improved. An improvement

action is usually preceded by an assessment phase. Process assessment and process

 106

improvement are the means to develop quality applications within time and budget. Our

aim is to perform process assessment and process improvement of Web processes using

techniques from empirical software engineering such as quality models (Rodriguez et al,

2002).

Among the models that are available for process assessment and improvement, the most

influential ones include the CMM (Humphrey, 1992), ISO 12207 (ISO, 1995), ISO 9000

(ISO, 1994), the BOOTSTRAP model (Kuvaja, 1994), and the ISO 15504 (SPICE) (ISO,

1998). These process models are high level and are not specific enough to cater to the

needs of each of the individual processes since: (i) the nature of the processes vary

widely; (ii) most of the models are more oriented towards enhancing the maturity of an

organisation and take a monolithic view of the overall development process; and finally

(iii) the process models, while emphasising process activities, often put too little

importance on the products which are the results of the process activities. Product quality

aspects are usually addressed by models such as ISO 9126 (ISO, 1991), FURPS+ model

(Grady and Caswell, 1987) etc. However, how such product models are related to the

above process models, has not been properly addressed. A process model should aim to

increase the quality of the products they produce; however, the relationship between the

above models and product quality is far from clear. In this chapter, we will use the Typed

Generic Process Model (TGPM) (Satpathy et al, 2000) as our quality framework; TGPM

is used since it makes the relationship between process and product attributes explicit.

5.2 Related Work

The most common approach to evaluation of Web applications is to focus on usability

(Nielsen, 2000). For example, Garzotto et al (1999) decompose usability into learnability,

comprehensibility, memorability, handling ability and niceness. In turn, they decomposed

these into other lower level factors. Olsina et al (1999) have defined a more general

approach defining a tree of quality attributes based on the ISO 9126 standard (ISO, 1991).

 107

Fewer attempts have been made to evaluate Web processes; most notable is the work of

Lowe et al (1999) and Christodoulou et al (1998). Christodoulou et al compare various

hypermedia methodologies and systems, and suggest which methodology is more suitable

for certain type of applications. Lowe et al define a series of abstract tasks which state

what process entities are to be assessed, what aspects of the development process are

involved and what activities need to be performed. These abstract tasks are defined in a

template. Lowe (1999) also proposes a reference model for identifying elements

(resource, activities and artefacts) in various development process models in order to

provide a common terminology. Mendes et al (1999) have carried out some empirical

studies to estimate Web authoring effort.

Bazzana and Fagnoni (1999) describe PI3 (Process Improvement In Internet service

providing), a process improvement plan for an IT company. They used CMM to improve

key process areas (KPA) in several issues: technical, business, organisational and cultural.

They describe how a company at CMM level 1 can address improvement plans in

accordance with business objectives. They defined the required status at the end of the

improvement program as follows:

(i) Definition of processes and adoption of tools for the KPAs of testing and

configuration management

(ii) Adoption of defined practices and of the tools in the daily routine work of

projects

(iii) Increased maturity of the measurement systems, tracking the most relevant

indicators for the business of the company

(iv) Initial formalisation of the experiences gained by means of standard operating

procedures constituting an initial kernel of the company QMS

At the end of the process, they achieved a maturity level of 2, where the Key Process

Areas (KPA) are requirements management, software configuration management,

software project planning, software project tracking and software quality assurance.

 108

The GQM method of Basili et al (1994) is often used to make a measurement plan for

assessing the quality of products and processes, details of which has already been

discussed in Chapter 4.

We will also use the TGPM as our quality model for process assessing and improving

Web processes. Details of this model have been discussed in Chapter 4. It is to be noted

that a process is always performed within the context of a process environment (Bazzana

and Pioti, 1999). The TGPM assumes that a process has a well defined structural

representation within the environment; this we have called the ‘internal process model’ in

Chapter 4. The TGPM (i.e. the instantiated models obtained from TGPM) is always

viewed in conjunction with such an internal process model. This combination of the

TGPM and the internal process structure takes into account of the following process

attributes which have significance in the CMM:

1. Standard software Process: the internal process model has a clear documentation

of the internal details of a process. The specifications of the process steps of an

atomic process and the intermediate products including the guidelines as to how to

perform the process steps conforms to some of the requirements of CMM levels 2

and 3.

2. Process assessment and improvement are performed on the basis of quantifiable

metrics. The internal process model also documents what metrics are to be

measured, at what point, by whom and how. The metrics that need to be measured

are obtained from the instantiated TGPM. This addresses some of the issues of

CMM level 4.

Note that at this stage, our approach to assessment and improvement of Web processes is

more in line of a proof of concept rather than a robust assessment or improvement

framework. Building a robust framework is a part of our future work.

5.3 Evaluation of Web Processes

Assessment and improvement of a process in general and a Web process in particular is

based on a measurement framework which usually uses a quality model. For our purpose,

 109

we will use TGPM (Satpathy et al, 2000). First, TGPM needs to be instantiated to

generate a customised process model which can be used in the measurement framework.

The customised model helps us to identify relevant metrics for assessment or

improvement purposes. The whole process consists of the following four steps:

(i) Internal Process Model: The process under consideration must have a well

defined internal process model (i.e. the process steps, inputs, outputs and

intermediate products) in place. The internal process model elucidates the

internal structure of a process.

(ii) Upgrade the TGPM: To perform this task, we may need to add or remove

new subfactors which are of importance to Web applications to make a

generic model for Web processes.

(iii) Instantiation: Instantiate the upgraded generic model to the process

concerned.

(iv) Identify the metrics associated with the subfactors of the instantiated

model. Not all of them will be necessary. The measurement framework

will select a subset of these metrics for analysis.

In Chapter 3, we classified the Web development process into two almost independent

sub-processes: the authoring process (AUTH process) and the process of developing the

infrastructure (INF process). Figure 3.1 in Chapter 3 summarises the main phases of the

AUTH as well as the INF processes. Assessment of Web process means the assessments

of the AUTH and the INF processes. Since, the assessment of INF process amounts to the

assessment of conventional development processes, in this chapter we will only

concentrate on the AUTH process.

The internal structure of each of these phases can be defined as per the guidelines of the

internal process model of Chapter 3. For instance, Table 5.1 shows the internal structure

of the subprocess Navauth in which we treat Navauth as an atomic process, and some of the

guidelines of this atomic process have also been shown in the table.

 110

Navauth
Goal This process takes authoring class diagram and produces the navigational structure model. It

involves two steps.
Step 1 Create the Navigational class model from the authoring class diagram following the approach by

Baumeister et al (1999) (combining or dividing authoring domain classes and creating relationships
with «link» as stereotype).

Step 2 Enrich the navigational class with menus, indexes, guided tours and contexts using the approach by
Baumeister et al (1999) to obtain the navigational structure model.

Table 5.1 Process Steps of the Atomic Process Nav auth

Figure 5.1 shows the snapshot of the USEGESOFT tool showing the Navauth subprocess.

Figure 5.1 Internal Process Structure of the Navigational

We will now instantiate the TGPM to generate the customised model for the AUTH

process, i.e. we need to customise the definitions of the subfactors of the TGPM.

 111

Appendix B shows such customised definitions. By now, we have performed the steps (ii)

and (iii) of the measurement framework.

FACTOR SUB-FACTORS METRICS (Examples)

Compliance Strict use of the HTML/XML standards (Yes/No)
No. of deviations from prescribed standard

Completeness Trend of missing features in the content
No. of Use Cases implemented vs. planed over a no. of projects

Generality Additional features in content that the AUTH process supports
No. of different types of authoring languages (HTML, XML) the process
can use
No. of different types of links the process can use

Consistency Average number of structural inconsistencies (over n projects)
Correctness Average no. of mismatches between the design and the content

Functionality

Interoperability No. of different types of systems to which the contents can be linked
Understandability Effort to understand the AUTH process

Effort to understand the products (presence of On-line help, manuals etc)
No. of search related problems

Usability

Learnability Effort to do authoring (No. of hours/ page)
Level of training required to do authoring

Cycle time Estimated cycle time vs. actual cycle
Integration frequency (daily, weekly etc.)

Cost/Effort Average of the planned development time vs. actual time
HTML pages/person month

Complexity
estimation

Estimated complexity vs. actual complexity (Compactness, Stratum
(Botafogo et al, 1992), Graph complexity etc.)
Link complexity
Psychological complexity (Subjective assessment)

Schedule/Priority No. of times schedules are not fulfilled

Efficiency and
Estimation

Resource usage Estimation resources vs. actual resources (people, tools)
Automatic checks and
feedback

Interactions (e.g. no. of link failures, dangling links, inland pages, etc)

Traceability Subjective assessment of difficulty in tracing between analysis, design,
and implementation

Progress monitoring No. of milestones
No. of times milestones are not met
No. and kind of approaches to monitor progress

Visibility and
Control

Improvement
measures

No. and type of improvement actions

Reliability Failure frequency MTBF (Mean Time Between Failures)
MTTF (mean time to failure)
Average no. of times failures encountered during authoring (tool
crashing etc.)

Scalability Scalability Time, effort, cost against projects of varying sizes
Reusability Average no. of modules reused vs. total no. of modules
Testability Average no. of faults discovered during testing/Totals no. faults over a

number of projects
Average no. of faults/lines of HTML/XML)

Portability No. of browsers and versions considered (e.g. palm appliances)
Analysability Effort to analyse causes of an authoring defect (e.g. broken links etc).
Modifiability Effort to correct an authoring defect

Maintainability

Defect trend Average no. of defects in AUTH process
Average no. of incident reports
Average no. of change requests

Customer
satisfaction

Communicativeness Average no. of customer complaints

Table 5.2 Quality Tree of the AUTH Process

 112

Table 5.2 represents the quality of the AUTH process; the first column shows the various

factors of the AUTH process, the second column shows the sub-factors associated with

the factors, and the third column shows the major metrics which could be associated with

the corresponding sub-factors. In the third column, average means the average value

taken over n projects. TGPM does not have some sub-factors which could be very

important in relation to Web applications. One such factor is customer satisfaction which

we have added to Table 5.2. Similarly, we have removed the Safety sub-factor because it

is not relevant to the AUTH process (which could be of importance to the INF process).

With these minor modifications, the step (iv) of the measurement framework is complete

in relation to the AUTH process.

The attributes of Table 5.2 needs further explanation. Dromey’s generic quality

framework (discussed in Section 4.4.2.3, Chapter 4) decomposes a software product into

a hierarchy of structures, and the entities of a structure have some quality-carrying

properties, and by addressing these properties, we can ensure that the product satisfies the

desired high-level quality characteristics. The responsibility of satisfying the quality-

carrying properties of structure entities rests on a matured process. The TGPM, in a

similar manner, emphasises that process quality attributes cannot be considered in

isolation; processes can only enhance the quality of a product. This is the idea behind

considering process quality attributes from a dual perspective (discussed in Section

4.4.2.1, Chapter 4). Let us consider the attribute ‘Process defects’ (Defect Trend). The

TGPM defines this attribute as follows:

(i) The average number of defects that are observed in the AUTH process

itself (defects linked to the process − during or after process

execution)

(ii) The degree to which the AUTH process detects defects or deficiencies

in the Reqauth so that defects in the hypermedia content are minimal.

The first definition tells that the process itself should be defect free, and the second tells

that the process should make its output product defect free. Let us assume that the

 113

Authoring process has produced n products. Let the number of defects in each product be

defi. Then the average number of defects of the past products (Defaverage) of the Authoring

process can be given by the expression:

Defaverage ∑
=

=
n

i
iDef

n 1

1

If the quanity Defaverage is low, it implies that the Authoring process is good in relation to

the product aspect of the attribute ‘Process Defect’. In this sense, Defaverage is a process

attribute. Furthermore, we should be careful while choosing the number n in the above

expression. Let us assume that initially the process was not good in terms of ensuring

product quality and then it was improved. This improvement can only be noticed in the

products developed after the improvement. Therefore, what should be the value of n

depends on the context of the process.

5.4 Interpretation of Metric Measures

In order to interpret the metrics collected, we may need to consider several metrics at a

time and the dependency relationships between them. One way is to assign weights to

each of the individual metrics and to come up with a numeric value. Another way is to

use a dynamic model like Bayesian networks (Jensen, 1996) which takes into account the

metric measures as well as many context factors to arrive at a conclusion. For instance,

although it may be useful to know the number of defects in the authoring of a Web

application, it is more useful if we consider its complexity (e.g., compactness, stratum)

and effort metrics (e.g., HTML pages/person-month). Bayesian networks also can handle

uncertainties and inaccuracy in measures. Bayesian Networks will be the subject matter

of our next chapter.

Validation of the metric measures is also an important issue. We are not addressing this

issue in this thesis; however, the approach taken by the SQUID and MiniSQUID projects

(Kitchenham et al, 2001) is a good choice. In them, each metric has a target value which

is obtained by referring to a historical database and comparing the metrics of the current

 114

project with the metrics of the similar projects in the past. The measures values when seen

within the context of past similar projects, gives us a confidence in them.

5.5 A GQM based Measurement Framework

Our measurement framework uses the Goal-Question Metric (GQM) (Basili et al, 1994)

method. The GQM method helps us to identify, focus, document and analyse a small but

relevant number of measurements that need to be collected on a regular basis. The

method is composed of 3 levels. First, the conceptual level identifies a quality and/or

productivity goal, i.e., the purpose of measurement in relation to an entity (product,

process or resources) from a specific point of view (manager, developer, maintainer etc.).

A goal can be an assessment goal or it can be an improvement goal. The second level,

called the operational level, breaks down the goal by means of questions that characterise

the entity. Finally, the quantitative level specifies metrics that need to be collected in

order to answer those questions. All three steps are summarised in a tree structure, called

the goal-tree.

This measurement framework offers a systematic way of creating a goal tree in three

steps. First, we need to identify what factor(s) of our instantiated model concerns the

goal. Then from the instantiation of the quality model (Appendix B) or from Table 5.2,

we identify the relevant subfactors. The definitions of the subfactors will help in

generating the questions of the goal-tree. Finally, from Table 5.2, we can obtain the

appropriate metrics which are essentially the metrics associated with the subfactors in the

table. In relation to a given goal (i.e. some factor(s)), we need to identify a subset of the

associated metrics (i.e. the metrics associated with the subfactors of the given factor(s)). It

is worth noting that because of the duality of the sub-factors, the definitions cover both

the process as well as the product aspects of the goal. The quality tree as represented by

Table 5.2 helps us in building such goal trees in a systematic manner (Fugetta et al,

1998).

