
Universidad
de Alcalá

Doctorate Programme in Information and Knowledge Engineering

Programa de Doctorado en Ingeniería de la Información y del Conocimiento

ON THE DESIGN OF DISTRIBUTED AND
SCALABLE FEATURE SELECTION

ALGORITHMS

Presented by

RAUL JOSE PALMA MENDOZA

Advisors:
LUIS DE MARCOS ORTEGA, PHD
DANIEL RODRIGUEZ GARCIA, PHD

ALCALÁ DE HENARES, 2019

ABSTRACT

Feature selection is an important stage in the pre-processing of the data prior to the training
of a data mining model or as part of many data analysis processes. The objective of feature
selection consists in detecting within a group of features which are the most relevant and

which are redundant according to some established metric. With this, it is possible to create more
efficient and interpretable data mining models, also, by reducing the number of features, data
collection costs can be reduced in future. Currently, according to the phenomenon widely known as
“big data”, the datasets available for analyze are growing in size. This causes that many existing
algorithms for data mining become unable to process them completely and even, depending on
their size, feature selection algorithms themselves, also become unable to process them directly.
Considering that this trend towards the growth of datasets is not expected to cease, the existence
of scalable feature selection algorithms that are capable of increasing their processing capacity
taking advantage of the resources of computer clusters becomes very important.

The following doctoral dissertation presents the redesign of two widely known feature se-
lection algorithms: ReliefF and CFS, both algorithms were designed with the purpose of being
scalable and capable of processing large volumes of data. This is demonstrated by an extensive
comparison of both proposals with their original versions, as well as with other scalable versions
designed for similar purposes. All comparisons were made using large publicly available datasets.
The implementations were made using the Apache Spark tool, which has noways become a
reference framework in the “big data” field. The source code written has been made available
through a GitHub public repository 1,2.

1https://github.com/rauljosepalma/DiCFS
2https://github.com/rauljosepalma/DiReliefF

i

https://github.com/rauljosepalma/DiCFS
https://github.com/rauljosepalma/DiReliefF

RESUMEN

La selección de atributos es una importante etapa en el preprocesamiento de los datos previo
al entrenamiento de un modelo en minería de datos o como parte de cualquier proceso de
análisis de datos. El objetivo de la selección de atributos consiste detectar dentro de un

grupo de atributos cuáles son los más relevantes y cuáles son redundantes de acuerdo a alguna
métrica establecida. Con esto se logra crear modelos de minería de datos de forma más eficiente y
fáciles de interpretar, también, al detectar atributos pocos relevantes se puede ahorrar costo en
futuras recolecciones de datos. Sin embargo actualmente, de acuerdo al fenómeno ampliamente
conocido como “big data”, los conjuntos de datos que se desea analizar son cada vez mayores. Esto
provoca que muchos algoritmos existentes para minería de datos sean incapaces de procesarlos
completos e incluso, dependiendo de su tamaño, tampoco puedan ser procesados directamente por
los mismos algoritmos de selección de atributos. Considerando que esta tendencia al crecimiento
de los conjuntos de datos no se espera cesará, se vuelve necesaria la existencia de algoritmos de
selección de atributos escalables que sean capaces de aumentar su capacidad de procesamiento
aprovechando los recursos de clúster de computadoras.

La siguiente disertación doctoral presenta el rediseño de dos algoritmos de selección de
atributos ampliamente utilizados: ReliefF y CFS, ambos algoritmos fueron rediseñados con el
propósito de ser escalables y capaces del procesamiento de grandes volúmenes de datos. Esto
queda demostrado mediante un extensiva comparación de ambas propuestas con sus versiones
originales así como también con otras versiones escalables diseñadas para propósitos similares.
Todas las comparaciones se realizaron usando grandes conjuntos de datos de acceso público. Las
implementaciones se realizaron utilizando la herramienta Apache Spark, que actualmente se
ha convertido en todo un referente en el área de “big data”. El código fuente escrito se ha puesto
disponible en un repositorio público de GitHub a nombre del autor3,4.

3https://github.com/rauljosepalma/DiCFS
4https://github.com/rauljosepalma/DiReliefF

iii

https://github.com/rauljosepalma/DiCFS
https://github.com/rauljosepalma/DiReliefF

DEDICATION AND ACKNOWLEDGEMENTS

Definitely doing a doctoral thesis is a great challenge, and to achieve it, one requires much
more than having technical skills in the subject of research and have a lot of motivation
and desire to investigate. It is a challenge that requires a huge strength, to get up and try

again and again without being discouraged, although the results did not seem to arrive, even if
nothing is reaped after much sowing, sacrificing, among other things, time with the most loved
ones.

This strength, in my case I did not find it within myself, I must admit that it came from
many people who in one way or another added their strength to mine and for that reason I could
finish this effort reflected in the document below. The first to add were my parents Elda Marina
Mendoza and Raúl Ovidio Palma (RIP) who with their example of effort to get ahead as a family
gave me the greatest impulse. Next to my parents is the rest of my family, my aunts and uncles:
Alba, Lupe, Chago and Saúl and my grandmother Angelina who lived a much harder life than
everyone else in the family, and gave us a much higher example of sacrifice and effort than the
made to date.

The second in adding a lot was my new family, my wife Aneliza and our two children: Ane
Sofía and Ian. How not to thank my wife for all her wait during the almost 12 months we were
thousands of miles away, all her effort to cover my absences, all her understanding and all the
words, calls and gestures that encouraged me to continue during these years. To Ane Sofía and
Ian because by making me a father, they injected me with a new strength and motivation that
could not arrive from any other way.

The third ones in adding were my thesis directors: Luis and Dani, how many times they
encouraged me, they corrected me, they filled me with hope. They definitely made a great team in
directing this process. Also added a lot those who helped me feel a little closer to home: Fernando
Serrano my roommate, Sara and Javi, Carlos, Sandra, Alicia, Ana and the priests of the parish
Santo Tomas de Villanueva: Don Javier, Teo, Alberto and Luis Enrique how much courage did
they inject me and how many times did they cure my soul with the gifts that God has given
them. Since, it is not enough with a mental or physical strength, it was also necessary a lot of
spiritual strength that only come from God who is the one who is behind all of this, from the
miraculous approval of the scholarship to the most miraculous culmination of this project despite
the difficulties.

I received the last impulse needed to complete this process during my research stay with the
LIDIA group at the University of A Coruña, thanks to Amparo, Carlos, Isaac, Verónica and Laura
for the excellent reception, for the opportunity of collaboration and for making me feel part of the
team.

Finally, I also want to thank my co-workers at the UNAH, Servio for motivating me to
participate in the scholarship call, to my colleagues in the laboratory “from the back of the hall”
in Alcalá: Ana, Juan, Javi, Kike and Nancy. The current dean of the faculty of engineering of the

v

UNAH: Eduardo Gross and the previous dean Eng. Mónico Oyuela and in a special way to Daniel
Meziat for his help with the initial procedures and for being aware of me. In general, I thank
Fundación Carolina and the UNAH for the economic support and job stability that were key to
completing this project.

vi

DEDICATORIA Y AGRADECIMIENTOS

Definitivamente realizar un tesis doctoral es un gran reto, y para lograrlo se requiere
mucho más que contar con competencias técnicas en el tema de desarrollar y tener amplia
motivación y deseo de investigar. Es un reto que requiere de una fortaleza enorme, para

levantarse e intentar una y otra vez sin desanimarse, aunque los resultados no parezcan llegar,
aunque no se coseche nada después de mucho sembrar sacrificando de entre otras cosas, el tiempo
con los seres más amados.

Esta fortaleza, en mi caso no la encontré dentro de mí mismo, debo reconocer que provino
de muchas personas que de una u otra forma sumaron sus fuerzas a la mía y por esa razón
pude culminar este esfuerzo reflejado en el documento a continuación. Los primeros en sumar
fueron mis padres Elda Marina Mendoza y Raúl Ovidio Palma (QDDG) quienes con su ejemplo
de esfuerzo por salir adelante como familia me dieron el más grande de los impulsos. Junto a mis
padres está toda mi familia, mis tías y tíos: Alba, Lupe, Chago y Saúl y mi abuelita Angelina que
con una vida mucho más difícil y dura que la de todos, nos dio un ejemplo mucho más alto de
sacrificio y esfuerzo que el realizado hasta la fecha.

La segunda en sumar mucho fue mi nueva familia, mi esposa Aneliza y nuestros dos hijos:
Ane Sofía e Ian. A mi esposa cómo no agradecerle toda su espera durante los casi 12 meses que
estuvimos a miles kilómetros de distancia, todo su esfuerzo por cubrir mis ausencias, toda su
comprensión y todas las palabras, llamadas y gestos que me animaron a seguir durante estos
años. A Ane Sofía e Ian porque al hacerme un papá, me inyectaron una nueva fuerza y motivación
que de otro lado no podía surgir.

Los terceros en sumar fueron mis directores de tesis: Luis y Dani, cuántas veces me animaron,
me corregieron, me llenaron de esperanza, definitivamente hicieron una gran equipo al dirigir
este proceso. También sumaron mucho aquellos que me ayudaron a sentir un poco más cerca
de casa: Fernando Serrano mi compañero de piso, Sara y Javi, Carlos, Sandra, Alicia, Ana y los
sacerdotes de la parroquia Santo Tomás de Villanueva: Don Javier, Teo, Alberto y Luis Enrique
cuánto ánimo me inyectaron y cuántas veces me curaron el alma con los dones que Dios les ha
dado. Pues no basta con una fortaleza mental ni física, fue necesaria también mucha fortaleza
espiritual que sólo vino de Dios, quién es al final el que está detrás de todo esto desde la milagrosa
aprobación de la beca de estudios hasta la más milagrosa culminación de este proyecto a pesar de
las dificultades.

El último impulso que necesitaba para culminar este proceso lo recibí en mi estancia de
investigación con el grupo LIDIA en la Universidad de A Coruña, gracias a Amparo, Carlos, Isaac,
Verónica y Laura por la excelente acogida, por la oportunidad de colaboración y por hacerme
sentir parte del equipo.

Finalmente, quiero agradecer también a mis compañeros de trabajo de la UNAH, a Servio por
motivarme a participar en la convocatoria de becas, a mis compañeros en el laboratorio “del fondo
del pasillo” en Alcalá: Ana, Juan, Javi, Kike y Nancy. Al decano actual de la facultad de Ingeniería

vii

de la UNAH Eduardo Gross y al anterior decano Ing. Mónico Oyuela y de forma especial a Daniel
Meziat por su ayuda con los trámites iniciales y por estar pendiente de mí. De forma general, doy
gracias a la Fundación Carolina y la UNAH por el apoyo económico y la estabilidad laboral que
fueron claves para poder culminar este proyecto.

viii

RESUMEN EXTENDIDO

En los últimos años, un fenómeno conocido como big data ha sido reconocido en los campos

académico e industrial. Esencialmente, el big data se refiere a la creciente cantidad

de datos que está produciendo la sociedad de la información actual en prácticamente

todas las áreas del conocimiento. Junto con el big data, han surgido desafíos sin precedentes

para los científicos, ingenieros y profesionales que trabajan con datos y pretenden aprovechar

su valor. El aumento exponencial en la cantidad de datos que están disponibles para ellos, hace

que la tarea de procesar y analizar estos datos sea compleja y altamente exigente de recursos

computacionales.