 115

As an example, we will create two assessment goals: (i) assess the estimation of the

AUTH process from the viewpoint of the manager; and (ii) assess the maintainability of

the AUTH process from the viewpoint of the manager/maintainer. Table 5.3 and 5.4

summarise the corresponding goal-trees.

Goal Object of Study: AUTH process

Purpose: To assess
Focus: Efficiency and Estimation
Point of view: Manager

Q1 What is the underlying authoring language?
M1.1 Note the languages used (HTML, JavaScript, XML, Xlink etc.).
Q2 Does the estimated complexity match the actual complexity?

What are the techniques and tools used for complexity estimation?
M2.1 Note the difference between estimated/ actual complexity
M2.2 Note the technique. For instance, Stratum, Compactness, Depth, Imbalance (Botafogo et al, 1992)
Q3 Does the estimated authoring cycle time match the actual cycle time? What is the technique used to estimate

the cycle time?
M3.1 Note the difference (actual cycle time/ estimated cycle time)
M3.2 Note the technique/ tool support
M3.3 Integration frequency (how often the modules of the application are integrated)
M3.2 Average cycle time
Q4 Does the estimated effort match the actual effort? What is the technique to estimate the effort?
M4.1 Note the difference (actual effort/ estimated effort)
M4.2 Note the technique/ tool support
Q5 Does the estimated schedule match the actual schedules? What is the technique to estimate the schedule?
M5.1 No. of times schedules are not fulfilled
M5.2 Note the technique/tool for estimating the schedules
Q6 Do the estimated resources match the actual resources? What is the technique to estimate the resources?
M6.1 Note the differences (estimated no. of people/ actual no. of people)
M6.2 Note the technique/ tool for estimating the resources

Table 5.3 GQM to Assess the Estimates in the Authoring Process

 116

Goal Object of Study: AUTH process

Purpose: To assess
Focus: Maintenance
Point of view: Manager/Maintainer

Q1 Is the current analysability performance acceptable? Is the tool-support adequate?
M1.1 Effort to analyse the cause of an authoring error (link, misspelling etc.)
M1.2 Efficiency of the tool support (subjective assessment)
Q2 Is the current modifiability performance acceptable?
M2.1 Average time for addressing a change request
M2.2 Average time for addressing an incident request
Q3 Are the contents free of defects? Is the process defect-free itself?
M3.1 Trend of defects in the contents after release
M3.2 Trend of process defects and their cause (e.g. a tool crashing)
M3.3 No. of change requests after release for each project
Q4 Does authoring addresses portability issue adequately?
M4.1 No. of browsers that the process addresses
M4.2 No. of versions that the process addresses
Q5 Is authoring testing adequate?
5.1 No. of defects discovered during testing/ Total number of estimated faults
Q6 Is the AUTH process re-usable?
M6.1 Are the same AUTH process steps used for all projects (Yes/No)

Table 5.4 GQM for Maintainability of the Authoring Process

Figure 5.2 and Figure 5.3 are screenshots of the project management tool supporting the

customised measurement framework. For example, Figure 5.2 shows the dual definition

of the Defect Trend subfactor and Figure 5.3 shows quality metrics associated with the

same subfactor.

Figure 5.2 Quality Tree Showing the Defect Trend Definition

 117

Figure 5.3 Metrics related with the Defect Trend Subfactor

Usually, assessment is done to characterise the current status of a process. If the

assessment reveals that a certain aspect of the process is not satisfactory, then this needs

to be improved. Following the ami terminology (Kuntzmann-Combelles et al, 1996), this

is done by defining an improvement or change goal. A goal-tree can be constructed in

relation to this change goal by following the GQM method. From this goal-tree,

improvement actions can be inferred, which may correct the unsatisfactory aspect(s) of

the process. For example, suppose the assessment finds that the actual cycle time of the

AUTH process is too high as compared to the estimated cycle time. Then the

improvement goal can be: improve the estimated cycle time of the AUTH process from the

viewpoint of the manager. Then we need to find out what improvement actions need to be

taken so that cycle time could be improved. The goal-tree for this improvement goal is

shown in Figure 5.3 (Debou, 1999). From this goal-tree, we obtain the improvement

action which is then integrated to the AUTH process, and then another cycle of

assessment follows. This new assessment verifies whether the improved AUTH process

produced the desired result.

 118

 Goal:
Improve estimation of cycle time

Q1.1 What is the current
actual/estimated cycle time ratio?
Q1.2 What is the desired ratio?

Q2 What is the current
technique used for estimation?

Q3 Is there a technique to
satisfy the desired ratio?

Improvement action:
Choose the new technique

Figure 5.4 GQM Tree for an Improvement Goal

5.6 Conclusions

TGPM provided a systematic way for creating a customised measurement framework for

any software process. In this chapter we have demonstrated the customisation of the

TGPM to obtain a measurement framework for the authoring process. We have presented

the step by step approach of the customisation process. This customised measurement

framework forms the basis of assessment and improvement of the authoring process. In

this chapter, we have not considered the customisation of TGPM to the INF process, since

such an activity resembles the customisation in relation to any conventional development

process.

We have also used the GQM method to make measurement plans. The GQM method

involves building goal trees in a systematic manner by using the customised framework

of the authoring process. For assessing the authoring process or any of its subprocesses, a

goal tree is created to obtain the necessary metrics to be collected. Such metrics data need

to be analysed to find the deficiencies in the process. Then improvement goals are

obtained which could remove the deficiencies. A new GQM tree is then built to obtain

improvement actions. We have demonstrated such approaches through examples.

 119

In the next Chapter, we will introduce Bayesian networks as our selected tool for

predicting, monitoring, controlling and assessing software development. Bayesian

networks, in addition to possessing many interesting properties, allow us to analyse a

group of metric measures within a problem context.

 120

Chapter 6

An Investigation of the Use of BBNs for

Project Management

6.1 Introduction

Dynamic models such as system dynamics and Bayesian Belief Networks (BBNs) are

becoming increasingly popular among the software engineering research community as

they are capable of providing better solutions to some of the problems in the area of

estimation and prediction when compared with the solutions provided by the traditional

static models (Fenton and Neil, 1999b). Traditional models such as COCOMO or

Function Points are usually static in nature in the sense that they are based on some

mathematical equations. However, software applications even in the same domain do not

have uniform characteristics, and further capabilities of organisations are also not

uniform. Dynamic models consider many such context related factors and therefore

estimations or predictions obtained from them are likely to be more accurate. BBNs are

one such type of dynamic model which are used for making estimations and predictions.

In this chapter, we will focus on the use of BBNs in project management.

As we have seen in Chapters 4 and 5, we need to collect a lot of data relating to product

and process quality metrics. However, a metric may be related to many other metrics, and

 121

such relationships need to be taken into account when we analyse the data that we

measure. Sometimes relationships are direct and sometimes they are transitive. BBNs

model such complex relationships in a graphical framework, and thereby offer a degree of

visibility to such relationships.

Creation of a BBN to reflect the domain of a software engineering problem is a

challenging task. They are usually obtained from expert judgement or from past project

data using data mining techniques, or by using both the approaches. There are many semi-

automatic approaches available in literature for generating a BBN from project data. In

this chapter, we will discuss the step by step construction of a BBN using the data set

from a Web-related project involving 37 Web sites. In addition, we will discuss a use of

BBNs in process improvement.

6.1.1 Bayesian Belief Networks

In Chapter 4, we have given a very brief introduction to BBNs. We will now make the

definition of a BBN more formal. A BBN (Krause, 1998; Jensen, 1996) is a Directed

Acyclic Graph (DAG) which is composed of nodes and directed arcs. The nodes represent

domain variables X1, X2,…, Xn and the directed arcs represent the causal relationships

between the variables. BBNs assume variable independence, i.e., a variable depends on

its parents only and on no other variable in the network. A node has a Node Probability

Table (NPT) which stores the conditional probability values of the associated variable.

Let us assume that the node representing variable X which can have states x1, x2, …, xk

and P(xj) is the probability of X satisfying the state xj. Then the NPT stores the value:

P(xj | Parents (X)) for each possible state xj of the variable X. If X is a root, i.e. a node

without parents, then NPT stores the marginal probability distributions i.e. the value of

P(xj). for each j = 1…k. It is worth noting that nodes are usually discrete represented by a

set of mutually exclusive and exhaustive states (although they can also be continuous and

use parametric probability models such as the normal distribution).

Figure 6.1 represents a simple BBN for defect estimation. The variable residual defects

(defects that remain after delivery) depends on the variable defects introduced in the

 122

source code and the variable defects detected during testing. Each such variable can be in

either of the states “low” and “high”. The NPTs for the nodes are as given in the figure.

For instance, when defects inserted is high and defects detected is low, then the

probability that the residual defect is high is 0.95. Other entries in the NPTs can be

similarly explained. Note that the node defects inserted has no parents; so, its NPT stores

only the marginal probabilities.

Figure 6.1 Example of BBN for Estimates of Residual Defects

Tools supporting BBNs usually provide two modes of operation: (i) edit mode allowing

creation of networks and probability tables, and (ii) query mode in which evidences are

provided and the resulting probabilities are visualised (the evidence results in

probabilities getting propagated in the network). For instance, if we have no additional

information about a project, Figure 6.2 shows the default probability values of each

variable. Therefore, we cannot make any meaningful inferences.

 123

Figure 6.2 Query mode without Observations

However, if we have the additional information that defects inserted is low and a high

number of defects were detected during testing (variable inserted and detected get the

values low and high respectively), the BBN predicts that the probability of residual

defects being low is 0.8 and the probability of being high is 0.2. Figure 6.3 demonstrates

such a scenario. Dark bars in the probability windows show where evidences have been

entered; and the light grey bars show the impact of the evidence.

 124

Figure 6.3 Run-mode with Observations

Construction of BBNs involve a lot of intellectual activities in the sense of identifying the

variables, the relationships between then and obtaining the entries in the NPTs. Therefore,

expert guidance along with information from past project data, if available, are used in the

generation process. In Section 6.3, we will describe how to automate some of the

activities of the process of creating BBNs when data about the concerned variables are

available.

6.1.1.1 Inference Using Bayesian Belief Networks

A BBN can be seen as an inference system such that if the state of a certain node is

known (evidence or observed fact) its probability table is altered to reflect this

knowledge. Such knowledge is then propagated in the network to determine the changed

probabilities of other nodes, i.e., the inference mechanism calculates the posterior

probability distribution P*(X | E) given evidence E (X is the variable under

consideration).

 125

The complexity of making inferences using BBNs is known to be a NP-hard problem

(Cooper, 1987). However, exact and approximate algorithms have been proposed in the

literature to propagate evidences in BBNs very efficiently for some restricted types of

BBNs which are sparse in nature. It is believed that for domains in which humans can

reason effectively are usually represented by sparse graphs (D'Ambrosio, 1999).

Therefore, software engineering problems, especially the ones concerned with project

management, can be represented by sparse graphs, and hence tools can do computation

over them with reduced complexity.

6.1.1.2 BBN Modelling

There are two issues related to the construction of BBNs. The first one concerns with the

structure of a network and the second concerns with determining the probabilities

associated with each node in the network. We can obtain such information from domain

experts, from past project data or by using a combination of both. The construction

procedure involves the following steps:

• First, it is necessary to find out the variables of interest from the problem domain.

Domain knowledge should be used to select only the meaningful variables.

• For each such variable, we determine a set of mutually exclusive and exhaustive

values (or ranges of values). Each variable becomes a node in the network.

• We then obtain the topology of the network, i.e., causal relationships between the

selected variables is determined; the relationships are then modelled as directed

edges in the network.

• The last step concerns with the elicitation of probability values for the NPT of

each node in the network.

It is usually not easy to build a model in a single sequence; several cycles may be needed

to obtain a more accurate network.

 126

6.2 Related Work

6.2.1 BBNs in Software Engineering

Neil and Fenton have used BBNs (1999a) to estimate defect density. They have

considered high-level factors like developer skill, and traditional factors such as effort,

complexity of the design etc. They have shown how it could be possible to include

variables in a software reliability model that correspond to processes as well as product

attributes. The authors have also developed, under the SERENE project in the area of

safety and risk evaluation, a tool to create a larger network from smaller networks (Neil et

al, 2000). Fenton et al. also carried out the DATUM (Dependability Assessment of safety

critical systems through the Unification of Measurable) project in which they have used

information from diverse sources which were often uncertain and subjective (Fenton,

1995). They have used BBNs to estimate a system’s reliability and safety.

Wooff et al (2002) discuss how the Bayesian approach could be applied to the problem of

software testing. The authors state that BBNs can be used to drive test design, answer

what-if questions, and provide decision support to managers and testers.

Delic et al have used BBNs as an aid for the assessment of software dependability and for

the feasibility of their use (Delic et al, 1995). Their goal is to validate the probability of

failure per demand of the target system. They used historical data for the initial

construction of the BBN.

According to Ziv (Ziv and Richardson, 1997), the Maxim of Uncertainty in Software

Engineering (MUSE) states that uncertainty is inherent and inevitable in software

development process and products. As a consequence software uncertainties should be

modelled and managed explicitly and BBNs are the chosen mechanism. MUSE shows a

detailed presentation of uncertainty in software testing and lists three possible categories

that uncertainty modelling could be used. (i) confirmation of certain characteristics and

behaviours of software systems; (ii) evaluate the software qualities, properties, or the

 127

design/test processes; and (iii) prediction of the system properties by exploring the

uncertainties in the new system requirements and corresponding new designs.

6.2.2 Related Approaches to Estimation and Prediction

Shepperd et al (1996) classify estimation and prediction techniques into three main

categories: (i) expert judgement; (ii) algorithmic models; and (iii) machine learning.

6.2.2.1 Expert Judgement

Expert judgement is based on experts’ previous experience on similar projects. Although

it has been formalised using the Delphi’s approach (Boehm, 1981) to combine several

expert opinions, its major drawback is that the means of deriving estimates are not

explicitly defined (black-box) and therefore, not repeatable. Although it is difficult to

quantify, expert judgement can be an effective estimating tool on its own or as an

adjusting factor for other.

6.2.2.2 Algorithmic models

Algorithmic models represent the relationship between variables, usually effort (e.g.

person-month) and one or more of a project’s characteristics such as software size and

complexity. Such models include COCOMO (Boehm, 1981), SLIM (Putman, 1978) and

function points in many flavours such as COSMIC FFP (Abran, 1999), Albretch

(Albretch, 1979), Mark II (Symons, 1988) etc. Algorithmic models provide repeatable

estimations and are well understood by all stakeholders of software development.

Regression techniques (Briand et al, 1999) are a kind of algorithmic techniques which

looks for an equational model to fit a set of observed data values. The linear least square

method finds the line that minimises the sum of squared errors. A problem with this

method is that it assumes a normal distribution and cannot cope well with outliers.

Regression analysis can be made more robust for outliers using the least median squares

method. Least median square regression analysis is suitable for small data-sets, and it is

sensitive to abnormal observations and errors.

 128

6.2.2.3 Machine learning

We briefly summarise here some machine learning techniques and expert systems

paradigms used in software engineering.

6.2.2.3.1 Rule-based Systems

A rule-based system (Rich and Knight, 1991) consists of a library of rules of the form:

if (assertion) then action.

Such rules are used to elicit information or to take appropriate actions when specific

knowledge becomes available. These rules reflect a way to reason about the relationships

within the domain. Their main advantage is their simplicity. However, they are mainly

appropriate for deterministic problems, which is not usually the case in software

engineering. To overcome this problem, rules can also contain a certainty measure in the

premises and/or in the conclusions. Fuzzy logic is the most popular scheme for

incorporating such uncertainty in rule based systems. An advantage of fuzzy logic is that

fuzzy values such as ‘low’, ‘medium’ etc are intuitive and easy to understand.

6.2.2.3.2 Case-based Reasoning

This model intends to mimic the process of an expert making a decision using previous

experience (Gray and MacDonell, 1997). Earlier observations are stored, and when faced

with a new observation, the closest matching stored values are retrieved. A case-based

reasoning system includes a data pre-processor, a similarity function to fetch similar

cases, a predictor to estimate output value and a memory updater to store new cases.

6.2.2.3.3 Neural Networks

Neural Networks (NN) are used for pattern recognition and classification (Picton, 2000).

The architecture of a NN consists of an input layer, an output layer and possibly several

hidden layers in between them; except for the output layer, nodes in a layer are connected

to nodes in the succeeding layer. Such connections have weights and the nodes have

threshold functions to determine the network behaviour. In software engineering, the

 129

input layer may be comprised of attributes such as lines of code, development time etc.

and the output nodes could represent attributes such as effort and cost. NNs are trained

with past project data, so that when a new project arrives, NNs can estimate the new

project attributes according to previous patterns.

6.2.2.3.4 Decision Trees

Decision trees (Breiman et al, 1984) are used for predicting or explaining outputs from

observations. In such a tree, each node is a leaf indicating a class or an internal decision

node that specifies some test to be carried out. If the output values conform to intervals,

then the decision trees are called regression trees, whereas if they do correspond to a

nominal or ordinal scale they are called classification trees. There are many tree-building

algorithms such as C4.5 (Quinlan, 1993) which determine which attributes best classifies

the remaining data, and then the tree is constructed iteratively. The main advantage of

decision trees is their immediate conversion to rules that can be easily interpreted by

decision-makers (Aguilar-Ruiz et al, 2002).

6.3 Mining Software Engineering Data using BBNs

In this section, we will show how data mining techniques and BBNs can help to acquire

knowledge about the software engineering process of an organisation. We first describe

some of the terminology that we will use. Domain knowledge refers to the whole

information specific to a field. Users may have a limited subset of the whole knowledge,

called background knowledge. New or discovered knowledge can be obtained in a

deductive or inductive way. Deduction infers information as a logical consequence of the

data (e.g. average cost of a project). Induction infers information by generalising the

information. The computational techniques and tools designed to support the automation

of inductive learning, i.e., extraction of useful knowledge from data, are called machine

learning techniques. More recently, terms like data mining or Knowledge Discovery in

Databases (KDD) have come to be used in place of machine learning. In general, KDD

 130

techniques try to extract in an automatic way the information useful for decision support

or exploration of the data source (Fayyad et al, 1996).

Since data may not be organised in a way that facilitates the extraction of useful

information, typical KDD processes are composed of the following steps:

(i) Data preparation. The data is formatted in a way that tools can manipulate it.

(ii) Data selection and cleaning. There may be missing, noisy and uncertain data

in the raw dataset.

(iii) Data mining. It is in this step when the automated extraction of knowledge

from the data is carried out.

(iv) Proper interpretation of the results, including the use of visualisation

techniques.

(v) Assimilation of the results.

6.3.1 Learning BBNs From Data

For generating BBNs from past project data some semi-automatic procedures are

available in the literature (Castillo et al, 1997). The process is composed of two main

tasks: (i) induction of the best matching qualitative dependency model from data and

prior knowledge; and (ii) estimation of the local probabilities. There are two approaches

to learning Bayesian Networks from data (Castillo et al, 1997): (i) search and scoring

methods and (ii) dependency analysis methods.

In search and scoring methods, the problem is viewed as a search for a structure that fits

the data best. Starting with a graph without edges, the algorithm uses a search method to

add an edge to the graph. Then the scoring method checks whether the new structure is

better than the old one. If so, the edge is kept and a new edge is tried. The algorithm stops

when there is no better structure. This problem is known to be an NP-hard problem

(Castillo et al, 1997), therefore, many of the methods use heuristics to reduce the search

space with node ordering as an input. Well-known search and score algorithms include:

Chow and Liu (1968) Tree Construction Algorithm, K2 (Cooper and Herskovits, 1992)

etc.

 131

Dependency analysis methods follow a different approach. These methods try to find

dependencies from the data which in turn are used to infer the structure. Dependency

relationships are measured using conditional independency tests (Castillo et al, 1997).

6.3.2 The Process of Creating BBNs from Data

The typical steps of a BBN based data mining process are presented in Figure 6.4. We

will illustrate this process following an example in the context of estimation in Web

Engineering using the dataset provided by Mendes et al (2002).

SW Eng
Data

Pre-process Structure
Learning

Prior domain knowledge editing

Estimate
Parameters

Inference
with a BN

tool

Figure 6.4 Process Steps to Obtain BBNs from Data

The Dataset:

The dataset is composed of 37 Web applications which were created by final year

undergraduate students from the University of Auckland attending the Hypermedia and

Multimedia Systems course (Mendes et al, 2001). The experiment consisted of designing

and authoring Web applications using a minimum of 50 documents. A questionnaire was

used to measure characteristics of the Web applications developed and the effort involved

in designing and authoring those applications. The dataset provided by Mendes et al

(2001) discarded six questionnaires because they were considered outliers. Subjects were

given a training prior to designing and authoring the Web applications, and therefore,

 132

subjects’ authoring and design experiences were considered similar. All Web applications

used a hierarchical structure without any server side component (i.e., infrastructure) and

were developed using only simple text or Web editors.

This dataset is shown in Table 6.2. From this dataset, the authors identified 8 variables

that characterise a Web hypermedia application and its development process (refer to

Table 6.1).

Metric Description
Page Count (PaC) Number of HTML or SHTML files used in the application
Media Count (MeC) Number of media files used in the application (not reused)
Program Count (PRC) Number of JavaScript files and Java applets used in the application
Reused Media Count (RMC) Number of reused/modified media files (black- or white-box reuse)
Reused Program Count (RPC) Number of reused/modified programs
Connectivity Density (CoD) Total number of internal links divided by Page Count (students did not used

external links, i.e. links to other Web sites)
Total Page Complexity (TPC) Average number of internal links divided by Page Count
Total Effort (TE) Estimated amount of effort in person hours to design and author the application

Table 6.1 Size and Complexity Measures (Mendes et al, 2002)

 133

ID
TEFFOR
T

Page
Count

Media
Count

Program
Count

Connectivity
Density

Total Page
Complexit
y

Reused
Media
Count

Reused
Program
Count

1 79.13 43 .00 .00 8.72 1.18 42 0
2 133.1 53 53.00 1.00 17.73 2.21 53 0
3 145.5 75 21.00 .00 16.85 1.00 64 0
4 135.4 100 2.00 .00 9.02 1.00 0 0
5 128.4 50 82.00 .00 13.90 1.00 27 0
6 106.6 53 11.00 .00 7.58 1.00 57 0
7 100 54 .00 .00 2.57 1.26 54 0
8 112.6 52 36.00 .00 6.36 1.07 43 0
9 101.3 54 26.00 .00 13.20 1.07 27 0
10 87.05 50 13.00 2.00 10.62 1.00 8 0
11 81.54 60 .00 .00 21.43 .28 2 0
12 113.8 51 .00 .00 7.19 1.00 89 0
13 58.36 41 4.00 .00 3.19 1.00 2 0
14 153.8 51 74.00 1.00 21.62 1.94 75 0
15 112 61 8.00 .00 9.00 2.07 50 0
16 122.2 66 .00 .00 2.57 .77 66 0
17 125.1 59 66.00 .00 16.54 1.88 15 0
18 139.8 62 21.00 .00 12.27 1.99 87 0
19 128.5 59 13.00 .00 15.52 2.51 82 0
20 115.5 50 5.00 1.00 12.24 1.00 81 0
21 119.7 53 63.00 .00 23.30 1.11 7 8
22 106.1 53 30.00 3.00 1.69 .17 10 0
23 73.81 55 .00 .00 6.83 .00 0 0
24 147.4 44 126.00 .00 13.95 1.00 30 0
25 152.8 66 28.00 .00 7.21 .98 94 0
26 120 66 27.00 .00 13.56 1.00 31 0
27 73.01 43 .00 .00 8.72 1.19 30 0
28 101.8 53 1.00 .00 1.69 1.05 59 0
29 97.3 56 25.00 .00 2.76 1.75 15 0
30 76.23 53 .00 .00 4.86 .19 10 0
31 137.2 51 20.00 .00 16.67 1.00 112 0
32 117.4 55 25.00 .00 4.32 1.00 57 0
33 60.79 33 16.00 1.00 5.00 1.00 6 0
34 141.4 52 48.00 5.00 16.30 1.85 45 0

Table 6.2 Raw Dataset

Data pre-processing:

In order to create a BBN from data, it needs to be pre-processed. Typically, this process

consist of discretising data and dealing with missing values. In our case, we did not have

any missing values but it was necessary to discretise most of the variables. We need to

decide whether a variable is continuous, the number of intervals and the discretisation

method, usually by frequency or range. Naturally, we lose some of the available

information in the process.

 134

 Table 6.3 partially shows the pre-processed dataset where new columns with discretised

data have been added. Columns that were already discrete and new columns with

discretised data will be used in the learning process.

ID TE PaC MeC PRC … TE_d PaC_d MeC_d
1 79.13 43 0 0 … <92.175 <50.5 <0.5
2 133.1 53 53 1 … >128.45<150.1 >50.5<53.5 >27.5<78
… … … … … … … … …
34 141.4 52 48 5 … >128.45<150.1 >50.5<53.5 >27.5<78

Table 6.3 Preprocessed Data

Learning process:

This process consists of learning the network structure and generating the node

probability tables.

In order to learn the structure, we need to apply domain knowledge both before and after

the execution of the learning process. Before executing the learning process, it may be

necessary to totally or partially define the structure of the network (node ordering for

known causal relationships, forbidden links and root/leaf nodes) and some parameters

such as thresholds for the accepted dependencies. After executing the algorithm, we may

need to edit the network to add, remove or label arcs if it was impossible to do this from

the data.

There are several projects under the GNU license that implement well-known search and

scoring and dependency analysis algorithms in Java. Those algorithms can be integrated

into the USEGESOFT tool easily. However, we found that using wizard-like GUI

interfaces to define the structure facilitates the above task. Among these software

packages we used BNPC tool (Cheng, 2001) and Bayesware Discoverer (Ramoni and

Sebastiani, 2002). Figure 6.5 shows a possible BBN generated after running the BBN

Power Constructor tool.

 135

Figure 6.5 Learning Process using the BNPC Tool (Cheng, 2001)

Figure 6.5 shows a screenshot of the BNPC tool and the generated network. In this case,

the tool was not able to assign directions to the links between the nodes with the data

available, hence the need to modify the network by hand. It is to be noted that expert

domain knowledge may be required for such editing. Once the structure is defined, the

probabilities of the links are estimated from the data by the BNPC tool.

 136

Figure 6.6 BBN generated from Mendes’ dataset

At this stage the resulting network can be used by Bayesian network inference tools; in

our case, we used USEGESOFT tool which includes a modified version of the JavaBayes

tool (Cozman, 2001). Figure 6.6 shows the final network from which we should be able to

show how predictions might be made and historical results can be explained more clearly

(Figure 6.7 and Figure 6.8). For example, it would be possible to estimate the total effort

of the authoring of a Web application once we have approximate knowledge about other

parameters of the Web application such as number of pages, amount of media used,

number of JavaScripts etc. It is worth noting that in this case the output will be a

distribution of probabilities instead of a single value. Naturally, the value or the range

with the highest probability is taken as the expected answer.

 137

Figure 6.7 Evidences Window of a BBN for Web Authoring Estimates

Figure 6.8 Probabilities Window of a BBN for Web Authoring Estimates

Validation of the BBN:

It is important that we need to validate a BBN once it is created from historical data.

Presently, we will compare the results obtained from this network with the actual dataset

from which we obtained the network. Note that our approach is not a proper validation

technique; however, this will give us some confidence about the effectiveness of the

network.

Table 6.4 shows the maximum, minimum and the mean values of the 8 variables in the

original dataset. We use the network to obtain the value of TE (total effort) by feeding to

the network the values of the remaining variables. For the minimum values of the

variables (minimum values of each variable in the dataset), Table 6.4 says that TE has a

value of 58.36. The network shows (refer to Figure 6.9) that the probability that the value

of TE remains less than 92 is 55%, and the other possible values of TE are very low.

When the maximum values are considered, the table shows that value of TE is 153.78,

 138

whereas the Figure shows that the probability of TE being 150 is maximum (33%). So far

as the mean values are considered, the table shows that TE has a value of 111.89, whereas

the network shows that the probability of the TE value remaining between 92 and 128 is

high. The results that we obtain from the BBN are shown in Figure 6.9. Figure 6.10 show

the probability distribution of the variable TE (Total Effort) when minimum values are

given as evidence. This is in consistent with the actual results in the given dataset. In a

BBN, the expected value and the variance of a node can be obtained by using the standard

equations, i.e.:

µ = E[X] = ∑ =
i

ii xXPx)(

Var (X) = E(X2) - µ

where xi is the outcome of X at sample point i.

Metric Mean Min Max
PaC 55.21 33 100
MeC 24.82 0 126
PRC 0.41 0 5
RMC 42.06 0 112
RPC 0.24 0 8
COD 10.44 1.69 23.3
TPC 1.16 0 2.51
TE 111.89 58.36 153.78

Table 6.4 Summary Statistics

0
10
20
30
40
50
60

<92
.1

92
.1<

TE<1
13.2

11
3.2

<T
E<1

28
.45

12
8.4

5<
TE<15

0.1

>15
0.1

TE

%

Mean
Min
Max

Figure 6.9 Output Probabilities for the Variable Total Effort (TE)

 139

Figure 6.10 Probability Distribution with Minimum Values

What we can say from these results is that the values obtained by the network

approximate the actual values to a large extent, although they are not that accurate. The

reason is that the number of cases considered in the dataset is not that high (34).