Para generar valor a partir de los datos se debe seguir un proceso. El proceso de descubrim-

iento de conocimiento en bases de datos (proceso KDD por sus siglas en inglés) [51] es un marco

general que indica los pasos que se deben seguir para obtener conocimiento valioso de un conjunto

de datos. El paso central en el proceso KDD se conoce como minería de datos en cual se utilizan

técnicas especiales para crear un modelo que extrae patrones útiles y valiosos (conocimiento)

de los datos. Otro paso importante del proceso de KDD es el preprocesamiento de datos, éste

es un paso preparatorio pero notable, que si no se realiza con cuidado, puede hacer imposible

obtener conocimiento valioso a partir de los datos. Además, el preprocesamiento de datos es un

paso general que involucra muchas técnicas que pueden aplicarse a los datos originales, una de

esas técnicas se conoce como selección de atributos.

La selección de atributos, en un sentido amplio, es una técnica de preprocesamiento de datos

que se utiliza para reducir la cantidad de atributos que tiene un conjunto de datos. En términos

simples, si se considera que un conjunto de datos está formado por un grupo de instancias,

pueden ser: correos electrónicos, pacientes, intentos de conexión, perfiles de usuario, imágenes,

etc. Los atributos son las propiedades o características almacenadas para cada instancia, por

ejemplo, para un correo electrónico, los atributos pueden ser: asunto, fecha de envío, remitente,

destinatario, contenido, etc.

Según Guyon and Elisseeff [66], las técnicas de selección de atributos se aplican para lograr

al menos uno de los siguientes objetivos:

• Mejorar la calidad de los resultados del modelo producido.

• Hacer que la creación (entrenamiento) de un modelo sea más eficiente en términos de

consumo de recursos computacionales.

ix

• Mejorar los modelos resultantes haciéndolos más pequeños y más fáciles de entender.

La era actual de big data trae consigo la aparición frecuente de conjuntos de datos con alta

dimensionalidad, es decir, conjuntos de datos con un gran número de atributos que, para muchas

de las técnicas actuales de minería de datos, pueden causar el efecto conocido como maldición de

la dimensionalidad [11] que se refiere al hecho de que el número de pasos para crear un modelo

que debe seguir una técnica específica crece demasiado rápido con el número de atributos y la

probabilidad de obtener un modelo no válido o ningún modelo puede volverse demasiado alta

cuando hay muchos atributos presentes.

En este contexto, la selección de atributos se convierte en un paso extremadamente importante

dentro del preprocesamiento de datos [60], convirtiéndose en algunos casos en la única forma

de producir resultados valiosos especialmente para aquellas técnicas de minería de datos que

son más sensibles a la maldición de la dimensionalidad. Sin embargo, los conjuntos de datos de

alta dimensión que aparecen hoy en día con más frecuencia no solo pueden causar problemas

a las técnicas de minería de datos sino también a las técnicas tradicionales de selección de

atributos, esto es especialmente cierto para los algoritmos de selección de atributos multivariable,

los cuales son de alta importancia ya que tienen la capacidad para considerar las dependencias

de las atributos en sus resultados, una propiedad deseable al aplicar una técnica de selección

de atributos. Además, las técnicas de selección de atributos (y la minería de datos en general)

no solo pueden verse afectadas por la cantidad de atributos que tiene un conjunto de datos,

sino también por la cantidad de instancias (filas). De manera similar, los problemas que surgen

con al aumento en el número de instancias están relacionados con un aumento en los recursos

computacionales que exige el algoritmo. En algunos casos, esta demanda excede los recursos

disponibles y evita la ejecución del algoritmo. Además, a menudo es conveniente considerar todas

las instancias disponibles, especialmente en problemas complejos, ya que es bien sabido que

tener más instancias puede mejorar la calidad de los modelos resultantes [68]. Considerando todo

esto, Bolón-Canedo et al. [13] declaran que “existe una evidente necesidad de adaptar los métodos

de selección de atributos existentes o proponer nuevos para enfrentar los desafíos planteados

por la explosión de big data”, y esto de hecho se convierte en la principal motivación de la actual

investigación.

Objetivo y Metodología de Investigación

En las últimas décadas, se han desarrollado posiblemente cientos de métodos de selección de

atributos, algunos de ellos han sobresalido sobre el resto, se han considerado en varias revisiones

bibliográficas [15, 25, 138] y, por supuesto, se han utilizado en muchos estudios aplicados. La

declaración realizada por Bolón-Canedo et al. [13] y mencionada en la sección anterior ofrece un

vistazo a dos vías de investigación: (i) desarrollo de nuevos métodos de investigación y (ii) mejora

x

de los métodos existentes. Esta tesis está dedicada a la última vía y por tanto, el objetivo general

de esta tesis se puede enunciar de la siguiente manera:

Desarrollar nuevas versiones de métodos existentes de selección de atributos amplia-

mente usados para que puedan hacer frente a grandes conjuntos de datos de forma

escalable.

En este punto, es importante definir qué es un conjunto de datos grande. El Grupo de

Investigación de Computación sobre Soft-Computing y Sistemas de Información Inteligentes de la

Universidad de Granada tiene un repositorio de datos publicado 5 que incluye conjuntos de datos

de fuentes ampliamente conocidas como ser el repositorio del conjunto de datos de Aprendizaje

Automático de la Universidad de California Irvine 6 y otros provenientes de concursos académicos

de procesamiento de datos a gran escala, este repositorio se utiliza como la principal fuente de

datos públicos en esta tesis. La mayoría de los conjuntos de datos a los que se hace referencia allí

tienen un número de instancias del orden de 106 y un número de atributos en el orden de 101

hasta 103.

Para lograr el objetivo declarado, la investigación realizada en este trabajo siguió los siguientes

pasos:

1. Revisar las tecnologías más importantes para procesar y analizar grandes cantidades de

datos.

2. Revisar toda la investigación accesible dedicada a la escalabilidad de los algoritmos de

selección de atributos.

3. Identificar algunas de las técnicas de selección de atributos más relevantes y analizar cada

una para determinar cuáles eran más propensas a ser rediseñadas de manera escalable.

Después de realizar este paso, se seleccionaron dos técnicas de selección de atributos:

ReliefF [88, 135] y CFS [70, 71], las principales razones de esta selección fueron: son

algoritmos ampliamente utilizados con muchas aplicaciones, sus versiones actuales no se

escalan bien con cantidades crecientes de datos, se encontró muy poca investigación con el

objetivo de crear versiones escalables de ellas y las tecnologías descritas en el siguiente

párrafo se evaluaron como aplicables para su rediseño e implementación.

4. Seleccionar un grupo de tecnologías para utilizarlas como plataforma de diseño e inves-

tigación para este trabajo, siguiendo criterios comunes como: apertura del código fuente,

novedad, popularidad, buenos resultados en investigaciones anteriores, buen soporte, ac-

cesible para la investigación. Después de realizar este paso, la plataforma seleccionada

fue: Apache Spark [162] para el procesamiento de grandes conjuntos de datos y Hadoop

HDFS [19] para el almacenamiento distribuido de los conjuntos de datos.
5https://sci2s.ugr.es/BigData#Datasets
6https://archive.ics.uci.edu/ml/datasets.html

xi

https://sci2s.ugr.es/BigData#Datasets
https://archive.ics.uci.edu/ml/datasets.html

5. Diseñar e implementar las técnicas seleccionadas utilizando la plataforma de software

elegida.

6. Probar, experimentar y comparar las versiones rediseñadas con las versiones originales

utilizando grandes conjuntos de datos para determinar si realmente son escalables y más

apropiadas para estas cantidades de datos.

Contribuciones y Publicaciones

Las contribuciones hechas en esta tesis deben quedar claras después de leer los pasos de investi-

gación descritos en la sección anterior. Específicamente, los principales resultados de este trabajo

son las versiones rediseñadas de dos técnicas de selección de atributos tradicionales y relevantes:

ReliefF y CFS. De hecho, se realizaron dos publicaciones en revistas indexadas en JCR (Journal

Citation Reports), una para cada versión rediseñada, que se enumeran a continuación junto con

sus factores de impacto correspondientes en el momento de la redacción.

• Palma-Mendoza, R. J., Rodriguez, D., & de-Marcos, L. (2018). Distributed ReliefF-based

feature selection in Spark. Knowledge and Information Systems, 1–20. https://doi.org/

10.1007/s10115-017-1145-y (2.247 Impact Factor Second Quartile).

• Palma-Mendoza, R.-J., de-Marcos, L., Rodriguez, D., & Alonso-Betanzos, A. (2018). Dis-

tributed correlation-based feature selection in Spark. Information Sciences. https://doi.

org/10.1016/j.ins.2018.10.052 (4.305 Impact Factor First Quartile).

Con respecto a la primera contribución, el algoritmo ReliefF fue publicado por Kononenko

[88] como una extensión de Relief [86, 87]. Dado que Relief solo era capaz de lidiar con problemas

de clasificación binaria, ReliefF extendió sus capacidades para lidiar con problemas ruidosos,

incompletos y de múltiples clases. Relief es reconocido como uno de los algoritmos de selección

de atributos tipo filtro más destacados y ha dado origen a toda una familia de algoritmos, a

veces conocidos como algoritmos basados en Relief o RBA por sus siglas en inglés [152], siendo

ReliefF probablemente el más popular. Sin embargo, la complejidad computacional de ReliefF

es O (m ·n ·a), donde n es el número de instancias en el conjunto de datos, m es el número de

muestras tomadas de n instancias y a es el número de atributos. Por lo tanto, si el algoritmo

se va a ejecutar considerando todas las instancias en el conjunto de datos, entonces m = n, y la

función de complejidad crece de forma cuadrática con la cantidad de instancias O (n2 ·a) . Esta

complejidad, junto con el hecho de que la mayoría de las implementaciones tradicionales necesitan

cargar todo el conjunto de datos en la memoria para procesarlo, hace que las implementaciones

tradicionales sean inutilizables con los grandes conjuntos de datos. La primera contribución de

este trabajo consistió en el diseño e implementación de una nueva versión escalable del algoritmo

original de ReliefF llamado DiReliefF. Esta nueva versión es capaz de aprovechar los recursos

xii

https://doi.org/10.1007/s10115-017-1145-y
https://doi.org/10.1007/s10115-017-1145-y
https://doi.org/10.1016/j.ins.2018.10.052
https://doi.org/10.1016/j.ins.2018.10.052

computacionales de un clúster de computadoras para manejar grandes conjuntos de datos y

brinda los mismos resultados que ReliefF habría arrojado si pudiera ejecutarse en los datos. De

modo que, DiReliefF mantiene todas las propiedades ya estudiadas de ReliefF que lo han hecho

popular entre los investigadores y los profesionales.

Con respecto a la segunda contribución, el algoritmo CFS (Correlation-based Feature Selec-

tion) fue publicado por Hall [70, 71]. CFS ha sido considerado en muchas ocasiones como una de las

técnicas más importantes y ampliamente utilizadas en la selección de atributos. [13, 15, 96, 140].