The most common way of validating the predictive accuracy of this type of models is

based on cross validation, which divides the database in parts and then, for each part, it

predicts the values of a set of variables by estimating the conditional probabilities of the

network from the remaining parts. However, Kirsopp and Shepperd (2002) have

investigated problems with this hold-out approach concluding that using small dataset can

lead to almost random results. Furthermore, the network construction process uses expert

knowledge at intermediate stages, which might have not been perfect in our case.

6.4 Use of BBNs in Process Improvement

In this section, we will use BBNs as an aid during process improvement. We will first

present an introduction to the type of process improvement that we are dealing with.

6.4.1 The PROFES Methodology

The number of candidates for improvement in a process is large, but also each process has

many aspects (or factors) that may need improvement; in other words, many

 140

improvement actions are possible for any individual process. However, the cost of

implementing improvement actions can be high. Furthermore, an end-product has many

quality factors that may be improved. So, the optimal choice is to choose a few of the

end-product quality factors, find out which improvement actions can lead to the

improvement of such product quality factors, and implement those specific actions. This

is the philosophy behind Product Focused Process Improvement (PFPI) (PROFES,

2002a).

Implementation of improvement actions is a costly activity; therefore, it would be better if

we could predict the impact of an improvement action before it is implemented. In this

chapter we will use Bayesian networks to predict the impact of an improvement action in

the context of the PROFES (PROduct Focused process improvement or Embedded

Systems) methodology (PROFES, 2002a).

The PROFES improvement methodology identifies a few important quality goals of the

final product which need to be improved. Typical such goals are: (i) to decrease the defect

density of an artefact, (ii) to increase the reliability of the end-product, (iii) to improve the

fitness for use of the final product, and (iv) to improve the predictability of the quality,

time and cost of the development of the product etc. Next, all improvement actions are

identified from a PPD (Product Process Dependency) (PROFES, 2002b) repository

which, possibly, will lead to the desired product quality improvements. As the number of

such improvement actions could be large, a few important ones need to be identified and

implemented.

PPD repositories are the core element of the PROFES improvement methodology. They

contain an organised collection of PPD models. A PPD model describes the impact of a

particular improvement action using a template on a certain software quality characteristic

when applied in a certain development process in a specific project context. Table 6.5 and

Table 6.6 respectively show the structure of two PPD models that we have used from

(Pfahl and Birk, 2000). PPD model A indicates that to get a better defect density in the

final product, formal inspection should be applied to code development process under the

following context characteristics. The project type should be either semi-detached or

 141

embedded; it can be of any project size, and the manpower skill must be either average or

high. The meaning of PPD model B can be interpreted similarly.

PPD Model A

Product Quality Defect Density
Process Code Development
Improvement action Formal Inspection
Context Section
CF-1 Project Type Organic,semi-detached,embedded
CF-2 Project Size Small,average,large
CF-3 Manpower Skill Small, average, high

Table 6.5 PPD Model A (Pfahl and Birk, 2000)

PPD Model B

Product Quality Defect Density
Process Design Development
Improvement action Formal Inspection
Context Section
CF-1 Project Type Organic,semi-detached,embedded
CF-2 Project Sise Small,average,large
CF-3 Manpower Skill Small, average, high

Table 6.6 PPD Model B (Pfahl and Birk, 2000)

The six phases of PROFES improvement cycle are (van Latum and van Uijtregt, 2000):

• Characterise: Current product quality is evaluated by analysing available product

quality data. Customer feedback, customer surveys, market research results,

internal interviews etc. provide information for product quality needs.

• Set Goals: Final product improvement goals are set. Necessary process changes

are determined by referring to the PPD repository. Those PPDs which match the

current project context and the product quality needs are the candidates for

selection. Corresponding process improvement actions are then obtained. If there

are many improvement actions, then the most important ones are selected by

expert judgment or from previous simulation results (Pfahl and Birk, 2000).

• Plan: Plans for implementing the process changes are made which may include

training needs, progress training etc. A measurement program, possibly based on

the GQM method (Basili et al, 1994), is initiated.

 142

• Execute: The improvement actions are implemented according to the plan. If

necessary, corrective actions based on feedback analysis are taken.

• Analyse: Evaluate the measured data to find out if the improvement actions

indeed resulted in improved product quality. The lessons learned are captured and

evaluated.

• Package: Experience gained from the project is stored for further use. The PPD

models in the repository may be enriched based on the acquired knowledge.

6.4.1.1 Evolution of a PPD Repository

An organisation is expected to have its own PPD repository for its PFPI programme. But

questions may arise as to how to do this. The organisation should start with a tentative list

of PPD models based on experience or obtained from the PROFES PPD repository. The

PROFES project has identified a set of such models from an extensive investigation of the

process-impact on product quality. It is obvious that such PPD models are generic in

nature and they must be tailored for a specific organisation. Such refinement of a PPD

model can be performed by using past project data and/or by conducting process

assessment(s). PFPI can then be initiated on the basis of the refined PPD models. Every

improvement cycle will come up with new knowledge, which, in turn, can be used to

refine the corresponding PPD models. Thus, over a period of time, the customised PPD

repository of an organisation will attain a level of stability.

6.4.2 Prediction of PPD Models through BBN

Under the PROFES improvement methodology, it is crucial that we should have some

idea about the outcome of a PPD model before it is implemented. One way to have such

knowledge is to generate empirical evidence from pilot applications. However, such an

approach is not only expensive but it also can be risky. Therefore, it would be appropriate

to use simulation models to predict the outcome of PPD models before they are selected

for implementation. Pfahl and Birk (2000) have used system dynamics to perform such a

simulation of PPD models. We intend to use BBNs, already discussed in Chapter 6.

 143

Figure 6.11 BBN for PPD Model A

A PPD model can be represented as a BBN (Satpathy et al, 2002a); for example, the BBN

of Figure 6.11 represents the PPD model of Table 6.5. The BBN shows that the quality of

code development depends on project-type, project-size and manpower-skill. The defect

density in the final product depends on formal inspection and the experience of the

inspection team. Conditional probabilities are assigned to each node through expert

judgment. Figure 6.12 shows that when there is no formal inspection and the quality of

developed code is medium, the defect density of the final product is likely to be high.

However, if we use an experienced inspection team, then the defect density can be

brought down. Such a scenario is shown in Figure 6.13.

The probabilities associated a BBN representing a PPD model are supposed to be tuned to

the capability of an organisation; in other words, such values represent to what extent

each of the context factors influence the outcome of the application of the PPD model.

Such values are refined as new experience is gathered from implementation of

improvement actions. So when we use a network to predict the outcome of the

corresponding PPD model in advance, in all likelihood, we would succeed in our

 144

prediction. Coming back to the example discussed above, if a number of PPDs are

available for decreasing defect density then their corresponding BBNs can be analysed,

and such a analysis will reveal which PPD model is most effective in bringing defect

density down. Furthermore, the impact of a combination of PPD models can also be

obtained by constructing a BBN which can predict the combined impact of the

corresponding improvement actions. The appropriate combination can then be selected

for implementation. Currently, we implement this by hand; though clearly it could be

done with tool support.

Figure 6.12 Analysis of BBN without Formal Inspection

Figure 6.13 BBN Analysis with an Experienced Formal Inspection Team

 145

6.5 Discussion

6.5.1 Properties and Limitations of BBNs

We first look at the general properties of BBNs and then focus on how BBNs can

overcome some the problems with traditional metrics and methods in software

engineering. As Fenton (1999a) states: “The key to more powerful use of software metrics

is not in more powerful metrics. Rather it is in a more intelligent approach to combining

different metrics …. Once you are comfortable with such an approach you may need to

look at more advanced statistical techniques for achieving a real prediction system. BBNs

is such an approach that we feel provides the most promising way forward”.

BBNs have a number of features that make them suitable for dealing with problems in the

software engineering arena:

• Graphical representation: In a BBN, a graphical notation represents in an explicit

manner the dependence relationships between the entities of a problem domain.

• Qualitative and quantitative modelling. BBNs are composed of both a qualitative

part in the form of a directed acyclic graph and a quantitative part in the form of a

set of conditional probability distributions. Therefore, BBNs are able to utilise

both subjective judgements elicited from domain experts and objective data (e.g.

past project data).

• Bi-directional inference. Bayesian analysis can be used for both forward and

backward inference, i.e. inputs can be used to predict outputs and outputs can be

used to estimate input requirements. For example, we can predict the number of

residual defects of the final product based on the information about project size,

project complexity, design effort etc. Furthermore, given an approximate value of

resisual defects the BBN will provide us with a combination of allowable values

for the design effort, testing effort etc. which could satisfy the desired number of

residual defects.

• Explaining away: If we have more accurate information about some variable in

the network, its impact on all other variables can be observed in the network.

Because of the dependency

 146

• Sensitivity analysis: It is possible to perform sensitivity analysis using Bayesian

networks quite easily, i.e., how sensitive is a conclusion given set of evidences

just changing some of the evidences.

• Uncertainty. There are many sources of uncertainty, such as distortion,

incompleteness and irrelevancy (Krause and Clark, 1993). In common with all

Bayesian systems, Bayesian networks model “degrees of belief” (equivalent to

probabilities) rather than exact value or range of values. This means that

uncertainty can be handled effectively and represented explicitly.

• Confidence Values. The output of a BBN is a probability distribution for each

variable instead of a single value. This sort of information can be used as a

measure of confidence in the result, which is essential if the model is going to be

used for decision support.

In spite of previously stated advantages, Bayesian networks have the following

limitations:

• Structure. It may be difficul to describe a complex structure which could even be

complex for experts especially if the problem area is new. So there is the

possibility of mismatch between the problem domain and the constructed model.

• Hidden variables. If two variables had a hidden relationship, then there would

often be a dependency between them and the model might have not taken this into

account.

• Inconsistent probabilities. In a system with a large number of variables, it can be

difficult ensure that probabilities are consistent. Inferences of a BBN may only be

useful if the prior knowledge is reliable. A poor estimation of prior beliefs will

distort the entire network and invalidate the results.

• When constructing the BBNs from data there are also numerous sources of error.

For example, as we have commented in previous sections when discretising

variables there is always loss of information, missing values from the database,

etc.

 147

From the software engineering point of view, BBN are a useful tool as they provide a way

of dealing with some of the limitations of traditional approaches:

• BBN deal with uncertainty. As stated by Kitchenham and Linkman (1997) many

areas in software engineering are driven by uncertainty. A typical example of

reasoning under uncertainty is as follows. If a project manager, for instance,

makes the observation that a software module has many post-release defects, then,

the project manager has a higher belief that the module was very complex or

poorly tested. BBN models can predict events based on partial or uncertain data,

i.e., making good decisions with data that is scarce and incomplete. Uncertainty is

inherent in Software Engineering. For example, Kitchenham and Linkman (1997)

state that estimates are a probabilistic assessment of a future condition and that is

the main reason why managers do not obtain good estimates.

• Software Engineering entities are typically influenced by many factors. BBNs

allow us to create and manipulate complex models to understand chains of events

(causal relationships) in a graphical way that might never be realised using

conventional methods. Moreover, it is possible to include variables in a model that

correspond to processes as well as product attributes.

6.5.2 BBNs vs. other Machine Learning Techniques

Neural Networks vs. BBNs: NNs have been shown to produce favourable results when

used with sufficiently large datasets. A difference between BBNs and NNs is that NNs

cannot handle uncertainty. Furthermore, NNs offer a black-box view in the sense that

they do not provide information about how the results are reached. Another difference is

that hidden layers and weights do not provide information about the domain (they only

have a meaning in the context of the functionality); however, all nodes in a BBN and their

probability tables provide information about the domain and can be interpreted. Another

disadvantage of NN compared to BBNs is that expert knowledge cannot be incorporated

into a NN. Probabilities can be introduced into a BBN using expert knowledge, past data

or using a combination of both, while in NNs it is only possible through training with past

project data. Moreover, it is not possible to change the parameters of the network once the

 148

learning process has finished. Finally, it is to be noted that a over-trained NN loses its

ability to generalise.

Rule-base systems vs. BBN: The main difference between BBNs and rule based systems

is that rule based systems model experts’ way of reasoning while BBNs model

dependencies in the domain. Another difference is that the propagation of probabilities in

BBNs uses a global perspective in the sense that any node in a BBN can receive

evidences, which are propagated in both direction of the edges. In addition, simultaneous

evidences do not affect the inference algorithm. BBNs as well as fuzzy logic systems also

provide less commitment to exact values as predictions can be defuzzied into linguistic

labels to handle uncertainty.

6.5.3 Further Extensions to BBNs

The BBNs that we have seen so far are not very flexible, that is, once a network is

created, it provides no way to adapting to a changing domain. Moreover, some complex

systems cannot be represented by BBNs properly because those systems contain a large

number of variables or because we may need to model many similar situations with

different configurations. In order to mitigate these problems, researchers are providing

mechanisms to create a complex system from several smaller systems.

Pearl (1986) defines idioms as fragmented structures of causal organisations which are

being assembled on the fly from a stock of building blocks. Idioms act as building blocks

that can be joined together to obtain bigger systems. Furthermore, using idioms can help

to identity the granularity of the modelling process. Neil et al. (Neil et al, 2000) extended

this notion and proposed an idiom framework to help practitioners build large scale BBNs

exploiting ideas from Object Oriented Bayesian Networks. The authors also provide a

BBN life-cycle process using idioms.

Object Oriented Bayesian Networks (OOBN) provide a way to represent large scale

BBNs through modularisation (Koller and Pfeffer, 1997). The authors exploit the fact that

the same components in a large system may appear several times in a model having their

 149

own identity. They provide a mechanism to quickly combine the different sub-models to

model a particular configuration and reduce the amount of work by reusing sub-models.

In OOBNs, both knowledge declaration and probabilistic inference are modular.

Influence Diagrams (ID) are Bayesian networks which have been extended for decision

making (Jensen, 1996). In a decision making scenario, it may be beneficial for the

decision maker to acquire additional information before a decision is made. Influence

diagrams are BBNs extended with new types of nodes called utility and decision nodes to

explicitly model various decision alternatives and the utilities associated with these. An

example is a decision on whether or not to carry out code inspection. The result of

carrying out code inspections can reduce the number of defects but it may not be worth

the cost. Althoug it is possible to construct a model for decision making with BBNs, the

concepts of utility and decisions are not explicitly covered by general Bayesian networks.