Además, su creador Mark Hall, es también uno de los principales contribuyentes del software de

minería de datos WEKA [69], una de las herramientas de minería de datos de código abierto y

libre acceso más ampliamente utilizadas en el mundo. Por supuesto, CFS está incluido en WEKA

junto con ReliefF entre otros. Sin embargo, al igual que ReliefF, el algoritmo CFS tiene problemas

de escalabilidad, su complejidad computacional es O (a2 ·m), donde a es el número de atributos y

m es el número de instancias. Esta complejidad cuadrática en el número de atributos hace que

CFS sea muy sensible a la maldición de la dimensionalidad. Por otro lado, la implementación

de WEKA también requiere que el conjunto de datos se cargue en la memoria para procesarlo,

descartando la posibilidad de ejecutarlo en conjuntos de datos más grandes. Es por esto que,

la segunda contribución de este trabajo es una versión escalable de CFS llamada DiCFS. De

nuevo, esta nueva versión fue diseñada para aprovechar un clúster de computadoras con el fin de

manejar grandes conjuntos de datos y brinda los mismos resultados que CFS habría arrojado si

se pudiera ejecutar en los datos. Una vez más, manteniendo todas las propiedades y beneficios

del CFS que lo han convertido en una técnica de selección de atributos relevante y ampliamente

utilizada.

Conclusiones

De forma resumida, después de realizar el proceso de diseño, experimentación y prueba de los

algoritmos propuestos, fue posible concluir lo siguiente:

El algoritmo DiRelief se comparó con una versión no distribuida del algoritmo implementado

en la plataforma WEKA. Los resultados mostraron que la versión no distribuida es poco escalable,

es decir, no puede manejar grandes conjuntos de datos debido a los requisitos de memoria. Por el

contrario, DiReliefF es completamente escalable y proporciona mejores tiempos de ejecución y

uso de memoria cuando se trata de conjuntos de datos muy grandes. Los experimentos también

mostraron que el algoritmo es capaz de devolver resultados estables con tamaños de muestra que

son mucho más pequeños que el tamaño del conjunto de datos completo.

Con respecto al algoritmo DiCFS, se diseñaron e implementaron dos versiones DiCFS-hp y

DiCFS-vp. Estas dos versiones esencialmente difieren en cómo se distribuye el conjunto de datos

a través de los nodos del clúster. La primera versión distribuye los datos mediante la división

de filas (instancias) y la segunda versión, basada en el trabajo de Ramírez-Gallego et al. [132],

xiii

distribuye los datos dividiendo las columnas (atributos). Como resultado de una comparación de

cuatro vías entre DiCFS-vp y DiCFS-hp, una implementación no distribuida en WEKA y una

versión distribuida para regresión [47], se pudo concluir lo siguiente:

• Tanto DiCFS-vp como DiCFS-hp pudieron manejar conjuntos de datos más grandes de una

manera mucho más eficiente que la implementación clásica de WEKA. Además, en muchos

casos, fueron la única forma viable de procesar ciertos tipos de conjuntos de datos debido a

los requisitos prohibitivos de memoria de WEKA.

• Entre los esquemas de partición horizontal y vertical, la versión horizontal (DiCFS-hp)

demostró ser la mejor opción en el caso general debido a su mejor escalabilidad y su modo

de partición natural que permite al motor de Spark hacer un mejor uso de los recursos del

clúster.

• Para problemas de clasificación, los beneficios obtenidos con DiCFS en comparación con la

versión sin distribución pueden considerarse iguales o incluso mejores que los beneficios ya

demostrados para el problema de regresión [47].

De forma general, es posible concluir que el objetivo de “desarrollar nuevas versiones de

métodos existentes de selección de atributos ampliamente usados para que puedan hacer frente a

grandes conjuntos de datos de forma escalable” se logró con éxito para los casos específicos de los

algoritmos de selección de atributos de ReliefF y CFS . Ambas versiones están listas para servir

como herramientas valiosas para otros investigadores y profesionales en diferentes campos que

necesiten procesar grandes conjuntos de datos para sus propios objetivos.

xiv

TABLE OF CONTENTS

Page

List of Tables xix

List of Figures xxi

I Background 1

1 Introduction 3
1.1 Research Objective and Methodology . 4

1.2 Contributions and Publications . 6

1.3 Overview of the document . 7

2 Feature Selection 9
2.1 Knowledge Discovery in Databases Process . 9

2.2 Data Mining and Machine Learning . 10

2.3 Data Preprocessing . 13

2.4 Feature Selection . 15

2.4.1 Categorization . 15

2.4.2 Feature Evaluation Metrics . 18

2.4.3 Evaluating Feature Selection . 20

2.4.4 Filter-based Feature Selection Algorithms . 21

3 Big Data and Other Related Terms 27
3.1 Big Data . 27

3.2 Big Data Related Terms . 30

3.2.1 Business Intelligence . 30

3.2.2 Analytics . 30

3.2.3 Data Science . 32

3.2.4 Data Science, Data Mining and Machine Learning 34

4 Distributed Systems: MapReduce and Apache Spark 37

xv

TABLE OF CONTENTS

4.1 Distributed Systems . 37

4.1.1 Design Goals . 38

4.1.2 Types of Distributed Systems . 40

4.1.3 Parallel Computing . 41

4.2 MapReduce . 42

4.2.1 MapReduce Programming Model . 43

4.3 Apache Hadoop . 44

4.4 Apache Spark . 46

4.4.1 Spark Programming Model . 46

5 State of the Art of Distributed Feature Selection 49
5.1 Distributed Feature Selection . 49

5.1.1 Recent Work . 50

5.2 Recent Work on ReliefF and CFS filters . 53

5.2.1 Recent Work on ReliefF . 53

5.2.2 Recent Work on CFS . 54

II Contribution 57

6 Distributed Feature Selection with ReliefF 59
6.1 DiReliefF . 59

6.2 Experiments and Results . 63

6.2.1 Empirical Complexity . 66

6.2.2 Scalability . 68

6.2.3 Stability . 69

7 Distributed Feature Selection with CFS 71
7.1 Distributed Correlation-Based Feature Selection (DiCFS) 71

7.1.1 Horizontal Partitioning . 72

7.1.2 Vertical Partitioning . 73

7.2 Experiments . 76

IIIConclusions and Future Work 83

8 Conclusions and Future Work 85
8.1 DiReliefF: Conclusions and Future Work . 85

8.2 DiCFS: Conclusions and Future Work . 86

8.3 General Conclusions and Future Work . 87

xvi

TABLE OF CONTENTS

Bibliography 89

xvii

LIST OF TABLES

TABLE Page

6.1 Datasets used in the experiments . 66

7.1 Execution time and speed-up values for different CFS versions for regression and

classification . 81

xix

LIST OF FIGURES

FIGURE Page

2.1 KDD process stages [51] . 10

2.2 Feature selection methods main classification [138] . 17

3.1 Exponential growth of the data universe [67] . 28

3.2 Relationships between the discussed terms, the arrow can be interpreted as a “makes

use of” relation . 35

4.1 Main steps of a MapReduce execution, intk_n and intval, refer to intermediate keys

and values respectively . 44

4.2 Spark Cluster Architecture . 47

6.1 DiReliefF’s Main Pipeline . 64

6.2 Execution time and memory consumption of Spark DiRelieF and WEKA ReliefF versions 67

6.3 Execution time of Spark DiReliefF and WEKA ReliefF with respect to parameters a

and m . 68

6.4 Execution time of Spark DiReliefF and WEKA ReliefF with respect to the number of

cores involved . 69

6.5 DiReliefF’s average difference in weight ranks for increasing values of m in different

datasets . 70

7.1 Horizontal partitioning steps for a small dataset D to obtain the correlations needed

to evaluate a features subset . 74

7.2 Example of a columnar transformation of a small dataset with two partitions, seven

instances and four features (from [132]) . 75

7.3 Execution time with respect to percentages of instances in four datasets, for DiCFS-hp

and DiCFS-vp using ten nodes and for a non-distributed implementation in WEKA

using a single node . 78

7.4 Execution times with respect to different percentages of features in four datasets for

DiCFS-hp and DiCFS-vp . 79

7.5 Speed-up for four datasets for DiCFS-hp and DiCFS-vp 81

xxi

Part I

Background

1

C
H

A
P

T
E

R

1
INTRODUCTION

In the last years, a phenomenon known as big data has been recognized at the academic and

industrial fields. Essentially, big data refers to the increasing amount of data that is being

produced by the current information society in practically all areas of knowledge. Together

with big data, unprecedented challenges have emerged for scientists, engineers and practitioners

that work with data and intend to leverage its value. The exponential increase in the amount of

data that is available to them, causes that the task of processing and analyzing data has turn to

be complex and highly demanding of computational resources.

In order to produce value from data, a process must be followed. The Knowledge Discovery in

Databases process (KDD process) [51] is a general framework that marks the steps that must be

followed to obtain valuable knowledge from a set of data. The core step in the KDD process is

known as data mining, basically in this step, special techniques are used to create a model that

extracts useful and valuable patterns (knowledge) from data. Another important step of the KDD

process is data preprocessing, a preparatory but remarkable step that if not done with care can

make it impossible to obtain valuable knowledge from data. Moreover, data preprocessing is a

general step that involves many techniques that can be applied to the original data, one of such

techniques is known as feature selection.

Feature selection, in a broad sense is a data preprocessing technique used in order to reduce

the amount of features a dataset has. In simple terms, if a dataset is considered to be made of

a group of instances be they: emails, patients, connection attempts, user profiles, pictures, etc.

Features are simply the attributes stored for each instance, for example for an email its features

could be: subject, date sent, sender, receiver, content, etc. According to Guyon and Elisseeff [66],

feature selection techniques are applied pursuing at least one of the following objectives:

• Improve the quality of the results of the produced model.

3

CHAPTER 1. INTRODUCTION

• Make the creation (training) of a model faster or more cost-effective in terms of computa-

tional resource consumption.

• Improve the resulting models by making them smaller and easier to understand.

The current era of big data brings with it the frequent appearance of datasets with high

dimensionality, i.e., datasets with a high number of features, that for many of the current data

mining techniques can cause the effect known as the curse of dimensionality [11]. This refers to

the fact that the number of steps that a specific technique must follow in order to create a model

grows too fast with the number of features and the probability of obtaining an invalid model or

no model at all can get overly high when too much features are present.

In this context, feature selection turns to be an extremely important data preprocessing

step [60], becoming in some cases the only way of producing valuable results specially for

those data mining techniques that are more sensible to the curse of dimensionality. However,

high dimensional datasets that are nowadays appearing more frequently can not only cause

problems to the data mining techniques but also to some feature selection techniques themselves,

this is specially true for multivariate feature selection algorithms, which are important due to

their ability to consider feature dependencies, a desirable property when applying a feature

selection technique. Moreover, feature selection techniques (and data mining in general) can not

only be affected by the number of features a dataset has but also by the number of instances

(rows). Similarly, the problems that arise when the number of instances grows are related to an

increase in the computational resources that the algorithm demands. In some cases, this demand

exceeds the resources available and prevents the execution of the algorithm. Furthermore, is

often desirable to consider all the available instances, specially in complex problems, since its

well known that having more instances can improve the quality of the resulting models [68].

Considering all this, Bolón-Canedo et al. [13] state that “there is an evident need to adapt

existing feature selection methods or propose new ones in order to cope with the challenges

posed by the explosion of big data”, and this in fact becomes the main motivation of the current

investigation.

1.1 Research Objective and Methodology

In the last decades maybe hundreds of feature selection methods have been developed, some of

them have excelled over the rest, have been considered in many literature reviews [15, 25, 138]

and of course, have been used in many applied studies. The statement made by Bolón-Canedo

et al. [13] and mentioned in the previous section gives a glimpse over two research paths: (i)

developing new research methods and (ii) improving existing methods, this thesis is devoted to

the latter path. Therefore, the general objective of this thesis can be enunciated as follows:

4

1.1. RESEARCH OBJECTIVE AND METHODOLOGY

Develop new versions of existing important feature selection methods so that they

are able to cope with large datasets in a scalable fashion.