Dynamic Bayesian Networks (Ghahramani, 1997) are able to model time relationships.

Many entities in problem domains are modeled with variables whose values change over

the time. Dynamic Bayesian networks capture this process by representing multiple

copies of the state variables, one for each time step.

6.6 A Validation Framework for BBNs

In this section, we will present the framework proposed by Kitchenham et al (2002)

which validates influence diagrams and show its relevance in relation to BBNs. Their

evaluation framework is composed of five quality aspects: (i) syntactic quality, (ii)

semantic quality, (iii) pragmatic quality, (iv) test quality and (v) value quality. For each

quality aspect, the authors define goals and means to achieve them. Although their

evaluation framework was designed for a bidding problem, it can also be used for

evaluating dynamic systems such as BBNs and System Dynamic models. We will now

discuss such issues in detail.

 150

(i) The syntactic quality goal is syntactic correctness. BBNs have a well defined

syntax based on graph and probability theories and therefore they are

amenable to automation.

(ii) The semantic quality goal comprises of feasible validity and feasible

completeness. In the context of BBN, feasible completeness mean that the

model include all the relevant causality relationships (nodes and arcs) in the

domain. Feasible validity refers to the correctness of such relationships to the

domain. Kitchenham et al define ‘traceability to the domain’ as the model

property that supports the semantic quality goals. This is valid in the context

of BBN because the causality relationships have to be reflected in the domain.

In our opinion, semantic quality goals are the most difficult to achieve in the

context of BBNs and since they are related to the problem of knowledge

elicitation. Since the problem of building BBNs inevitably involves domain

experts, it is necessary to provide them with techniques (i) for constructing the

structure of BBNs, and (ii) to elicit their conditional probability values. Fenton

et al (1999a) have concentrated on the problem of specifying sensible graph

structures extending the idea of Object Oriented BBNs (OOBBNs), where

fragments of BBNs can be combined together into larger ones. The authors

have developed a prototype called SERENE based on these ideas (Neil et al,

2000). Other approaches include the similarity graph of Heckerman (1991),

which exploits the clinical technique of differential diagnosis to elicit directed

graphical structures. The work by Druzdzel and van der Gaag (1995) is an

example of how to elicit probabilities for the NPTs.

There is always an element of subjectivity in the specification of BBNs. Use

of data mining techniques can help to reduce this because the structure of the

BBNs and their parameters can be learnt directly from data. However, when

following this approach, there can be other problems related to the quality of

data, size of the dataset, algorithms utilised etc. For example, missing data

complicates the learning process; or what is worse, if the data is ‘false’, the

 151

learned model will also be ‘false’. Discretisation of variables also results in

loss of information.

Kitchenham et al proposed inspections aimed at checking that the model

includes definitions, detail and scope information of the variables. This is an

appropriate technique for evaluating BBNs because experts can notice whether

the model behaves differently when compared with reality. Other techniques

that can be applied include sensitivity analysis to identify unnecessary

features, consistency checking etc. When constructing the Bayesian network

using data mining techniques, thresholds that are used to decide node

dependencies should be considered carefully.

(iii) Pragmatic quality deals with the issue of how to express a model and it

comprises of two goals: feasible comprehension and feasible understandability

(Kitchenham et al, 2002). Methods to facilitate comprehension include

visualisation, explanation and filtering which can be assessed through

empirical studies. Expressive economy and structuredness are model

properties that enable the feasible understandability quality aspect.

Documentation standards and guidelines will also help to improve the model

(Kitchenham et al, 2002). In the context of BBNs, the current problems with

tools is that they are mainly research prototypes which in general do not

handle the visualisation in an aesthetic and user friendly manner. Layout

algorithms, hypermedia features and integration of the models and inference

engines with specialised user interfaces could improve this quality aspect.

(iv) The goal for the test quality aspect is feasible test coverage. Simulation studies

can be used to assess this quality aspect. When data is available, cross-

validation methods for estimating generalisation error based on re-sampling

can be used (Castillo et al, 1997).

(v) Finally, value quality refers to practical utility. Kitchenham et al include

appropriate user manuals, training etc. as means to achieve this. These can be

 152

evaluated through empirical studies. In the context of BBNs and software

engineering, project managers and quality assurance engineers need to

understand the underlying models to apply them correctly.

An important point highlighted by Kitchenham et al is the difference between generic and

specialised models. The same applies to BBNs, where causal relationships of software

processes could be defined in a generic way but once these generic processes are

modelled it can be difficult to adapt them to other more concrete environments.

6.7 Conclusions

In this chapter we have discussed the use of BBNs in the area of software engineering.

BBNs can be useful because: (i) they can explain some cause-effect relationships of

software engineering better than static models; (ii) the backwards propagation of the

probabilities in the BBN can help in taking managerial decisions that might not be

possible using static models.

Knowledge discovery should be an important feature of a project management tool for

making important managerial decisions. One such example is the creation of Bayesian

networks from past project data. The network so created could make accurate analysis of

dynamic behaviour. This is an important motivation behind the design of our tool.

Construction of BBNs is an intellectual task. We have discussed a semi-automatic

approach which uses many prototype tools for constructing BBNs. We have also

discussed a practical example and constructed a BBN in relation to the given dataset.

We have also discussed an example which shows how BBNs can be used in process

improvement.

 153

Chapter 7

Conclusions

This chapter summarises the research carried out in the previous chapters, analyses the

research contributions and offers suggestions for future research.

7.1 Summary of the Thesis

Web applications are different from traditional applications to a significant degree, and so

they offer new challenges and issues in technological, economic and social areas. The aim

of this thesis was to improve Web processes so that they could produce quality Web

products by means of software engineering concepts from the point of view of developers

and managers.

We first carried out semi-structured interviews with Web practitioners to understand the

current practices as regards to Web development in industry, and to identify deficiencies.

Some deficiencies that we identified from our interviews were addressed in later

Chapters.

In Chapter 3, we discussed a framework for the Web development process based on our

interviews and related literature. Our framework separated (starting from the requirement

analysis phase) the development of authoring and infrastructure components of Web

 154

applications. Such a formalisation of the Web development process opens up a modular

approach to Web development.

The design and development of a project management tool as a proof of concept and to

provide an environment where project management and quality aspects are related have

been described in Chapter 4. Current project management tools mostly deal with time,

tasks and resources. They usually do not provide any mechanisms for constructing

processes nor for dealing with the different quality metrics generated during the

development of a project. Our tool also provides a framework within which different

techniques such as Bayesian Belief Networks (Jensen, 1996), System Dynamics (Abdel-

Hamid and Madnick, 1991) etc. can be applied. We also described how our tool and some

of its functionalities fit into the CMM framework.

In Chapter 5, we demonstrated the customisation of the TGPM to obtain a measurement

framework for Web processes. This customised measurement framework can form the

basis for assessment and improvement of Web processes; in particular, we have focused

on the authoring process, and have shown how to use the GQM method for assessing and

improving the authoring process.

The last chapter before the conclusions is related to the use of Bayesian networks in

software engineering. We describe how to generate BBNs from project data using an

dataset of Web authoring projects. We also discussed advantages, limitations and their

validation. Finally, we also demonstrated how Bayesian networks can be applied for

process improvement based on the PROFES Methodology (PROFES, 2002a), and how by

representing PPD (Product-Process Dependency) models as BBNs, it would be possible

to predict the outcome of improvement action(s).

 155

7.2 Main Contributions

In this section, we revisit in detail the aims stated at the beginning of the thesis and

discuss the degree to which we have addressed them, including the limitations of our

work.

Aim: To understand the current approaches to Web Engineering in industry and to

investigate deficiencies in them, if any.

To have an in-depth knowledge of current practices to Web development, we first

performed a survey of the existing literature. Based on our study, we formulated a

semi-structured questionnaire to carry out a series of interviews with practitioners

in industry. From such interviews, we highlight the following findings. Some

important deficiencies identified were: (i) Web applications have two distinct

application domains – authoring and infrastructure – but current design methods

hardly reflected this difference, (ii) lack of proper quality models and

measurement frameworks for Web process and applications.

A limitation of our semi-structured interviews is the small number of subjects;

consequently, our survey should be considered an preliminary approach. There is

always the risk of it being unrepresentative of the general population. However,

we selected our subjects with adequate experience, and organisations of different

sizes and types. A flaw in the design of the survey was that the participants were

not asked directly what problems they faced or what they felt they needed to help

them with their tasks.

Aim: To develop a new methodology to address the existing deficiencies

We developed a UML based methodology that could fit with practices used in

industry. Our design methodology separates hypermedia and application domains,

and both can be developed by distinct teams, possessing different skills.

Integration of both the modules is necessary to produce the final Web application.

 156

Benefits of our methodology include: (i) a cleaner design architecture that reflects

the structure at conceptual level, (ii) a modular approach to development, so the

different skills of different developers can be effectively used; and (iii) the whole

development process is carried out in the UML framework so that currently

available tools can be used.

In our methodology, we have utilised much of the best practices available in

literature; including the processes steps defined by OOHDM, UML notations from

Conallen and Baumeister et al for specifying the navigation structure and the

internal process structure of the TGPM. Our approach could be seen as addressing

some of the problems related to ‘hypermedia engineering crisis’.

One limitation of our methodology is the definition of the interface between both

domains (the hypermedia and the application domain); further research would be

necessary to address this issue.

Aim: To understand the current approaches to evaluating Web processes and

applications, and to develop a measurement framework to cater to the specific issues of

Web processes

We adopted the TGPM as the basis of our quality framework and extended this

model to make it suitable for Web applications (Rodriguez et al, 2002). The

extended model could be instantiated to obtain quality models of individual

processes in Web development. In particular, we have instantiated this model to

obtain the customised model of the authoring process.

The TGPM in combination with GQM forms the basis of our measurement

framework for various Web processes and subprocesses. We have shown how this

framework could be used for process assessment and improvement following a

top-down approach for the assessment and improvement of Web processes.

 157

Although the TGPM provides a framework for creating GQM quality trees, it does

not provide any obvious way of identifying metrics. We have provided tool

support for TGPM; however, further research is necessary to make the TGPM

understandable to managers.

Aim: To support the measurement framework and evaluation methods with tools

We developed a project management tool which supports the TGPM, and hence

our customised models. This tool supports integration of different techniques such

as Bayesian Networks and System Dynamics for exploring new ways of solving

problems in software engineering in general, and Web applications in particular.

For instance, we focused on BBNs to estimate quality characteristics of both

software processes and products.

We have discussed how to create BBNs from historical data.We have also shown

how BBNs could play a crucial role in the context of the PROFES methodology

for predicting the outcome of an improvement action.

Our tool should be considered as a proof of concepts, i.e., it is a prototype

developed with purely research objectives in mind. A significant amount of

further research would be necessary to make it robust enough for commercial

situations.

7.3 Future Work

We have identified the following areas for future research.

(i) Further research on the Parallel Framework

We have shown the feasibility of Web development through our Parallel

Framework through the development of a relatively simple example. Though

 158

we believe that scalability would not be an issue for applying the parallel

methodology, this needs to be validated by applying the methodology to build

larger applications.

As mentioned in the previous section, one limitation of our parallel

methodology is a systematic definition of the interface between the authoring

and infrastructure domains; further research would be necessary to provide an

algorithmic approach to solve this problem.

(ii) Quality evaluation and process improvement

We showed how the TGPM can be instantiated to Web Authoring. However,

we have not yet performed any industrial case studies. The application of

customised models for various Web processes would validate the

appropriateness of the TGPM when used in the context of Web applications.

(iii) BBN vs. other similar models

It would be of interest to compare the BBN approach with other dynamic

techniques such as System Dynamics in areas such as effort and cost

estimates, and then, compare the BNN approach with others such as

estimation by analogy (Shepperd and Schofield, 1997). Moreover, further

experiments should consider real data from industrial projects to investigate

the advantages of BBNs over traditional regression models.

(iv) Validation of BBNs

In Chapter 6, we have presented a semi-automatic procedure for obtaining

BBNs from historical data. However, the fact that the BBNs so constructed are

valid is an important issue. Our future work involves obtaining a robust

validation procedure for validating BBNs in relation to the problem domains.

 159

(v) PPD models as BBNs

We have shown how a PPD model represented as a BBN can predict the

outcome of a single improvement action in relation to the given PPD model. In

order to predict the outcome of a combination of improvement actions, it

would be necessary to combine the BBNs of the respective PPDs. Currently,

we create such a network manually. Constructions of such a combined BBN in

relation to a set of PPD models through a tool will be a part of our future

research.

It would be of interest to develop specific PPD models for Web and

hypermedia applications.

 160

References

Abdel-Hamid, T. K. and Madnick, S. E. 1991, Software Project Dynamics: an Integrated

Approach, Prentice Hall, Englewood Cliffs, N.J.

Abran, A. 1999, 'FFP Release 2,0: An Implementation of COSMIC Functional Size

Measurement Concepts', in FESMA, Amsterdam.

Aguilar-Ruiz, J. S., Ramos, I., Riquelme, J. C. and Toro, M. 2001, 'An evolutionary

approach to estimating software development projects', Information and Software

Technology, vol. 43, no. 14, pp. 875-882.

Aguilar-Ruiz, J. S., Riquelme, J. C., Rodriguez, D. and Ramos, I. 2002, 'Generation of

Management Rules through System Dynamics and Evolutionary Computation', in

Product focused software process improvement, eds. Oivo, M. and Komi-Sirvio,

S., Berlin, Rovaniemi, Finland, pp. 615-628.

Albretch, A. J. 1979, 'Measuring Application Development', in Proc. of INM Applications

Development Joint SHARE/GUIDE Symposium, Monterey, CA, pp. 83-92.

Avison, D. E. and Fitzgerald, G. 1995, Information Systems Development:

Methodologies, Techniques and Tools, 2nd edn, McGraw-Hill, Maidenhead.

 161

Barry, C. and Lang, M. 2001, 'A Survey of Multimedia and Web Development

Techniques and Methodology Usage', IEEE Multimedia, vol. 8, no. 2, pp. 52-61.

Basili, V., Shull, F. and Lanubile, F. 1999, 'Building Knowledge through Families of

Experiments', IEEE Transactions on Software Engineering, vol. 25, no. 4, pp.

456-473.

Basili, V. R., Caldiera, G. and Rombach, H. D. 1994, 'The Goal Question Metric

Paradigm', in Encyclopedia of Software Engineering, John Wiley & Sons, Inc., pp.