At this point, it is important to define what a large dataset is. The Soft Computing and

Intelligent Information Systems Research Group from the University of Granada has a published

large dataset repository 1 that includes data from the well known University of California Irvine

Machine Learning dataset repository 2 and other large scale data processing academic contests,

this repository is used as the main source of public data in this thesis. Most of the datasets

referenced in there have a number of instances in the order of 106 and number of features in the

range of 28 until 2000.

In order to accomplish the stated objective, the research conducted in this work went through

the following steps:

1. Review the most prominent technologies to process and analyze large amounts of data.

2. Review all the accessible research devoted to the scalability of feature selection algorithms.

3. Identify some of the most relevant feature selection techniques and analyze each one in

order to determine which were more prone to be redesigned in a scalable manner. After

performing this step, two feature selection techniques were selected: ReliefF [88, 135] and

CFS [70, 71], the main reasons for this selection were: they are widely used algorithms

with many applications, their current versions do not scale well with increasing amounts of

data, very little research work was found with the aim of creating scalable versions of them

and the technologies described in the next paragraph were applicable for their redesign

and implementation.

4. Select a group of technologies in order to be used as the design and research platform for

this work, following common criteria such as: source code openness, novelty, popularity, good

results in previous research, good support, accessible for the research. After performing

this step, the selected platform was: Apache Spark [162] for large dataset processing and

Hadoop HDFS [19] for distributed storage of the datasets.

5. Design and implement the selected techniques using the chosen software platform.

6. Test, experiment and compare redesigned versions with the original versions using large

datasets in order to determine if they were indeed scalable and more appropriate for these

amounts of data.

1https://sci2s.ugr.es/BigData#Datasets
2https://archive.ics.uci.edu/ml/datasets.html

5

https://sci2s.ugr.es/BigData#Datasets
https://archive.ics.uci.edu/ml/datasets.html

CHAPTER 1. INTRODUCTION

1.2 Contributions and Publications

The contributions made in this thesis should be clear after reading the research steps described in

the previous section. Specifically, the main results of this work are the redesigned versions of two

traditional and relevant feature selection techniques: ReliefF and CFS. In fact, two publications

in JCR (Journal Citation Reports) indexed journals were made, one for each redesigned version,

they are listed next together with their corresponding impact factors at the time of writing.

• Palma-Mendoza, R. J., Rodriguez, D., & de-Marcos, L. (2018). Distributed ReliefF-based

feature selection in Spark. Knowledge and Information Systems, 1–20. https://doi.org/

10.1007/s10115-017-1145-y (2.247 Impact Factor Second Quartile).

• Palma-Mendoza, R.-J., de-Marcos, L., Rodriguez, D., & Alonso-Betanzos, A. (2018). Dis-

tributed correlation-based feature selection in Spark. Information Sciences. https://doi.

org/10.1016/j.ins.2018.10.052 (4.305 Impact Factor First Quartile).

Regarding the first contribution, the ReliefF algorithm was published by Kononenko [88] as

an extension of Relief [86, 87]. Since Relief was only capable of dealing with binary classification

problems, ReliefF extended its capabilities to deal with noisy, incomplete, and multi-class prob-

lems. Relief is recognized as one of the most prominent filter-base feature selection technique

and has given birth to whole family of algorithms sometimes known as a Relief-based algorithms

(RBA) [152], being ReliefF probably the most popular. However, ReliefF’s computational com-

plexity is O (m · n · a), where n is the number of instances in the dataset, m is the number of

samples taken from the n instances and a is the number of features. Thus, if the algorithm

is to be executed considering all the instances in the dataset, then m = n, and the complexity

function grows quadratically with the number of instances O (n2 ·a). This complexity together

with the fact that most of the traditional implementations need to load the whole dataset in

memory in order to process it, turns traditional implementations unusable with large datasets.

The first contribution of this work consists in the design and implementation of a new scalable

version of the original ReliefF algorithm named DiReliefF. This new version is able to leverage

the computational resources of a cluster of computers in order to handle large datasets providing

the same results that ReliefF would have returned if it could be executed on the data. There

by, DiReliefF maintains all the already studied properties of ReliefF that have made it popular

between researchers and practitioners.

Respecting the second contribution, the CFS (Correlation-Based Feature Selection) algorithm

was published by Hall [70, 71]. CFS has been considered in many occasions [13, 15, 96, 140] as one

of the most important and widely used techniques in feature selection. Moreover, its creator Mark

Hall, is also one of the main contributors of the WEKA data mining software [69] one of the most

widely used open source and freely available data mining tools in the world and, of course, the

CFS algorithm is included in WEKA together with ReliefF among others. However, similarly to

6

https://doi.org/10.1007/s10115-017-1145-y
https://doi.org/10.1007/s10115-017-1145-y
https://doi.org/10.1016/j.ins.2018.10.052
https://doi.org/10.1016/j.ins.2018.10.052

1.3. OVERVIEW OF THE DOCUMENT

ReliefF, the CFS algorithm has scalability issues, its computational complexity is O (a2 ·m), where

a is the number of features and m is the number of instances. This quadratic complexity in the

number of features makes CFS very sensitive to the the curse of dimensionality [10]. On the other

hand, the WEKA implementation also requires the dataset to be loaded in memory to process it,

ruling out the possibility of executing it in larger datasets. Thus, the second contribution of this

work is a redesigned scalable version of CFS named DiCFS. This new version was again designed

to leverage a computer cluster in order to handle large datasets providing the same results that

CFS would have returned if it could be executed on the data. This new version also maintains all

the properties and benefits of CFS that have made it a relevant and widely used feature selection

technique.

1.3 Overview of the document

This dissertation is organized in three parts. Part I begins with this introductory chapter and

then presents all the background concepts that support the contributions made using three

chapters. Chapter 2, is devoted to the main topic of this work: feature selection, first establishing

its importance and relation to the machine learning and data mining fields and then presenting a

classification of current methods and evaluation metrics. Chapter 3 is titled Big Data and Other

Related Terms, is a vital chapter to understand the necessity of having scalable algorithms to

process the increasing amounts of data becoming available nowadays, it also presents and tries

to establish relations of many other terms that have aroused somewhat together with big data,

such as data science, business intelligence and analytics. Next, Chapter 4 discusses in a practical

manner, the theory of distributed systems quickly turning to the three main technologies that

conform the framework where the algorithms in this work were implemented, namely MapReduce,

Apache Hadoop and Apache Spark. Part I ends with Chapter 5, that establishes the link between

the first and second part of this work by presenting the last background concept: distributed

feature selection and then reviewing the related work in the field paying special attention to the

two algorithms redesigned in this thesis: ReliefF and CFS.

Part II details the contributions of this dissertation using a chapter for each algorithm:

Chapter 6 for DiReliefF and Chapter 7 for DiCFS, both chapters include all the experiments,

comparisons and results obtained with the proposed versions.

Finally, Part III (Chapter 8) concludes the dissertation and discusses future work.

7

C
H

A
P

T
E

R

2
FEATURE SELECTION

2.1 Knowledge Discovery in Databases Process

In order to adequately contextualize the topic addressed in this thesis, it is imperative to

place the field of feature selection on its place, for which it is valuable to start this discussion

with the following topics: Knowledge Discovery in Databases Process or KDD process, data

mining and machine learning as they constitute the environment within which the algorithms

presented here take participation and special relevance.

The need to develop new methods and techniques in order to analyze the data automatically

or semi-automatically has several decades being enunciated in the literature, and has gone

hand in hand with the sustained growth in the storage, transmission rates and data processing

the computers have had. Fayyad et al. [51] present the KDD process as a consequence of this

need and consider it an attempt to address the problem of data overload that the era of digital

information brought with it.

Fayyad et al. [51] define the KDD process as a non-trivial process to identify valid, novel,

potentially useful and understandable patterns in the data. This being a process, has a series of

stages that allow reaching its final objective which, in summary, consists of obtaining knowledge

from the data. Figure 2.1 shows us these stages and gives us an indication of the iterative and

interactive nature of this process, which refers to the fact that although there is a main flow

between each of the stages, it is also possible that there are cycles between any of them. A briefly

description of each one based on García et al. [57] is given below.

• Understanding and specifying the problem. This stage involves the understanding of the

domain of the problem, the clear identification of the objective pursued with the KDD

process and the selection of the data that will be used.

9

CHAPTER 2. FEATURE SELECTION

Figure 2.1: KDD process stages [51]

• Data preprocessing. This includes the cleaning of the data, the integration of the data when

it is obtained from various sources, the transformation of the data in ways that may make

it more useful for the next stage and the reduction of the data by eliminating instances

(rows) or features (columns) of the dataset.

• Data Mining. It is the central point of the process, where different methods can be applied to

extract valid and interesting patterns from the prepared data. This stage involves selecting

the most suitable mining method for its adjustment and validation.

• Evaluation. In this stage, the patterns obtained are estimated and interpreted according to

their interest and the objective identified at the beginning.

• Exploitation of results. Finally, the knowledge obtained can be used directly by incorporating

it into another system or it can simply be reported using perhaps visualization tools.

2.2 Data Mining and Machine Learning

As mentioned in the previous section, data mining is the central step of the KDD process. Ac-

cording to Witten et al. [158], data mining is the process through which patterns, structures and

theories are discovered in the data. This process is carried out automatically or semi-automatically

and the information found after being evaluated and interpreted allows obtaining knowledge that

has a scientific or economic value. In addition, the information has the characteristic of being

hidden or at least not detectable by the naked eye, so to reveal it, data mining uses techniques

that come from different areas of knowledge such as statistics and probability, theory of databases

and machine learning especially.

10

2.2. DATA MINING AND MACHINE LEARNING

In what corresponds to machine learning, the term was coined by Arthur Samuel in 1959 [139]

who defined it as “the field of study in which computers are given the ability to learn without be

explicitly programmed”. However, because the term “learn” is very broad, it must be bounded,

Mitchell [115] operationalizes it like this: “A computer program learns from an experience E

with respect to some type of task T and measure of performance P, if its performance in tasks

in T, measured by P, improves with the experience E”. Goodfellow et al. [61] list examples of

tasks, performance measures and experiences more used in the area of machine learning. Next, a

description of these three concepts is given starting in first place with tasks.

The most common tasks performed in machine learning are:

• Classification. It is perhaps the most important type of task, in classification the computer

program must select a category of a set of size k for each of the entries it receives, repre-

sented through a vector of n dimensions. To perform this task, the learning algorithm must

obtain a model that usually consists of a function f :ℜn → {1, . . . ,k}. So, when y= f (x) the

model assigns to the entry represented by x a category (class) identified with the numeric

code y. There are numerous cases where classification algorithms have been successfully

applied, for example in the detection of undesired mail (spam), it is possible to use a classi-

fication algorithm to determine if an email, represented through a vector, belongs to the

category “spam” or instead is a desirable email and belongs to the category “non-spam” [29].

Algorithms that perform this type of task are known as classifiers.

• Variants of the classification. There are numerous variants to the classical problem of

classification described in the previous paragraph, Hernández-González et al. [74] proposes

a taxonomy to organize these numerous proposals, of which it is possible to mention some

cases. A first variant occurs when the input data is not complete, in this case for the

learning algorithm it is not enough to obtain a single function that maps between the

inputs and the label, but it needs to produce a set of functions to apply them to the different

subsets of your entries with missing data. Another variant to consider is given when the

result of the classification is not a single label, but several, this is known as multi-label

classification [150]. Two possible cases can be given, in the first the output is represented

as a set of labels, in the second the output is a probability distribution along the set of

labels.