528-532.

Baumeister, H., Koch, N. and Mandel, L. 1999, 'Towards a UML Extension for

Hypermedia Design', in UML'99 - The Unified Modeling Language. Beyond the

Standard. Second International Conference, eds. France, R. and Rumpe, B.,

Springer-Verlag, Fort Collins, CO, USA, pp. 614-629.

Bazzana, G., Brigliadori, R., Andersen, O. and Jokela, T. 1993, 'ISO 9126 and ISO 9000:

Friends or Foes?' in Software engineering standards symposium, IEEE Computer

Society Press, Brighton, pp. 79-88.

Bazzana, G. and Fagnoni, E. 1999, 'Process Improvement in Internet Service Providing',

in Better Software Practice for Business Benefit. Principles and Experience, ed.

Richard Messnar, C. T., IEEE CS, pp. 267-279.

Bazzana, G. and Pioti, M. 1999, 'Process and Product Measurement', in Better Software

Practice for Business Benefict, eds. Messnarz, R. and Tully, C., IEEE Comp.

Society, Los Alamitos, pp. 151-176.

Berson, A. 1992, Client/Server Architecture, McGraw-Hill.

Bøegh, J., Depanfilis, S., Kitchenham, B. and Pasquini, A. 1999, 'A Method for Software

Quality Planning, Control and Evaluation', In IEEE Software, vol. 16, pp. 69-77.

 162

Boehm, B. W. 1978, Characteristics of Software Quality, TRW series of software

technology ; v. 1, North-Holland Pub. Co. : American Elsevier, Amsterdam ; New

York.

Boehm, B. W. 1981, Software Engineering Economics, Prentice-Hall, Englewood Cliffs,

N.J.; London.

Booch, G. 1994, Object-Oriented Analysis and Design with Applications, The

Benjamin/Cummings series in object-oriented software engineering, 2nd edn,

Benjamin/Cummings Pub. Co., Redwood City, Calif.

Booch, G., Rumbaugh, J. and Jacobson, I. 1999, The Unified Modeling Language User

Guide, The Addison-Wesley object technology series, Addison-Wesley, Reading,

Mass.

Botafogo, R. A., Rivlin, E. and Shneiderman, B. 1992, 'Structural Analysis of Hypertexts:

Identifying Hierarchies and Useful Metrics', ACM Transactions on Information

Systems, vol. 10, no. 2, pp. 142-180.

Breiman, L., Friedman, J., Olshen, R. and Stone, C. J. 1984, Classification and

Regression Trees, Chapman and Hall, New York.

Brereton, P., Budgen, D. and Hamilton, G. 1998, 'Hypertext: The Next Maintenance

Mountain', Computer, vol. 31, no. 12, pp. 49-55.

Briand, L. C., El Emam, K., Surmann, D. and Wieczorek, I. 1999, 'An Assessment and

Comparison of Common Software Cost Estimation Modeling Techniques', in

Software engineering, IEEE Computer Society, Los Angeles; CA, pp. 313-323.

Castillo, E., Gutiérrez, J. M. and Hadi, A. S. 1997, Expert Systems and Probabilistic

Network Models, Springer-Verlag.

 163

Cheng, J. 2001, Belief Network (BN) Power Constructor, Available:

[http://www.cs.ualberta.ca/~jcheng/bnpc.htm].

Cheng, J., Bell, D. A. and Liu, W. 1997, 'Learning Belief Networks from Data: an

Information Theory Based Approach', in Sixth ACM International Conference on

Information and Knowledge Management, ACM Press.

Chow, C. K. and Liu, C. N. 1968, 'Approximating discrete probability distributions with

dependence trees', IEEE Transactions on Information Theory, vol. 14, pp. 462-

467.

Christensen, D. S. 1998, 'The Costs and Benefits of the Earned Value Management

Process', in International Society of Parametric Analysts and Society of Cost

Estimating and Analysis, Ispa, Toronto; Canada, pp. 1-16.

Christodoulou, S. P., Styliaras, G. D. and Papatheodrou, T. S. 1998, 'Evaluation of

hypermedia application development and management systems', in HYPERTEXT

'98. Proceedings of the Ninth ACM Conference on Hypertext and Hypermedia:

Links, Objects, Time and Space - Structure in Hypermedia Systems, ACM Press,

Pittsburgh, PA USA, pp. 1-10.

Cockburn, A. 2000, Writing effective use cases, The Crystal series for software

development, Addison-Wesley, Boston.

CodeFactory 2002, MrProject, Available: [http://mrproject.codefactory.se/].

Conallen, J. 1999, 'Modelling Web Application Architectures with UML', In

Communications of the ACM, vol. 42, pp. 63-70.

Conallen, J. 2000, Building Web Applications with UML, Addison-Wesley object

technology series, Addison-Wesley, Reading, Mass. ; Harlow.

 164

Conklin, J. 1987, 'Hypertext: An Introduction and Survey', In IEEE Computer, vol. 20,

pp. 17-41.

Consortium, C. 2000, 'Research Briefs', In Research Briefs.

Cooper, G. F. 1987, Probabilistic Inference Using Belief Networks is NP-hard., Medical

Computer Science Group, Stanford University, KSL-87-27.

Cooper, G. F. and Herskovits, E. 1992, 'A Bayesian Method for the Induction of

Probabilistic Networks from Data', Machine Learning, vol. 9, pp. 309-347.

Cozman, F. G. 2001, JavaBayes 0.346, Available: [http://www-

2.cs.cmu.edu/~javabayes/].

Creswell, J. W., Goodchild, L. F. and Turner, P. P. 1996, 'Integrated Qualitative and

Quantitative Research: Epistemology, History, and Designs', Higher Education,

vol. 11, pp. 90-136.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N. and Weerawarana, S. 2002,

'Unraveling the Web Services Web: An Introduction to SOAP, WSDL, and

UDDI', Ieee Internet Computing, vol. 6, no. 2, pp. 86-93.

Daly, J. 1996, Replication and a Multi-Method Approach to Empirical Software

Engineering Research, University of Strathclyde.

D'Ambrosio, B. 1999, 'Inference in Bayesian Networks', AI Magazine, vol. 20, no. 2, pp.

21-36.

Dart, S. 1999, 'Containing the Web Crisis Using Configuration Management', in Web

Engineering Workshop at the International Conference on Software Engineering

(ICSE’99), Los Angeles, USA.

Daskalantonakis, M. K. 1992, 'A Practical View of Software Measurement and

 165

Implementation Experiences Within Motorola', IEEE Transactions on Software

Engineering, vol. 18, no. 11.

Debou, C. 1999, 'Goal Based Software Process Improvement Planing', in Better Software

Practice for Business Benefit. Principles and Experience, ed. Richard Messnar, C.

T., IEEE CS, pp. 107-150.

Delic, A. K., Mazzanti, F. and Strigini, L. 1995, Formalizing a Software Safety Case via

Belief Networks, Center for Software Reliability, City University, London, U.K.

Denzin, N. K. 1994, 'Evaluating qualitative research in the poststructural moment: the

lessons James Joyce teaches us', International Journal of Qualitative Studies in

Education, vol. 7, no. 4, p. 295.

Dermiame, J. C., Kaba, B. A. and Wastell, D. 1998, Software Process: Principles,

Methodology and Technology, Lecture Notes in Computer Science 1500, Springer

Verlag, Heidelberg.

Deshpande, Y., Hansen, S. and Murugesan, S. 1999, 'Web Engineering: beyond CS, IS

and SE', in Web Engineering Workshop (ICSE'99), Los Angeles, pp. 10-16.

Díaz, A. and Isakowitz, T. 1995, 'RMCase: Computer-Aided Support for Hypermedia

Design and Development', in International Workshop on Hypermedia Design

(IWHD'95), Springer-Verlag, Montpellier, France, pp. 3-15.

Dromey, R. G. 1995, 'A Model for Software Product Quality', IEEE Transactions on

Software Engineering, vol. 21, no. 2, pp. 146-162.

Dromey, R. G. 1996, 'Conering the Chimera', In IEEE Software, pp. 33-41.

Druzdzel, M. J. and van der Gaag, L. C. 1995, Elicitation of Probabilities for Belief

Networks: Combining Qualitative and Quantitative Information, Utrecht

University, Institute of Information and Computing Sciences, UU-CS-1995-23.

 166

ESA 1995, Guide to Software Project Management, ESA (European Space Agency),

Paris, France, ESA PSS-05-08.

Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P. 1996, 'The KDD Process for Extracting

Useful Knowledge From Volumes of Data', In Communications of the ACM, vol.

39, pp. 27-34.

Fenton, N. E. 1995, Multi-criteria Decision Aid; with emphasis on its relevance of in

dependability assessment, CSR, City University, London, U.K.,

DATUM/CSR/02.

Fenton, N. E. and Neil, M. 1999a, 'A Critique of Software Defect Prediction Models',

IEEE Transactions on Software Engineering, vol. 25, no. 5, pp. 675-689.

Fenton, N. E. and Neil, M. 1999b, 'Software Metrics: Successes, Failures and New

Directions', Journal of Systems and Software, vol. 47, no. 2-3, pp. 149-157.

Fenton, N. E. and Neil, M. 2000, 'Software Metrics: A Roadmap', in The Future of

Software Engineering, ed. Finkelstein, A., ACM.

Fenton, N. E. and Pfleeger, S. L. 1997, Software Metrics: a Rigorous and Practical

Approach, International Thomson Computer Press: PWS Pub, London.

Flemming, Q. W. and Koppelman, J. M. 1996, Earned Value Project Management, The

Project Management Institute (PMI).

Forrester, J. W. 1961, Principles of Systems, Norwalk, CT: Productivity Press.

Fugetta, A., Lavazza, L., Morasca, S., Cinti, S., Oldano, G. and Orazi, E. 1998, 'Applying

GQM in an Industrial Software Factory', ACM Transactions on Software

Engineering and Methodology, vol. 7, no. 4, pp. 411-448.

 167

Gamma, E. 1995, Design Patterns: Elements of Reusable Object-Oriented Software,

Addison-Wesley professional computing series, Addison-Wesley, Reading, Mass.

Garvin, D. A. 1988, Managing Quality: the Strategic and Competitive Edge, Free Press,

New York.

Garzotto, F., Mainetti, L. and Paolini, P. 1994, 'HDM2: Extending the ER Approach to

Hypermedia Application Design', Lecture Notes in Computer Science, vol. 823,

pp. 178-188.

Garzotto, F., Matera, M. and Paolini, P. 1999, 'Abstract Tasks: a Tool for the Inspection

of Web Sites and off-line Hypermedia', in Proceedings of the tenth ACM

Conference on Hypertext and Hypermedia, ACM Press, Darmstadt, Germany, pp.

157-163.

Garzotto, F., Paolini, P. and Schwabe, D. 1993, 'HDM A Model Based Approach to

Hypertext Application Design', ACM Transactions on Information Systems, vol.

11, no. 1, pp. 1-26.

Ghahramani, Z. 1997, 'Learning Dynamic Bayesian Networks', in Adaptive processing of

sequences and data structures, eds. Giles, C. L. and Gori, M., New York, Vietri

sul Mare; Italy, pp. 168-197.

Gillies, A. 1997, Software Quality: Theory and Management, 2. edn, International

Thomson Computer, London.

Glaser, B. G. and Strauss, A. L. 1967, The Discovery of Grounded Theory:

Strategies for Qualitative Research, Aldine Publishing.

Grady, R. B. 1992, Practical software metrics for project management and process

improvement, Prentice Hall, Englewood Cliffs, NJ.

 168

Grady, R. B. and Caswell, D. L. 1987, Software Metrics: Establishing a Company-wide

Program, Prentice-Hall, Englewood Cliffs, N.J.

Gray, A. R. and MacDonell, S. G. 1997, 'A Comparison of Techniques for Developing

Predictive Models of Software Metrics', Information and Software Technology,

vol. 39, no. 6, pp. 425-437.

Halasz, F. and Schwartz, M. 1990, 'The Dexter Hypertext Reference Model', in NIST

Hypertext Standardization Workshop, pp. 95-133.

Halasz, F. and Schwartz, M. 1994, 'The Dexter Hypertext Reference Model',

Communications of the ACM, vol. 37, no. 2, pp. 30--39.

Halpin, T. A. 2001, Information Modeling and Relational Databases: from Conceptual

Analysis to Logical Design, The Morgan Kaufmann series in data management

systems, Morgan Kaufman Publishers, San Francisco, Calif. ; London.

Hardman, L., Bulterman, D. C. and van Rossum, G. 1994, 'The Amsterdam Hypermedia

Model: Adding Time and Context to the Dexter Model', In Communications of the

ACM, vol. 37, pp. 50-62.

Heckerman, D. E. 1991, Probabilistic Similarity Networks, MIT Press, Cambridge, MA.

Henderson-Sellers, B. and Unhelkar, B. 2000, Open Modeling with UML, Addison-

Wesley, Harlow, England; NY.

Humphrey, W. S. 1992, Introduction to Software Process Improvement, Software

Engineering Institute, CMU/ SEI- 92- TR- 7.

IBM 2002, WebSphere Studio, Available: [http://www-3.ibm.com/software/ad/adstudio/].

Isakowitz, T., Bieber, M. and Vitali, M. 1998, 'Web Information Systems',

Communications of the ACM, vol. 41, no. 7, pp. 78-80.

 169

Isakowitz, T., Stohr, E. A. and Balasubramanian, P. 1995, 'RMM: A Methodology for

Structured Hypermedia Design', Communications of the ACM, vol. 38, no. 8, pp.

34-44.

ISO 1991, Information technology - Software product evaluation, International

Organization for Standarization (ISO), ISO/IEC 9126.

ISO 1994, Quality Management and Quality Assurance Standards, International

Organization for Standarization (ISO), ISO 9000-1:1994.

ISO 1995, Information technology - Software life cycle processes, International

Organization for Standarization (ISO), ISO/IEC 12207.

ISO 1998, Information technology - Software Process Assessment, International

Organization for Standarization (ISO), ISO/IEC TR 15504.

Jacobson, I., Booch, G. and Rumbaugh, J. 1999, The Unified Software Development

Process, Addison-Wesley, Reading, Mass.; Harlow.

Jalote, P. 2002, Software Project Management in Practice, Addison-Wesley, Boston.

Jensen, F. V. 1996, An Introduction to Bayesian Networks, UCL Press, London.

Kirda, E., Jazayeri, M., Kerer, C. and Schranz, M. 2001, 'Experiences in Engineering

Flexible Web Services', IEEE Multimedia, vol. 8, no. 1, pp. 58-65.