• Regression. In this type of task, the computer program is required to produce a prediction

in the form of a real number. In order to give an answer, the learning algorithm must obtain

a function f :ℜn →ℜ. A real example of this type of task is given in the prediction of future

prices or quantities for an inventory.

• Transcription and translation. In this case, the computer program observes unstructured

data such as images, audio waves, text in some natural language, etc. and it is expected to

11

CHAPTER 2. FEATURE SELECTION

produce a structured output. A classic example of this is the field of speech recognition [131],

in which the program receives audio waves with spoken language and is expected to return

a sequence of words corresponding to the transcription of what was said by the voice.

Another similar example is automatic translation, in which a text string is received in a

natural language such as Spanish and an equivalent text string is produced in another

language such as French.

• Detection of anomalies. In this type of task, the computer program carefully examines a set

of events or objects and is able to identify when it finds one that is unusual [24]. In practice,

this task is commonly applied by the financial entities that administer credit cards, in

this case the events are the regular purchases made by the card user and any atypical

purchases that are detected are used to block the card and thus prevent possible fraud.

• Analysis of groups. In group analysis, the task is to separate a set of objects into different

groups so that the objects that are in the same group are more similar (using some mea-

sure) to each other than the objects of different groups. Group analysis has demonstrated

its ability to reveal hidden structures in biological data, and has particularly helped to

investigate and understand the activities of genes and proteins that had not previously

been characterized [159].

• Synthesis. Synthesis is made when the program is requested to produce new data based on

those that already exist. This task is useful in multimedia applications when it is tedious

or expensive to generate large volumes of data manually. In the field of video games, it has

special utility in the automatic generation of very large objects or landscapes [103].

• Elimination of noise and missing attributes. The elimination of noise occurs when the

automatic learning algorithm receives as input a corrupt instance x̃ ∈ℜn by some unknown

process, the task is to predict the correct instance x from the corrupt version x̃. The

elimination of missing attributes occurs, as the name implies, when an instance x ∈ ℜn

with missing xi attributes is received. The task is to predict the values for these attributes.

Second, with respect to performance measures, in the case of classification and transcription

tasks, the most commonly used measure is accuracy. This is simply the proportion of instances

for which the model produces the correct result. Analogously, the error rate can be obtained as the

proportion of instances for which the incorrect result occurs. In addition to these measures, others

that are commonly used are obtained from the confusion matrix produced by the model, these

are the rates of true positive and true negative that correspond to the proportion of instances

that were correctly classified as positive and negative respectively, and the rates of false positives

and false negatives, which refer to the proportions of instances that were incorrectly classified as

positive and negative respectively.

12

2.3. DATA PREPROCESSING

From the four rates obtained from the confusion matrix, several metrics are derived, the

most commonly used are: precision, sensitivity, specificity, completeness and F-value [22, 158].

Although these metrics are initially applied in the binary classification, when there are only

two labels (k = 2), it is possible to generalize them for the case of multiple classes (k > 2) using

procedures known as micro and macro averages.

Performance is usually measured using a different dataset (test set) than the used for training

the model (train set), this is because commonly the main objective of a model is that it is able

to generalize to different data coming from the same probability distribution. A very common

issue with generalization is known as overfitting, it occurs when a model is tightly adjusted to

the training data but has poor performance with test data.

Ultimately, according to the experience from which the program performs the learning, ma-

chine learning can be divided into two broad categories (i) unsupervised learning and (ii) su-

pervised learning. In general, the experience that the machine learning algorithms go through

is represented by a set of data consisting of a collection of instances with specific attributes

according to the task to be performed.

The unsupervised learning algorithms attempt to learn useful properties about the structure

of the dataset. Usually, is interesting to know, even if implicitly, the probability distribution

that generated the dataset. The tasks related to this type of experience are the synthesis, the

elimination of noise, the analysis of groups and the elimination of missing attributes. More

formally, it is possible to define the unsupervised learning experience as a matrix M ∈ ℜn×m,

where n is the number of instances or objects that make up the dataset and m is the number of

attributes of each instance.

The second major category of machine learning is the supervised learning, here the experience

consists of a dataset in which each of the instances is associated with a label or class. Classification

tasks are carried out with this type of experience. More formally, in supervised learning, the

algorithm in addition to having the matrix M, has a vector y ∈ℜn containing the numeric code of

the labels corresponding to each of the n instances of the dataset.

Moreover, the different variants of the classification task also include different types of

experiences, for example in the basic scheme of semi-supervised learning [26] only part of the

dataset has labels, although the rest is also used for learning. Another case of semi-supervised

learning is that of multi-instance learning where the labels are assigned to groups instead of the

individual instances [168].

2.3 Data Preprocessing

Considering again the stages of the KDD process described in Section 2.1, although the data

mining stage is the central stage, additional steps such as the understanding and specification of

the problem, data preprocessing and evaluation are essential to be able to ensure the obtaining

13

CHAPTER 2. FEATURE SELECTION

of valuable knowledge from the data. The “blind” application of data mining can be a dangerous

activity and can easily lead to the discovery of meaningless and invalid patterns [51].

With regard to the preprocessing stage, this may involve a considerable number of sub-steps

of various kinds, García et al. [57] group these sub-steps into two categories (i) data preparation

and (ii) data reduction. Next, each one of them are described.

• Data preparation. This category groups those sub-steps that allow converting data that in

its actual state is not possible to use directly in the subsequent stage of data mining. The

sub-steps grouped here are:

– Data cleaning. It is usually done with human intervention since it requires the

understanding of the domain of the problem, eliminating data that may be unnecessary

or incorrect. In addition, tasks such as the detection and elimination of noise and

missing attributes are performed, in some cases with the help of machine learning

algorithms.

– Transformation of data. This sub-step, similarly to the previous one, requires consider-

able human intervention, here the data is converted or consolidated so that the mining

process is more efficient, some of the tasks that can be performed are: the construction,

aggregation or summary of features and the smoothing and normalization of the data.

• Data reduction. This category includes a group of techniques that in some way reduce

the amount of original data that the data mining algorithm must process. It differs from

the previous category in that here the input data is already in a valid state in order to

serve as input to a data mining algorithm without obtaining errors related to the values

provided. For this reason, it could be considered an optional stage. However, considering

the accelerated growth of the datasets that are currently experienced and the constraints

according to the algorithmic complexity of most data mining methods (see Section 3.1),

in many cases the reduction of data becomes a requirement for the execution of these

algorithms. The following sub-steps are placed here:

– Feature selection. This achieves the reduction of the dataset through the elimination

of redundant or irrelevant attributes, generally through algorithms that require less

human intervention during the preparation of data. This sub-step of the KDD process

constitutes a essential topic of this thesis work, which is why it is described in more

detail in the following section.

– Instance selection. As the name implies, the reduction of the dataset is done by

selecting the best instances of all the available ones. This can be done in order to

improve the execution speed of the algorithm and the memory requirements or for

more complex cases such as reducing the overfitting of the model or treating the

imbalance in the dataset [39].

14

2.4. FEATURE SELECTION

– Discretization. Discretization is the process used to convert data from a continuous

domain to a discrete domain. To do this, the continuous values are separated into

a finite number of ranges and each range is assigned a discrete value. This task

can actually be classified as part of the preparation of the data, since there are

numerous data mining algorithms that do not support continuous data and therefore

discretization becomes a requirement. However, the discretization process also entails

a reduction in the spectrum of values of the dataset, which is why it is included in this

category [56].

2.4 Feature Selection

As said before, feature selection is a essential topic of this thesis work, as evidenced by its

title. The previous sections have been included in order to adequately contextualize its position

within the KDD process and its relationship with the data mining and machine learning fields.

According to Guyon and Elisseeff [66] the objective of feature selection is threefold: (i) to improve

the performance of predictive models, (ii) to make them faster and more effective with respect to

their cost in resources and (iii) to allow a better understanding of the underlying process that

generated the data.

In addition, feature selection allows to alleviate the negative effects caused by the curse

of the dimensionality, a term introduced by Bellman [11] and which refers to the fact that a

normal increase of the dimensions (features) in the dataset leads to a exponential increase of the

search space and the growth in the probability of obtaining invalid models. Some data mining

techniques are more prone to suffer from the curse of dimensionality, for example decision trees

and instance-based learning. Finally, another positive effect of feature selection is to reduce the

cost of data acquisition, which is evident when it allows to avoid collecting features of an instance

that have been determined to be irrelevant.

Formally, if X is the set of features, feature selection consists in choosing (following some

defined criterion) a subset S ∈P (X), where P (X) is the power set of X .

2.4.1 Categorization

Similar to machine learning algorithms, it is possible to perform an initial categorization of

feature selection methods in supervised and unsupervised methods, according to the presence or

absence of labels for the instances in the dataset. Unsupervised methods are considered the most

complex ones [138]. Mitra et al. [116] classify the unsupervised methods in two categories, the

first one refers to the methods oriented to maximize the performance of the analysis of groups

and the second refers to the methods that evaluate the attributes according to dependence and

relevance measures, under the principle that any extra feature that does not provide enough

information beyond what is already represented by the current set of attributes is redundant

15

CHAPTER 2. FEATURE SELECTION

and must be eliminated. However, in the current work emphasis is on the supervised methods

in which the dataset is labeled. So, from now on, references to feature selection will indeed be

references to supervised feature selection unless otherwise specified.

Traditionally, feature selection methods have been classified into three categories [66] accord-

ing to their relationship with the classification algorithms. Figure 2.2 shows the structure of this

classification described below:

• Filters. Filters methods use metrics to evaluate attributes that do not require the training

of a classifier and depend exclusively on the intrinsic properties of the data. In other words,

the search in features space is done previously to the classification process. For this reason,

they are usually the algorithms that require less processing and memory resources than the

rest. In addition, filters are commonly classified in univariate and multivariate, depending

on whether the evaluation of the attributes is done individually or collectively, respectively.

The multivariate evaluation allows to consider the dependencies and interactions between

the attributes but usually has a higher computational cost.

• Wrappers. These methods are named this way because they define a search method that

“wraps” a classifier and uses it to evaluate the attributes. That is, the search in the features

space involves multiple searches in the hypothesis space (made by the classifier). These are

typically the most computationally expensive methods because they require the classifier

to be trained multiple times in each step of the search, but at the same time, they are

generally the methods that lead to better accuracy rates, running the risk of overfitting in

some cases [102].

• Embedded. These are methods in which the selection of attributes is part of a classifier,

they are implemented through the use of objective functions that in addition to considering

the quality of the fit of a model, also penalize that it is made up of many variables. They

are proposed with the objective of avoiding the computational efficiency problem of the

wrapper methods since they do not require the training of multiple classifiers. In this case,

the search in the features space is performed together with the search of the hypothesis.

In addition to the previous categorization, it is possible to classify feature selection according

to the following four elements: (i) the output they produce, (ii) the search direction, (iii) the search

strategy they follow, and (iv) the metrics they use to evaluate the attributes. According to the

output they produce, it is possible to define two subcategories:

• Feature Ranking. Methods in this subcategory produce an output that consists of an ordered

list of features according to their importance depending on the metric used. In order to

proceed with feature selection the first u features of the list are chosen. However, the

problem with these is that in many cases there is no defined number of features to choose

from and there are no direct procedures for selecting a threshold value [57]. Many of these

16

2.4. FEATURE SELECTION

FS Space Classifier Filters

Wrappers

Embedded

FS Space

Classifier

Hypothesis space

FS Space U Hypothesis space

Classifier

Figure 2.2: Feature selection methods main classification [138]

methods assign a weight value to each feature and then use these weights to produce the

ranking.

• Subset Selection. The output of this type of method consists of a subset of the original

features. Within this, no distinction of importance is usually made, simply the features

that are considered most important are placed within the subset and the rest is left out.

These methods have the advantage of not requiring a previous definition of the number of

features to be selected nor a threshold to make the selection.

In reference to the search direction that is followed, according to Liu and Yu [99] it is possible

to mention four categories, but not before clarifying that not all algorithms of selection of features

need to perform a search, some algorithms, for example univariate filters, do not need more than

going through the set of features and applying the corresponding metric to each of them according

to their values.

17

CHAPTER 2. FEATURE SELECTION

• Forward Search. This type of search begins with an empty set of features that is increased

by selecting the next best feature according to some criteria. The search may end either

because the number of selected features has already reached a threshold value or because

all the possible subsets have already been traversed.

• Backward Search. Conversely to the previous one, it starts with the complete set of features

that are eliminated one by one according to some criterion that indicates which is the

least important so that in the end the last feature to be eliminated is considered the most

relevant of all. In addition, finalization criteria such as the number of deleted features are

commonly used.

• Bidirectional Search. The bidirectional generation consists simply in the parallel execution

of the two previous searches in order to complete the search faster. Then the results have

to be merged in some fashion.

• Random Search. In order to avoid stagnation in a local optimum, the search starts with a

random set and the decision to add or remove features is also made randomly.

Given a search direction, this should be combined with a search strategy, García et al. [57]

classify them and describe three categories:

• Exhaustive Search. This search involves the exploration of all possible solution subsets,

that is, if X is the initial set, it involves traversing all members of P (X), and if |X | = n, then

|P (X)| = 2n, so this search grows exponentially with the number of features n, becoming

unfeasible in most cases. However, it is the only search that guarantees to find the optimal

result.

• Heuristic Search. Given the unfeasibility of the exhaustive search, this search avoids

evaluating all alternatives in P (X) by creating a set in O (n) steps, using a heuristic to

select the members of the result.

• Non-deterministic Search. Also known as random search, it does not follow a certain order

but generates random results which are evaluated hoping that each new result is better

than the current one. The search usually stops after a time interval has elapsed or when a

defined quality level is obtained.

2.4.2 Feature Evaluation Metrics

As mentioned above, filters use different feature evaluation metrics that depend exclusively on

the intrinsic characteristics of the data, these metrics can be classified into four categories:

• Information. These metrics are based on Shannon’s Information Theory. They use the

concept of uncertainty and evaluate the features according to their capacity to reduce

18

2.4. FEATURE SELECTION

uncertainty with respect to the class. A very important concept that conforms the basis

of information theory is that of entropy of a discrete random variable by itself or given

another discrete random variable, both depicted in Equations 2.1 respectively. The entropy

is a measure of the amount of uncertainty a random variable holds, for example if X is a

Bernoully random variable with p = 0.9 , it will a have an entropy of H(X) ≈ 0.47 but if

the amount of uncertainty is incremented by setting p = 0.5 then the entropy will raise to

H(X)= 1.0.

H(X)=− ∑
x∈X

p(x) log2 p(x)

H(X |Y)=− ∑
y∈Y

p(y)
∑
x∈X

p(x|y) log2 p(x|y)(2.1)

• Distance. Comparing with the previous metrics, these ones instead of select features that

reduce the uncertainty, prefer features that increase the distance between the classes, for

this reason they are also known as separability metrics. One of the most used distance

measurements in the Euclidean Distance DE defined between two points X,Y in ℜn as

DE = [∑n
i=1(xi − yi)2]1/2.

• Correlation. Correlation metrics evaluate the level of association between two variables.

These associations are measured between different features as well as between the features

and the class. Two features that are closely associated are often considered redundant so

that one of the two can be eliminated. On the other hand, features that have high correlation

with the class are preferred because of their predictive potential. One of the most commonly

used correlation measures is the Pearson coefficient defined as ρX ,Y = cov(X,Y)
σXσY

, where cov

and σ represent the functions of covariance and variance respectively. However, one of the

disadvantages of the Pearson coefficient is that it only allows to detect linear correlations

between the variables, therefore other measures such as the Symmetric Uncertainty [128]

are used.

• Consistency. These metrics are applied by reducing the number of features and at the

same time minimizing the number of inconsistencies in the data, according to [33] an

inconsistency is found in dataset when two instances have the same values in their features

but belong to different classes.

In addition to the metrics used by filters, wrappers use different measures to evaluate the

performance of the classifiers they train, however since this thesis work is focused on the design

of filters, wrappers metrics are not mentioned here.

19

CHAPTER 2. FEATURE SELECTION

2.4.3 Evaluating Feature Selection

From the numerous categories and evaluation metrics mentioned in the previous sections it

is easy to infer that there are numerous methods for feature selection and, as expected, they

do not behave in the same way, since some are more convenient than others depending on

the characteristics of the data. For example, Bolón-Canedo et al. [15] perform a comparison

of different method of attribute selection considering their capabilities to handle the following

situations:

• A lot of correlation and redundancy between the features.

• Non-linear dependencies between features.

• Noise in the features and in the class.

• Very low proportion of instances with respect to number of features.

This comparison is made using synthetic data, so it is possible to evaluate the process

according to an expected result. However, in practice, the ideal set of features is not really

known and the different methods applied may return different results. In order to select one

of the necessary results, the evaluation will be directed by the objective for which the selection

of features is being carried out, which, as mentioned at the beginning, is triple. Below, three

evaluation criteria according to this objective are described.

1. Predictive power. By reducing the number of features it is possible to achieve that some data

mining algorithms improve their predictive performance, so that the process of selection of

features under this criterion is evaluated by measuring the performance of the subsequent

predictive algorithm.

2. Interpretability. There are models in data mining that, in addition to their predictive

capabilities, also provide a summary representation of the data that can be interpreted

by an expert in the area. By reducing the number of features it is possible to obtain

representations that are simpler and easier to understand. The evaluation of this criterion

depends on a measure of complexity that must be adapted to the type of model generated.

For example, in the case of a decision tree, its complexity could be measured according to

its number of branches, leaves and nodes.

3. Reduction of costs. Obtaining a reduced set of features also has as a common consequence

a reduction in the consumption of computational resources such as processor time and

memory. Therefore, when evaluating this criterion, the reduction in the consumption of

these resources of the subsequent data mining algorithms is measured. However, this

objective is not usually pursued independently without being linked to at least one of the

previous two. For example, reduce the cost and maintain predictive power.

20

2.4. FEATURE SELECTION

Apart from these three basic criteria, it is also possible to mention other practical factors that

may be important to consider when selecting a feature selection algorithm:

• Algorithmic complexity. Due to the marked growth trend in the size of the datasets, in

some cases it is possible that the feature selection algorithm may not be able to process

all of them in a reasonable time or that the memory requirements are greater than those

available so the algorithm cannot be executed. For these reasons, in these cases, filters are

preferred over wrappers.

• Stability. Kalousis et al. [83] define the stability as the robustness of the results produced

with respect to the differences in training sets taken from the same probability distribution.

The lack of stability in a method can become an undesirable factor in fields such as biology

where it is desired that the set of selected features do not have radical changes with small

changes in the training set since it is common that considerable research effort will be

made on these features.

2.4.4 Filter-based Feature Selection Algorithms

In this section, some of the most prominent filter-based feature selection algorithms are presented

as examples of this important category of algorithms. The algorithms were selected from recent

surveys in the field [15, 25, 96, 140]. A special emphasis is placed in the discussion of the two

final algorithms, since as mentioned in Chapter 1 they constitute the main conceptual basis of

the contributions of this dissertation.

2.4.4.1 Fisher Score [45]

The Fisher Score uses a criteria based on distance, the features selected are those whose values

on instances of the same class are small and are large on instances of different classes. Fisher

Score is a univariate filter, it produces a feature ranking by scoring each individual feature using

the Fisher criterion shown in Equation 2.2:

(2.2) F(f i)=
∑c

j=1 n j(µi, j −µi)2∑c
j=1 n jσ(i, j)2

where n j, µi, µi, j and σ(i, j)2 indicate the number of samples in class j, mean value of feature

f i, mean value of feature f i for samples in class j and variance value of feature f i for samples in

class j, respectively. Given the univariate nature of the Fisher score, it is incapable of removing

redundant features, to overcome this issue Gu et al. [65] propose the Generalized Feature Score,

a multivariate technique that produces a features subset that maximizes the lower bound of the

original Fisher score.

21

CHAPTER 2. FEATURE SELECTION

2.4.4.2 Information Gain [95]

As the name implies, Information Gain uses a information theory based measure to evaluate

features known as Mutual Information, shown in Equation 2.3. This metric is used to measure

the amount of dependence between two random variables X (a determined feature) and Y (the

class) by using their entropy and conditional entropy. Similar to the previous, it is a univariate

filter that produces a feature ranking as output.

(2.3) I(X ,Y)= H(X)−H(X |Y)

2.4.4.3 Minimum Redundancy Maximum Relevancy [125]

Minimum Redundancy Maximum Relevancy known as mRMR is a multivariate filter that

produces a feature ranking, this ranking is based on relevance of the features with respect to

the class penalizing at the same time the redundancy of features. The relevance of a feature is

based on the mutual information it shares with the class and its redundancy is obtained with the

mutual information it shares with the rest of selected features.

2.4.4.4 Fast Correlation Based Filter [160]

Different to the previous ones, the Fast Correlation-Based Filter (FCBF) does not produce a

feature ranking but a features subset. It is also a multivariate filter since it considers relations

between features trying to reduce redundancy. FCBF uses an information theory based correlation

measure known as Symmetrical Uncertainty [128] depicted on Equation 2.4, this measure is

capable of detecting linear a non-linear correlations between two discrete random variables being

them features or the class. A valuable characteristic of the symmetric uncertainty is its symmetry,

that is SU(X ,Y)= SU(Y , X) this is useful when calculating associations between features since

none of them can be identified as the class.

(2.4) SU(X ,Y)= 2 ·
[

H(X)−H(X |Y)
H(Y)+H(X)

]

2.4.4.5 Consistency-based Filter [33]

As suggested by its name, the Consistency-based Filter uses a consistency measure known as

the inconsistency rate that is calculated based in the concept of pattern, a pattern is simply the

set of features values a specific instance has, that is, an instance without the class value. The

inconsistency rate of a feature subset is determined first by calculating the inconsistency count for

each pattern on the subset. This count is equal to the number of times the pattern appears in the

dataset minus the largest number of times it appears among different class labels. For example,

if a feature subset S has a pattern p that appears in np instances out of which c1 instances have

22

2.4. FEATURE SELECTION

class label1, c2 have label2, and c3 have label3 where c1+ c2+ c3= np, then if c3 is the largest

among the three, the inconsistency count is n− c3. Once the inconsistency count is known, the

inconsistency rate of the feature subset is simply the sum of all inconsistency counts over all

patterns of the subset divided by the number of instances the dataset has.