Kirsopp, C. and Shepperd, M. 2002, 'Making Inferences with Small number of Traning

Sets', IEE Procedings of Software Engineering, vol. 149, no. 5, pp. 123-130.

Kitchenham, B. and Pfleeger, S. L. 1996, 'Software quality: The Elusive Target', Ieee

Software, vol. 13, no. 1, pp. 12-21.

 170

Kitchenham, B. A. 1987, 'Towards a constructive quality model. Part I Software Quality

Modelling, Measurement and Prediction', Software Engineering Journal.

Kitchenham, B. A., Hughes, R. T. and Linkman, S. G. 2001, 'Modeling Software

Measurement Data', IEEE Transactions on Software Engineering, vol. 27, no. 9,

pp. 788-804.

Kitchenham, B. A. and Linkman, S. G. 1997, 'Estimates, Uncertainty, and Risk', In IEEE

Software, vol. 14, pp. 69-74.

Kitchenham, B. A., Pickard, L. M., Linkman, S. G. and Jones, P. 2002, 'A Framework for

Evaluating a Software Bidding Model', in Empirial Assessment in Software

Engineering, Keale.

Koller, D. and Pfeffer, A. 1997, 'Object-oriented Bayesian networks,' in Proceedings of

the 13th Conference on Uncertainty in Artificial Intelligence, eds. Geiger, D. and

Sheno, P. P., Morgan Kaufmann, San Francisco, pp. 302--313.

Krause, P. J. 1998, 'Learning Probabilistic Networks', Knowledge Engineering Review,

vol. 13, pp. 321-351.

Krause, P. J. and Clark, D. 1993, Representing Uncertain Knowledge: An Artificial

Intelligence Approach, Intellect Books, Oxford.

Kuntzmann-Combelles, A., Pulford, K. and Shirlaw, S. 1996, A Quantitative Approach to

Software Management: the ami Handbook, Addison-Wesley, Wokingham.

Kuvaja, P. 1994, Software process assessment and improvement : the BOOTSTRAP

approach, Blackwell Business, Oxford.

Lopistéguy, P., Pagorret, P. and Losada, B. 1997, 'Hypermedia Design Methodologies

Versus Hypermedia Functionality Integration', in Workshop on Incorporating

Hypertext Functionality - ACM Hypertext'97, ACM, Southampton.

 171

Lowe, D. 1999, 'Engineering the Web. Web Engineering or Web Gardening?' WebNet

Journal. Internet Techonologies, Applications and Issues, vol. 1, no. 1.

Lowe, D. and Hall, W. 1999, Hypermedia & the Web: an Engineering Approach,

Worldwide series in computer science, John Wiley, Chichester, Eng.

Lowe, D. and Webby, R. 1999, 'Utilisation of Process Modeling in Improving the

Hypermdia Development Process', in The New Review of Hypermedia and

Multimedia, Taylor Graham, Longon, pp. 133-150.

Lowe, D. B., Bucknell, A. J. and Webby, R. G. 1999, 'Improving Hypermedia

Development: a Reference Model-based Process Assessment Method', in

Proceedings of the tenth ACM Conference on Hypertext and hypermedia:

returning to our diverse roots, Darmstadt, Germany, pp. 139-146.

Maurer, F., Dellen, B., Bendeck, F., Goldmann, S., Holz, H., Kötting, B. and Schaaf, M.

2000, 'Merging Project Planning and Web-Enabled Dynamic Workflow

Technologies', In IEEE Internet Computing.

McCall, J. A., Richards, P. K. and Walters, G. F. 1977, Factors in Software Quality, US

Rome Air Development Center Reports, RADC TR-77-369.

Mendes, E., Mosley, N. and Counsell, S. 2001, 'Web Metrics-Estimating Design and

Authoring Effort', IEEE Multimedia, vol. 8, no. 1, pp. 50-57.

Mendes, E., Watson, I., Triggs, C., Mosley, N. and Counsell, S. 2002, 'A Comparison of

Development Effort Estimation Techniques for Web Hypermedia Applications', in

8th IEEE Metrics Symposium, IEEE Press, Ottawa, Canada, pp. 131-140.

Mendes, M. E. X., Hall, W. and Harrison, R. 1999, 'Applying Measurement Principles to

Improve Hypermedia Authoring', The New Review of Hypermedia and

Multimedia, vol. 5, pp. 105-132.

 172

Microsoft 2002, Microsoft Project, Available: [http://www.microsoft.com/].

Murugesan, S. and Deshpande, Y. 2001, Web Engineering: Managing Diversity and

Complexity of Web Application Development, Lecture Notes in Computer Science

; 2016, Springer, Berlin ; New York.

Neil, M., Fenton, N. E. and Nielsen, L. 2000, 'Building large-scale Bayesian

Networks', The Knowledge Engineering Review, vol. 15, no. 3, pp. 257-284.

Nielsen, J. 2000, Designing Web Usability: the Practice of Simplicity, New Riders,

Indianapolis, Ind.

Noack, J. and Schienmann, B. 1999, 'Introducing OO Development in a Large Banking

Organization', IEEE Software, vol. 16, no. 3, pp. 71-81.

Offutt, J. 2002, 'Quality Attributes of Web Software Applications', Ieee Software, vol. 19,

no. 2, pp. 25-33.

Olsina, L. 1998, 'Building a Web-based Information System applying the Hypermedia

Flexible Process Modeling Strategy', in 1st International Workshop on

Hypermedia Development Held in conjunction with Hypertext'98, Pittsburgh, PA.

Olsina, L., Godoy, D., Lafuente, G. J. and Rossi, G. 1999, 'Specifying Quality

Characteristics and Attributes for Websites', in First ICSE Workshop on Web

Engineering (WebE-99), eds. Murugesan, S. and Deshpande, Y., Los Angeles,

USA.

Orfali, R., Harkey, D. and Edwards, J. 1999, Client/server Survival Guide, John Wiley,

New York ; Chichester.

Paulk, M. C., Curtis, B., Chrissis, M. B. and Weber, C. V. 1993, 'Capability Maturity

Model, Version 1.1', In IEEE Software, vol. 10, pp. 18-27.

 173

Pearl, J. 1986, 'Fusion, Propagation and Structuring in Belief Networks', Artificial

Intelligence, vol. 29, pp. 241-248.

Perry, D., Porter, A. and Votta, L. 2000, 'Empirical Studies of Software Engineering: A

Roadmap', in The Future of Software Engineering, ed. Finkelstein, A., ACM

Press.

Pfahl, D. and Birk, A. 2000, 'Using Simulation to Visualise and Analyse Product-Process

Dependencies in Software Development Projects', in Product focused software

process improvement, eds. Bomarius, F. and Oivo, M., Berlin, Oulu, Finland, pp.

88-102.

Picton, P. 2000, Neural networks, Palgrave, Basingstoke, Hampshire ; New York.

PMI 1996, A Guide to the Project Management Body of Knowledge, Project Management

Institute, Upper Darby, PA.

Powell, T. A., Jones, D. L. and Cutts, D. C. 1998, Web Site Engineering: Beyond Web

Page Design, Prentice Hall, Upper Saddle River, N.J.

PowerSim 2003, Powerim: Power Simulator, Available: [http://www.powersim.com/].

Pressman, R. S. 2000, 'What a Tangled Web We Weave', IEEE Software, pp. 18-21.

PROFES 2002a, The PROFES Methodology, Available: [http://www.profes.org/].

PROFES 2002b, The PROFES PPD Repository: Understanding patterns of

Product/Process Dependence, Available:

[http://www.iese.fhg.de/projects/profes/PPDRepository].

Putman 1978, 'A general empirical solution to the macro software sizing and estimating

problem', IEEE Transactions on Software Engineering, vol. 4, no. 4, pp. 345-361.

 174

Quinlan, J. R. 1993, C4.5: Programs for machine learning, Morgan Kaufmann, San

Mateo, California.

Ramoni, M. and Sebastiani, P. 2002, Bayesware Discoverer, Available:

[http://www.bayesware.com/].

Rational 2000, Rational Rose, Available: [http://www.rational.com/].

Rational 2002, Rational Suite, Available:

[http://www.rational.com/products/rs/index.jsp].

Rich, E. and Knight, K. 1991, Artificial intelligence, 2nd edn, McGraw-Hill, New York.

Rodriguez, D., Harrison, R. and Satpathy, M. 2001a, 'A Generic Model for Assessing and

Improving Web Processes', in 14th International Conference Software & Systems

Engineering and their Applications (ICSSEA), Paris, France.

Rodriguez, D., Harrison, R. and Satpathy, M. 2002, 'A Generic Model and Tool Support

for Assessing and Improving Web Processes', in 8th IEEE International Software

Metrics Symposium (Metrics 2002), IEEE Press, Ottawa, Canada, pp. 141-151.

Rodriguez, D., Harrison, R., Satpathy, M. and Dolado, J. 2001b, 'Tool Support for the

Typed Generic Quality Model', in Current Trend in Software Measurement

(Proceedings of 11th International Workshop on Software Measurement), eds.

Dumke, R. and Abran, A., Shaker Verlag, Montreal, Canada.

Satpathy, M. and Harrison, R. 2002, 'A Typed Generic Process Model for Product

Focused Process Improvement', in Computer Software and Applications

Conference (COMPSAC 2002), IEEE Press, Oxford.

Satpathy, M., Harrison, R. and Rodriguez, D. 2002a, 'Investigation of Product Process

Dependency Models through Probabilistic Modeling', in Empirical Assessment in

Software Engineering (EASE 2002), Keele.

 175

Satpathy, M., Harrison, R., Snook, C. and Butler, M. 2000, 'A Generic Model for

Assessing Process Quality', in New Approaches in Software Measurement - 10th

International Workshop on Software Measurement (IWSM'00), vol. 2006, eds.

Dumke, R. and Abran, A., Springer-Verlag, Berlin, Germany, pp. 94-110.

Satpathy, M., Siebel, N. T. and Rodriguez, D. 2002b, 'Maintenance of Object Oriented

Systems through Re-engineering: A Case Study', in IEEE International

Conference on Software Maintenance (ICSM 2002), IEEE Press, Montreal,

Canada.

Schwabe, D., Esmeraldo, L., Rossi, G. and Lyardet, F. 2001, 'Engineering Web

Applications for Reuse', IEEE Multimedia, vol. 8, no. 1, pp. 20-31.

Schwabe, D. and Rossi, G. 1995, 'The Object-Oriented Hypermedia Design Model',

Communications of the ACM, vol. 38, no. 8, pp. 45-46.

Schwabe, D. and Rossi, G. 1998, 'An Object Oriented Approach to Web-based

Applications Design', Theory and Practice of Object Systems, vol. 4, no. 4, pp.

207-225.

Seaman, C. B. 1999, 'Qualitative Methods in Empirical Studies of Software Engineering',

IEEE Transactions On Software Engineering, vol. 25, no. 4, pp. 557-572.

Shepperd, M. and Schofield, C. 1997, 'Estimating Software Project Effort Using

Analogies', IEEE Transactions on Software Engineering, vol. 23, no. 11, pp. 736-

743.

Shepperd, M., Schofield, C. and Kitchenham, B. 1996, 'Effort Estimation Using Analogy',

in Software engineering, IEEE Computer Society Press, Berlin, pp. 170-178.

Singh, I. and Johnson, M. 2001, Designing Enterprise Applications with the J2EE, 2nd

edn, Addison Wesley.

 176

Solingen, R. v. and Berghout, E. 1999, The Goal/Question/Metric Method: a Practical

Guide for Quality Improvement of Software Development, McGraw-Hill,

Maidenhead.

Stella 2004, Stella, Available: [http://www.stella.com/].

Symons, C. R. 1988, 'Function Point Analysis: Difficulties and Improvements', IEEE

Transactions on Software Engineering, vol. 14, no. 1.

Takahashi, K. and Liang, E. 1997, 'Analysis and Design of Web-based Information

Systems', in 6th International World Wide Web Conference (WWW6), eds.

Genesereth, M. R. and Patterson, A., Santa Clara, USA, pp. 377-389.

Tiga 2002, PRONEL, Available: [http://www.tiga-technologies.com/].

Tuya, J., Fernández, P., Prieto, M. A., Aguilar, J., Ramos, I., Riquelme, J., Ferrer, F.,

Toro, M., Ruiz-Carreira, M., Rodriguez, D., Satpathy, M., Harrison, R., Ruiz de

Infante, A., Dolado, J. J., Matilla, R. and Álvarez, M. A. 2001, 'Integration of

Information in a Training Environment for Software Project Management', in

Software Quality Management 2001 SQM'01, Loughborough, UK.

van Latum, F. and van Uijtregt, A. 2000, 'Product Driven Process Improvement PROFES

Experiences at Drager', in Product focused software process improvement, eds.

Bomarius, F. and Oivo, M., Springer Verlag, Oulu, Finland, pp. 232-243.

Vensim 2003, Vensim: Ventana Simulator, Available: [http://www.ventana.com/].

W3C 1998, Extensible Markup Language (XML) 1.0. W3C Recommendation, World

Wide Web Consortium.

W3C 1999, XSL Transformations (XSLT). Version 1.0 W3C Recommendation, World

Wide Web Consortium.

 177

Warmer, J. and Kleppe, A. 1999, The Object Constraint Language. Precise Modeling

with UML, Addison Wesley.

Wooff, D. A., Goldstein, M. and Coolen, F. P. A. 2002, 'Bayesian Graphical Models for

Software Testing', IEEE Transactions on Software Engineering, vol. 28, no. 5, pp.

510-525.

Ziv, H. and Richardson, D. J. 1997, 'Constructing Bayesian-network Models of Software

Testing and Maintenance Uncertainties', in Software maintenance, IEEE

Computer Society, Bari; Italy, pp. 100-113.

 178

Appendix A

Questionnaire Survey

General Information

1) With respect to your company:

a. What is the nature of your organisation?

b. How many employees does your organisation have? And how large is the
development team?

c. How much of experience (in years) does your company have in Web development
for itself? For others?

2) Do you develop Web product for your own organisation or for others?

Requirements

3) Which methods and metrics do you use to estimate the development effort of Web
applications (time, effort, cost)?

4) What tools are used when managing requirements?

Design and Development

 179

5) Which development methods are used by your organisation when developing Web
applications? (e.g. Structured A/D, OO A/D methods, Data driven methods)

a. Do you use any hypermedia specific methods such as OOHDM, RMM or HDM?

b. How do you model the hierarchy and design of the Web applications? (e.g. UI
Patterns, storyboards, UI testing)? Please state the work products used in analysis
and design to reflect hypermedia and navigation (e.g., storyboards, state chars,
etc).

c. Is device independence (browser, TV, phones etc.) considered?