2.4.4.6 ReliefF [88]

ReliefF is multivariate filter that produces a feature ranking, it is an extension of the original

Relief algorithm [86]. Both algorithms share the central idea that consists in evaluating the

quality of the features by their ability to distinguish instances from one class to another in a

local neighborhood, i.e., the best features are those that contribute more to increase distance

between different class instances while contribute less to increase distance between same class

instances. The original Relief algorithm was designed for binary class problems, and ReliefF

extends its capabilities for working with multi-class, noisy and incomplete datasets. ReliefF

has been recognized for is good tolerance to noise, both in labels and inputs and for detecting

non-linear interactions between features and the class [15].

Algorithm 1 ReliefF [88, 135]
1: calculate prior probabilities P(C) for all classes
2: set all weights W[A] := 0.0
3: for i = 1 to m do
4: randomly select an instance Ri
5: find k nearest hits H j
6: for all classes C 6= cl(Ri) do
7: from class C find k nearest misses M j(C)
8: end for
9: for A := 1 to a do

10: H :=−∑k
j=1 diff (A,Ri,H j)/k

11: M :=∑
C 6=cl(Ri)

[(
P(C)

1−P(cl(Ri))

)∑k
j=1 diff (A,Ri, M j(C))

]
/k

12: W[A] :=W[A]+ (H+M)/m
13: end for
14: end for
15: return W

Algorithm 1 displays ReliefF’s pseudo-code, mostly preserving the original notation used in

[135]. As it can be observed, it consists of a main loop that iterates m times, where m corresponds

to the number of samples from data to perform the quality estimation. Each selected sample

Ri equally contributes to the a-size weights vector W, where a is the number of features in the

dataset. The contribution for the A-th feature is calculated by first finding k nearest neighbors of

the actual instance for each class in the dataset. The k neighbors that belong to the same class

as the actual instance are called hits (H), and the other k · (c−1) neighbors are called misses

(M), where c is the total number of classes, and cl(Ri), represents the class of the i-th sample.

23

CHAPTER 2. FEATURE SELECTION

Once the neighbors are found, their respective contributions to A-th feature are calculated. The

contribution of the hits collection H is equal to the negative of the average of the differences

between the actual instance and each hit. It should be noted that this is a negative contribution

because only non desirable features should contribute to create differences between neighbor

instances of the same class. Analogously, the contribution of the misses collection M is equal

to the weighted average of the differences between the actual instance and each miss. This is

a positive contribution because good features should help to differentiate between instances of

a different class. The weights for this summation are defined according to the prior probability

of each class, calculated from the dataset. Finally, it is worth mentioning that adding H and M

and then dividing both by m simply indicates another average between the contributions of all m

samples. Since the diff function returns values between 0 and 1, the ReliefF’s weights will be in

the range [−1,1], and must be interpreted in the positive direction: the higher the weight, the

higher the corresponding feature’s relevance.

The diff function is used in two cases in the ReliefF algorithm. The obvious one is between

lines 10 and 11 to calculate the weight. It is also used to find distances between instances, defined

as the sum of the differences over every feature (Manhattan distance). The original diff function

used to calculate the difference between two instances I1 and I2 for a specific feature A is defined

in (2.5) for nominal features, and as in (2.6) for numeric features. However, the latter has been

proved to cause an underestimation of numeric features with respect to nominal ones in datasets

with both types of features. Thereby, a so-called ramp function, depicted in (2.7), was proposed to

deal with this problem [77]. The idea behind it is to relax the equality comparison on (2.6) by

using two thresholds: teq is the maximum distance between two features to still consider them

equal, and analogously, tdiff is the minimum distance between two features to still consider them

different. Their default values are set to 5% and 10% of the feature’s value interval respectively.

In addition, there are other versions of the diff function to deal with missing data. However,

since the datasets chosen for the experiments in this work do not have missing values, they are

not considered here.

(2.5) diff (A, I1, I2)=
0 if value(A, I1)= value(A, I2),

1 otherwise

(2.6) diff (A, I1, I2)= |value(A, I1)−value(A, I2)|
max(A)−min(A)

(2.7) diff (A, I1, I2)=

0 if d ≤ teq,

1 if d > tdiff ,
d−teq

tdiff−teq
if teq < d ≤ tdiff

24

2.4. FEATURE SELECTION

2.4.4.7 Correlation-based Feature Selection [71]

Correlation-based Feature Selection (CFS) is categorized as a subset selector, it evaluates subsets

rather than individual features. For this reason, the CFS needs to perform a search over candidate

subsets, but since performing a full search over all possible subsets is prohibitive (due to the

exponential complexity of the problem), a heuristic has to be used to guide a partial search.

This heuristic is the main concept behind the CFS algorithm, and, as a filter method, the CFS

is not a classification-derived measure, but rather applies a principle derived from Ghiselly’s

test theory [59], i.e., good feature subsets contain features highly correlated with the class, yet

uncorrelated with each other.

This principle is formalized in Equation (2.8) where Ms represents the merit assigned by the

heuristic to a subset s that contains k features, rc f represents the average of the correlations

between each feature in s and the class attribute, and r f f is the average correlation between

each of the
(k

2
)

possible feature pairs in s. The numerator can be interpreted as an indicator of

how predictive the feature set is and the denominator can be interpreted as an indicator of how

redundant features in s are.

(2.8) Ms =
k · rc f√

k+k(k−1) · r f f

Equation (2.8) also posits the second important concept underlying the CFS, which is the

computation of correlations to obtain the required averages. In classification problems, the

CFS uses the symmetrical uncertainty measure [128] previously shown in Equation (2.4). This

calculation adds a requirement for the dataset before processing, which is that all non-discrete

features must be discretized. By default, this process is performed using the discretization

algorithm proposed by Fayyad and Irani [52].

The third core CFS concept is its search strategy. By default, the CFS algorithm uses a

best-first search to explore the search space. The algorithm starts with an empty set of features

and at each step of the search all possible single feature expansions are generated. The new

subsets are evaluated using Equation (2.8) and are then added to a priority queue according to

merit. In the subsequent iteration, the best subset from the queue is selected for expansion in the

same way as was done for the first empty subset. If expanding the best subset fails to produce an

improvement in the overall merit, this counts as a fail and the next best subset from the queue is

selected. By default, the CFS uses five consecutive fails as a stopping criterion and as a limit on

queue length.

The final CFS element is an optional post-processing step. As stated before, the CFS tends

to select feature subsets with low redundancy and high correlation with the class. However, in

some cases, extra features that are locally predictive in a small area of the instance space may

exist that can be leveraged by certain classifiers [70]. To include these features in the subset after

the search, the CFS can optionally use a heuristic that enables inclusion of all features whose

25

CHAPTER 2. FEATURE SELECTION

correlation with the class is higher than the correlation between the features themselves and

with features already selected. Algorithm 2 summarizes the main aspects of the CFS.

Algorithm 2 CFS [71]
1: Corrs := correlations between all features with the class
2: BestSubset :=;
3: Queue.setCapacity(5)
4: Queue.add(BestSubset)
5: NFails := 0
6: while NFails < 5 do
7: HeadState :=Queue.dequeue {Remove from queue}
8: NewSubsets := evaluate(expand(HeadState),Corrs)
9: Queue.add(NewSubsets)

10: if Queue.isEmpty then
11: return BestSubset {When the best subset is the full subset}
12: end if
13: LocalBest :=Queue.head {Check new best without removing}
14: if LocalBest.merit > BestSubset.merit then
15: BestSubset := LocalBest {Found a new best}
16: NFails := 0 {Fails must happen consecutively}
17: else
18: NFails := NFails+1
19: end if
20: end while
21: {Optionally add locally predictive features to BestSubset}
22: return BestSubset

26

C
H

A
P

T
E

R

3
BIG DATA AND OTHER RELATED TERMS

The chapter ahead represents the second part of the background concepts. It starts with

a discussion about the term “Big Data”, its meaning and implications. Next, its lists and

discusses other important terms that have grown in popularity with big data or that

form part of the history of it, such as “Data Science” and “Business Intelligence”. The aim of this

chapter is to define and clarify the relations between all of these terms and the data mining and

machine learning concepts discussed in the previous chapter.

3.1 Big Data

According to Diebold [41], the term big data probably appeared during the mid 90’s lunch

conversations in Silicon Graphics where John Mashey worked as a researcher. A proof of this are

the slides of the presentation titled “Big Data... and the next wave of Infrastress” [109] where

Mashey discussed the importance of being aware about the increasing demand of information

services and the stress over hardware infrastructure: storage, processing, memory and network

that this demand was going to cause.

However, the term has only recently become popular, according to Gandomi and Haider [53]

its popularization started in 2011, supported by IBM and other leading technology companies.

The term suddenly appeared and was quickly accepted by many sectors, but the academic domain

was somewhat left behind in such a manner that the term became widespread without even

having a commonly accepted definition [2]. Moreover, between the amount of discussion the term

has generated, is possible to state some properties about it:

Big Data is a trend. In the current information era, were the information has a tremendous

economical value, it is now clear for everyone that organizations and individual researchers

27

CHAPTER 3. BIG DATA AND OTHER RELATED TERMS

2010 2020

You are here

44 zettabytes

unstructured data

structured data

Figure 3.1: Exponential growth of the data universe [67]

around the world will try to collect and analyze all the data about their own activities and the

environment that surrounds them in order to produce valuable information. Figure 3.1 depicts

the exponential growth of the data universe that is been experimented, the total amount of data

the humanity is storing is going from 4.4 Zettabytes in 2015 to 44 Zettabytes in 2020, doubling in

size every two years according to the IDC / EMC [78] report in 2014.

Big Data is a property of the data. Cox and Ellsworth [31] wrote the first article in the ACM

library that uses the term big data. They define the “problem of big data” as occurring when the

datasets are too large for being stored in local memory, storage or even remote storage. Currently,

this problem concerns not only the storage but also emerges when the datasets are too large for

being processed, for example by data analysis tools. This coincides with the fact that most of the

current stored data is non-structured data (videos, audio, images, etc.) [54] and this type of data

has always been a difficult task for analysis tools.

Big Data is an opportunity. The big data phenomena driven by the continuous improvements

in all information systems technologies such as processors, memories, disk drives and networking,

and the widespread of these technologies in the form of devices such as smart-phones, laptops,

desktops, servers, network devices and a new gamma of Internet-connected devices labeled as the

Internet Of Things (IoT), has been clearly identified as a great opportunity to generate more value

28

3.1. BIG DATA

from the data than before [107] and to help advance in practically all sectors from government [85]

to business management [110]. New applications are continuously been published in all fields of

science, such as biology [108], health care [149], social sciences [121] and civil [5] and electric

engineering [80], to give some examples. Regarding to data mining and machine learning, it is

widely known that the quality of many models and their predictive performance can be improved

by increasing the amount of data used for training [82], in such a way that big data has become

crucial in the recent advances in this area.

In 2001, Doug Laney, a recognized analyst at the prestigious information technologies con-

sulting firm Gartner, published a technical report [91] describing three dimensions in which

data management challenges had been expanded: Volume, Velocity and Variety . These three

dimensions have been called the three V’s of big data and have become a common framework to

describe it. They are reviewed next:

1. Volume. Refers to the fact already discussed below, there is more data than ever before, and

its size continues to increase making it a challenge for the actual infrastructure to store it

and process it to generate value.

2. Velocity. This indicates that the data is arriving in a continuous stream and there is interest

in obtaining useful information from it in real time. Cisco Systems in an article titled “The

Zettabyte Era” [27] mentions that 2016 was the first year when more than 1 Zettabyte was

transmitted over the Internet and forecasts that this amount will triplicate over the next

five years.