6) What kinds of tools are used when developing these types of applications?

System test and integration

7) How do you test these types of applications?

8) What tools are used when testing?

Maintenance/Evolution

9) How do you maintain Web applications in relation to the application executables
(CGI, ASP, Servlets etc.)?

10) How do you maintain the content and navigational structure (content and links)?

11) Does your organisation have Configuration Management procedures? If so, please
state which tools and techniques are used.

Reusability

12) Do you reuse application executables from previous applications? If so,

a. What do you reuse (components/frameworks, documentation…)?

b. How does the component acquisition process/development fit into the software
life cycle? How do you reuse it (ad-hoc, within a process,)?

 180

13) Do you reuse data (content) from previous systems? If so,

a. How do you reuse the content (granularity of the information, etc)?

14) What are the tools used for reuse of data, contents, components etc?

Metrics and Quality Assurance

15) Does your organisation have a quality standard certification? (e.g., ISO, CMM etc.)
Quality Management team? Standard procedures and project standards?

16) Do you collect metrics at your organisation (system development metrics and process
metrics)?

a. If so, please list these metrics and why are they collected?
i. as part of the your life-cycle process
ii. as part of the Web application product (e.g. size metrics)

17) Do you define quality objectives for each project? If so,

a. How do you define these quality objectives?

b. Do you have definitions of the ranges for acceptable values for each quality
characteristic (e.g. size limits, page layout etc.)?

c. Do you consider different quality characteristics for different parts/artefacts of the
application?

Project Management

18) How is the typical organisation of your Web project? Are there differences with
other types of projects? If so, can you state them (activities, models, roles, …)

19) How do you manage the authoring process (content) and the development process
(application)?

20) Is an iterative and incremental process followed?

 181

Others

21) Do you have any comments not covered so far?

 182

Appendix B

Definitions of the Sub-factors of an Authoring

Quality Model

(a) Sub-factors of Functionality

• Compliance:

(i) The degree to which the AUTH process conforms to prescribed (IEEE, ISO or

company-specific) standards.

(ii) The degree to which the AUTH process conforms to its own model (i.e. it

consists of a set of sub-processes and the sub-processes in turn consisting of sub-

processes or sets of steps).

• Consistency:

(i) The degree to which the AUTH process uncovers contradictions in the

requirement document input (i.e. Reqauth).

(ii) The degree to which the AUTH process does not introduce contradictions in

the hypermedia content.

• Completeness: the degree to which the AUTH process transforms all of the

features of the input requirements into the hypermedia content.

• Generality (robustness): The ability of the AUTH process to address by over-

specifying/ over-implementing conditions, which are not covered by the input

product specification but are relevant to its context.

 183

• Correctness: The degree to which the process makes the functionalities of the

hypermedia content match accurately to the features requested.

• Inter-operability: The degree to which the AUTH process contributes to the

ability of the product to interact with specified systems.

(b) Subfactors of Usability:

• Understandability:

(i) The effort with which a typical author understands the logical concepts of the

AUTH process.

(ii) The degree to which the AUTH process contributes to the understandability of

the hypermedia content.

• Learnability:

(i) The effort required for a typical author to learn to use the process.

(ii) The degree to which the AUTH process makes the hypermedia content easy to

use (through informative help messages, good user interface etc.).

• Operability:

(i) The effort required for a typical author to perform the process steps of the

AUTH process.

(c) Sub-factors of Efficiency & Estimation:

• Cost/ Effort estimation: The degree to which the cost/effort of AUTH process

remain within a specified range and the ability of the process to support their

estimations.

• Cycle Time estimation: The degree to which the AUTH process meets its expected

cycle time and the ability of the process to support its estimation.

• Complexity estimation: The ability of the process to support the prior estimation of

various forms of complexity (Structural Complexity (Botafogo et al, 1992),

Navigational Complexities, Cognitive Complexity etc), and the degree to which

the estimates are accurate.

• Schedule/ Priority estimation: The priority of various stages in the process and the

ability of the process to support their estimations and scheduling.

• Resource Estimation: The degree to which a process keeps its resource usage in a

specified range, and its ability to support their estimations.

 184

• Process Maturity: The CMM maturity level and/or any ISO certification of the

organisation.

(d) Sub-factors of Visibility & Control:

• Progress Monitoring: The ability of the AUTH process to facilitate monitoring of

its progress at any point of time during the process execution to show that

progress so far has been correct and effective (e.g. Work product analysis (Grady,

1992), PERT charts etc.).

• Automatic Feedback: The ability of the AUTH process to provide feedback data

and to support corrective actions if necessary.

• Improvement Measures: The ability of the AUTH process to support the analysis

of feedback data in combination with the data of previous runs and improve itself,

or result in the improvement of a sibling process, continuously.

• (e) Sub-factors of Reliability:

• Failure Frequency:

(i) The number of (and the interval between) failures encountered during the

AUTH process (e.g. tools used for authoring may crash).

(ii) The degree to which the AUTH process makes the hypermedia contents

failure-free.

(f) Scalability:

The degree to which the AUTH process maintains its efficiency level in terms of

time, cost and resource usage in handling problems of large sizes.

(g) Sub-factors of Maintainability:

• Analysability: The effort with which a typical author can analyse the cause of a

fault, process failure or unexpected feedback data. A fault could be one of the

following categories.

(i) the fault is discovered during the process execution and the fault may be with

the process itself, or it may be from the requirements.

(ii) the fault is discovered at a later point in time, and the cause of the fault is

linked to the AUTH process.

• Modifiability: The effort with which a maintainer addresses failures, detection of

faults and unexpected feedback data during the AUTH process; or faults

 185

discovered later but linked to the process.

• Stability:

(i)The degree to which addressing a process fault adversely affects the process

itself (say, process efficiency or properties like process consistency).

(ii)The frequency of changes done to the process (less the number of changes,

more is the stability).

• Testability:

(i) The degree to which the AUTH process could be validated itself (success

history of its hypermedia contents).

(ii) The degree to which the process contributes to the testability of its artefacts or

the final product (say, for generating test cases).

• Defect Trend:

(i) The trend of defects that are observed in the AUTH process itself (defects

linked to the process - during or after process execution).

(ii) The degree to which the AUTH process detects defects or deficiencies in the

Reqauth so that defects in the hypermedia content are minimal.

• Reusability:

(i) The degree to which the process contributes to the reusability of the

hypermedia contents.

(ii) The degree to which components of the process could be reused in a different

context (e.g.: testing process of HTML pages can be applied to WAP pages).

• Portability: The degree to which the AUTH process contributes to the portability

of the hypermedia contents; i.e., the process should facilitate the migration of the

product to a different environment (by taking into account of different versions,

releases).

 186

Appendix C

Glossary and Acronyms

AMI: Application of Metrics in Industry. It is a framework for process assessment and

improvement.

Anchor represents a linking point, i.e., the start or endpoint of navigation in hypermedia

system.

Artefacts are tangible piece of information that are created, changed and used during the

software life cycle by workers. Example: models, documentation etc.

Attribute is a feature or property of an entity (Fenton and Pfleeger, 1997).

BBN: Bayesian Belief Network.

Client-Server: The term client/server originally applied to a software architecture that

described processing between two programs -- an application and a supporting

service. At that time the client program and the server program did not have to

be physically separated -- they could be a calling and a called program running

on the same machine. Thus, usually the client/server discussions were limited

to interactions between one client and one server. As computer science and the

theory of programming evolved, however, the concepts of programs capable

of providing services or managing resources on behalf of a number of other

programs became widely accepted (Berson, 1992).

CMM (Capability Maturity Model) is a process improvement and assessment framework.

It defines as five-level for how an organisation matures its software process

from ad hoc, chaotic process to mature, disciplined software processes. key

 187

process areas (KPAs), which represent the areas on which an organisation

should focus if it wants to move to a particular level.

COCOMO (Constructive Cost Model) is a model for estimating cost, effort, and schedule

when planning a software development (Boehm, 1981)

Constant Comparison Method: Theory generation method in qualitative research (Glaser

and Strauss, 1967).

CPM: Critical Path Method

Entity is an object or an event.

EVPM: Earned Value Performance Measurement

External attributes of a product, process or resource are those that can be measured only

with respect to how the product, process, or resource relates to his

environment (Fenton and Pfleeger, 1997).

GANTT charts are a matrix where the horizontal axis represents time and the vertical axis

lists all tasks to be performed.

GQM: Goal-Question-Metric.

GNU: recursive acronym for “GNU's Not Unix; [http://www.gnu.org/]

GUI: Graphical User Interface.

HTML: HyperText Mark-up Language.

HTTP: HyperText Transfer Protocol.

Hypermedia application can be defined as an application that allows us to navigate

through an information space using associative links.

Hypermedia Engineering (Lowe et al, 1999) is defined as the employment of a

systematic, disciplined, quantifiable approach to the development, operation

and maintenance of hypermedia applications.

Hypermedia is the conjunction of hypertext and multimedia. i.e., the elements include

graphics, digitalised speech, audio etc. the hyperdocument is called

hypermedia. Hypertext can be defined as a Web of chunk of information inter-

related through links. The origin or destination of a link is an anchor. Anchors

can be words, sentences, areas of an image etc.

Hypertext is defined by Conklin (1987) as follows: “windows on the screen are

associated with objects in a database, and links are provided between these

objects, both graphically (as labelled tokens) and in the database (as

 188

pointers)”. The collection of objects in the database is defined as a

hyperdocument. When the elements that ban be networked together are only

text the hyperdocument is called hypertext.

Hypothesis in a experiment is defined as a predicted relationship between variables

Internal attributes of a product, process or resource are those that measured purely in

terms of the product, process or resource itself and external attributes (Fenton

and Pfleeger, 1997).

KDD (Knowledge Discovery in Databases) computational techniques and tools designed

to support the extraction of useful knowledge from databases.

KPA (Key Process Areas) are areas on which an organisation should focus if it wants to

move to a particular level.

Link is usually defined as an object which represents a connection between zero or many

anchors in a hypermedia system.

Maintainability is defined as “the ease with which a software system or component can

be modified to correct faults, improve performance or other attributes, or adapt

to a changed environment”. IEEE, “IEEE Software Engineering Standards

Collection”, Institute of Electrical and Electronics Engineers, New York, NY

1993.

Measurement is defined as “mapping from the empirical world to a formal, relational

world. Consequently, a measurement is the number or symbol assigned to an

entity by this mapping in order to characterise an attribute.” Direct measure of

an attribute involves no other attribute or entity (length, duration of testing

process, number of defects, time a programmer spends,…). Indirect measures

(programmer productivity = LOC/persons month of effort, etc). (Fenton and

Pfleeger, 1997)

Method (Methodology) for system development as a set of phases which guide the

developers in their choice of techniques that might be appropriate at each stage

of the project (Avison and Fitzgerald, 1995).

Metric (software) “a method of quantitatively determining the extent to which a software

process, product, or project possesses a certain attribute. This includes not

only the formula used for determining a metric value, but also the chart used

for presenting metric values, as well as the guidelines for using and

 189

interpreting the charts and metrics in the context of specific projects”

(Daskalantonakis, 1992).

Model is an abstraction of reality, allowing us to strip away detail and view an entity or

concept from a particular perspective (Fenton and Pfleeger, 1997).

Model is an abstraction of reality, allowing us to strip away detail and view an entity or

concept from a particular perspective (Fenton and Pfleeger, 1997).

MTBF: Mean Time Between Failure.

MTTR: Mean Time To Repair.

Node (hypermedia) is each of the navigational objects that composed the hypermedia

application.

OCL (Object Constraint Language) is an expression language that enables that enable one

to describe constrains (restrictions) on object-oriented models and other object

modelling artefacts.

OOHDM: Object Oriented Hypermedia Design Method.

PERT (Program Evaluation and Review Technique) charts depict tasks, duration and

their dependencies using a network diagram consisting of numbered nodes

representing events or milestones linked by vectors representing tasks in the

project.

PERT: Program Evaluation and Review Technique

Process assessment in software engineering is the evaluation of methods, tools, resources

and practices.

Process (software) any software activity associated with the development and

maintenance of software: from requirement analysis through to maintenance.

Process (engineering). The goal is to develop or enhance a process model; corresponds to

a business use case in business engineering” (Jacobson et al, 1999).

Product is an entity, which a process (i.e. any software activity) produces as output and

may also fed processes as input.

PROFES: PROduct Focused process improvement or Embedded Systems

RMM: Relationship Management Methodology

Software Engineering (1) The application of a systematic, disciplined, quantifiable

approach to the development, operation, and maintenance of software; that is,

 190

the application of engineering to software. (2) The study of approaches as in

(1). (IEEE, 1991)

Software maintenance is defined as “the modification of a software product after

delivery to correct faults, to improve performance or other attributes, or to

adapt the product to a changed environment (defined by IEEE standard 729).”

Software metric is defined as “a method of quantitatively determining the extent to which

software process, product, or project possesses a certain attribute. This

includes not only the formula used for determining a metric value, but also the

chart used for presenting metric values, as well as the guidelines for using and

interpreting the charts and metrics in the context of specific projects” (Fenton

and Pfleeger, 1997).

UML (Unified Modelling Language) is a general-purpose modelling language that is used

to specify, visualise, construct and document the artefacts of a software system

(Booch et al, 1999).

UML profile are extension of UML (using its standard mechanisms - stereotypes, tagged

values and constraints to the core UML language-) to create concise and

effective models for specific domains. These profiles ensure that the resulting

models conform to and are optimised for a specific target domain.

URI: Uniform Resource Identifier

WAP: Wireless Application Protocol

WBS: Work Breakdown Structure

Web applications could be defined as an application that runs on the Web protocols. Web

based applications are attracting interest because they have a number of

advantages over traditional client-server applications.

Web Engineering Web engineering is concerned with the establishment and use of sound

scientific, engineering and management principles and disciplined and

systematic approaches to the successful development, deployment and

maintenance of high quality Web-based systems and applications.

[http://aeims.uws.edu.au/WebEhome/]

XML (eXtensible Mark-up Language) describes a class of data objects called XML

documents and partially describes the behaviour of computer programs which

process them. XML is an application profile or restricted form of SGML, the

 191

Standard Generalised Mark-up Language. By construction, XML documents

are conforming SGML documents. (XML, 2001)

XSL (Extensible Stylesheet Language) is a language for expressing stylesheets. It consists

of two parts: (1) a language for transforming XML documents, and (2) an

XML vocabulary for specifying formatting semantics (XSL, 2001).