3. Variety. This dimension alludes to the diverse amount of sources where the data is obtained

and the many formats it can have. As an example of this, according to van Rijmenam [154]

the famous retail corporation Walmart uses about 200 sources including data from weather,

product sales status, pricing, inventory and many more with the aim of forecasting the

needs of their 250 million weekly customers.

When contrasting these three dimensions with the three properties about big data that

were mentioned before, is possible to say that the three dimensions can be included in the first

two mentioned properties: big data is a trend and a property of the data. Moreover, the three

previous dimensions form only the base of the current Gartner definition of big data: “high

volume, velocity and variety information assets that demand cost-effective, innovative forms of

information processing for enhanced insight and decision making”. For this reason, is it possible

to add at least a fourth V, referring to value, indicating that the enhanced insight and decision

making leads to generate scientific or business value. And with this, the third mentioned property

can be fulfilled: big data is an opportunity to generate value.

29

CHAPTER 3. BIG DATA AND OTHER RELATED TERMS

3.2 Big Data Related Terms

In a similar way to the term big data, other related terms have previously appeared suddenly,

and have proposed similar difficulties to the scientific community in order to properly define

them [73], mainly because their quick adoption also brings to different conceptions. Four of such

terms are: business intelligence, analytics and data science. This section, attempts to describe

them by listing some of their common definitions and establishing their relations to each other

and with big data.

3.2.1 Business Intelligence

According to Davenport [35], the term business intelligence (BI) became popular in the late

1980s, encompassing a wide array of software and processes designed for collecting, analyzing

and disseminating data with the final aim of better decision making. Similarly, the Gartner

dictionary defines it as an umbrella term that includes the applications, infrastructure and tools,

and best practices that enable access to and analysis of information to improve and optimize

decisions and performance. Its easy to observe that the term business intelligence already reflects

the desire of obtaining value from data using different methods and software tools that was

previously mentioned as the opportunity of big data. However, in practice the new tools that are

being used with the same final objective of obtaining this value are progressively being called

“big data tools” instead of “BI tools” willing to differentiate from the other in the properties of the

data they handle (volume, velocity and variety), and in the analysis methods used, methods that

are changing from being only descriptive to become more predictive by using machine learning

models.

3.2.2 Analytics

Rose [136] mentions that the term analytics as used today was arguably introduced in Davenport

[35]. But more than that, Rose [136] discusses how the term emerged surrounded by uncertainty

as it did not had a clear definition nor clearly defined relations with disciplines as statistics,

computer science and operations research. Later, the author identifies three different definitions

for the term:

1. Analytics as a synonym for statistics. When used as in website analytics, it only refers to

statistics of usage as how many clicks or views the website has.

2. Analytics as a synonym for data science. The discussion about this definition is deferred

until the term data science is addressed below.

3. Analytics as a quantitative approach to organizational decision-making. This is the use

that Davenport [35] gives to the term. This is the most broadly used definition and under

30

3.2. BIG DATA RELATED TERMS

this, analytics is just basically another umbrella term to make reference to all quantitative

decision disciplines such as: computer science, statistics and operations research, all used in

organizations of all types with a wide variety of applications such as: reducing inventories

and stock-outs, identifying the best customers (most profitable), selecting prices, employees

and improving or developing new products.

Again, it is easy to observe from this last definition of analytics, that the term is intrinsically

related to the two previous terms: business intelligence and big data, Davenport [36] makes this

relations clear when describing the evolution of analytics, classifying it on three eras:

Analytics 1.0. First of all, is important to mention that using data for making decisions is

not a revolutionary idea, is it indeed the natural way of making decisions for humans and other

species. However, this first era is marked as beginning during the mid-1950s with the advent of

tools that could capture and produce larger quantities of data and discern patterns much faster

than the unassisted human mind ever could.

This era is known as the “business intelligence era”, were enterprises started using and

building software for capturing data in data warehouses and then using it for making reports.

However, these reports were centered on describing what happened in the past, offering no

explanations or predictions of the future.

Analytics 2.0. This is called by Davenport as the big data era. It started in the mid-2000s

when the internet-based and social networks firms such as Google, eBay, LinkedIn, and so on,

began to collect and analyze new kinds of information.

This is the era were big data emerged as a trend between online businesses and as a property

of the data. This led to the creation of innovative technologies such as Apache Hadoop and Apache

Spark for faster data processing and NoSQL databases to deal with the scalability issues and the

rise of the storage and analysis of non-structured data.

The skills needed for this era were different from before and a new generation of quantitative

analysts was needed, they were called: “data scientists” reflecting the fact that they main job was

to study the data (commonly by leveraging the emerging big data tools or by developing their own

tools), make new discoveries, communicate them (maybe using visualizations tools) and suggest

implications in business decisions. Thereby, a data scientist was identified as combination of a

programmer, a statistician, a storyteller and a business consultant.

Analytics 3.0. This era is mainly defined by Davenport as the moment when other large

organizations different from the original information centric businesses like Google and Amazon,

start to follow suit and subsequently every firm and every industry is able to leverage the

increasing amounts of data generated by themselves and available from others to create and

reshape products and services from the analysis of this data.

Moreover, analytics have been categorized under three types: descriptive analytics, which

makes reports based on past data, predictive analytics, which uses models based past data

to predict the future and finally, prescriptive analytics, which uses models to describe optimal

31

CHAPTER 3. BIG DATA AND OTHER RELATED TERMS

behaviors and the best actions to perform. As can be inferred, the analytics 1.0 era was descriptive

in essence, the 2.0 era was descriptive and predictive and in the 3.0 era the emphasis is placed in

prescriptive analytics without leaving behind the other two.

3.2.3 Data Science

The third term in the list was data science, this term in a similar way to big data, has gained

popularity in the last decade, but its roots can be tracked many decades ago when John Tukey

published a visionary paper titled “The Future of Data Analysis” [151] where he introduced the

term “data analysis” as a superset of statistics and called it a new science. According to Tukey,

this new science was driven by four influences:

1. The formal theories of statistics.

2. Accelerating developments in computer and display devices.

3. The challenge, in many fields, of more and ever larger bodies of data.

4. The emphasis on quantification in an increasingly wider variety of disciplines.

Donoho [43] considers that this list is surprisingly modern and that it encompasses all the

factors cited in the recent data science initiatives. He also mentions that the idea of having a

new field different of statistics has had many detractors that argue that data science is only a

rebranding of the centuries old field of statistics.

However, is a fact that the term has become widespread in the recent years mainly after an

article published by T. H. Davenport and D.J. Patil in 2012 titled “Data Scientist: The Sexiest Job

of the 21st Century” [123], where they present the “data scientist” as a new type of professional

with the training and curiosity to make discoveries in the world of big data and as an “hybrid of a

data hacker, analyst, communicator and trusted advisor”. This coincided with insights given by

firms as the McKinsey Global Institute [107] predicting that by 2018 the US alone would require

between 140,000 and 190,000 more deep analytical talent positions.

With the predicted job demand explosion, many educational institutions started offering

programs related to data science, as example cited by Donoho [43] was the announcement made

by the University of Michigan in 2015 about the investment of 100 million dollars in a Data

Science Initiative that ultimately hired 35 new faculty.

Another discussion being held during this process is the about the difference between a

data analyst and a data scientist. Again, there are many opinions saying that the two roles

are essentially the same. Nevertheless, there are efforts being made in order to differentiate

them, for example Udacity, one of the most important online courses educational organizations

in an official blog entry [93] expresses that a data analyst is essentially a junior data scientist

without the mathematical and research background to invent new algorithms but with a strong

understanding of how to use existing tools to solve problems.

32

3.2. BIG DATA RELATED TERMS

Now, returning to the second definition of analytics given by Rose [136]: “analytics is the

same as data science” and relating it with the eras defined by Davenport [36] it is possible to say

that data science and data scientists are for analytics 2.0 what business intelligence and data

analysts were for analytics 1.0. They are the respectively the activity and the role that performed

analytics in the two eras, and as it seems, the analytics 3.0 era will not bring a change on these

terms.

With respect to the relationship between data science and big data, it is difficult to find a

publication that does not consider both terms. They both have grown tied to each other from the

very beginning, as can be observed for example in the characteristics of a data scientist mentioned

in Patil and Davenport [123]: “a new type of professional with the training and curiosity to make

discoveries in the world of big data”. Nevertheless, many authors such as Donoho [43] and Dhar

[40] consider that the fact that the big era brings access to enormous amounts of data does

not justify the need of a new term (data science). In other words, even when a data scientist is

expected to have the skills to handle such amounts of data and to draw valuable conclusions

from them, this is not the main factor the differentiates their role. This is reinforced by (i) the

facts that even in the big data era, not all valuable data in an organization will be big data, data

scientists will still need to analyze also smaller datasets and (ii) the fact that the required skills

to handle big data are still evolving, new tools and frameworks are being developed and what

were considered de facto standards in big data such as Apache Hadoop are now being displaced

(to some extend) by others such as Apache Spark [162].

At this point, one important question that remains open is: if it its not big data, what then

makes the difference between data science and statistics? The answer is not an specific term or

skill but the combination of all of them that enables data scientists to effectively dig and extract

valuable information from data (big or not). Donoho [43] based on the work of Cleveland [28]

and Chambers [23] lists the 6 divisions that should conform data science from an academic point

of view:

1. Data Exploration and Preparation. Activities involved here are: sanity-checking the data,

expose and address unexpected features and anomalies, reformatting, recoding and all the

activities involved in preprocessing the data.

2. Data Representation and Transformation. The data scientist must be acquainted with the

many formats the data can have and the steps needed to transform these according to his

needs. This implies the knowledge of different types of structures where the data can be

stored, from plain text files to SQL and NoSQL databases and data streams.

3. Computing with Data. A data scientist must be able to efficiently develop programs in

several languages for data analysis and processing. Including specific computing frame-

works for managing complex computational pipelines that may be executed in a distributed

33

CHAPTER 3. BIG DATA AND OTHER RELATED TERMS

manner in local or cloud computer clusters. Data scientists are also able to develop packages

that abstract common pieces of workflow making them available for future projects.

4. Data Modeling. This includes generative modeling, in which one proposes a stochastic

model that could have generated the data and predictive modeling, in which one constructs

methods that make predictions over some given data universe.

5. Data Visualization and Presentation. A data scientist must be able to create common plots

from the data such as histograms, scatterplots, time series, etc. but also in some occasions

he will need to develop custom plots in order to express in a visual manner the properties

of a dataset.

6. Science about Data Science. This refers to the scientific reflexion about the processes and

activities a data scientist performs, for example science about data science happens when

they measure the effectiveness of standard workflows in terms of human time, computing

resource, results validity or any other performance metric.

3.2.4 Data Science, Data Mining and Machine Learning

The terms data mining and machine learning were not included in the list of terms with difficult

definitions at the beginning of this section. However, this subsection is included here with the

aim of establishing their relationship with data science.

As it was said in Chapter 2, data mining is defined as the core step of the knowledge discovery

in databases process, in this step, different techniques from statistics, probability, databases

theory and machine learning are used in order to discover interesting patterns and structures

in the data. This definition fits nicely in the data science scheme presented before, since data

mining can be placed under the division of data modeling and under the data exploration division

given that some data mining techniques are mostly used for this purposes.

On the other hand, machine learning, whose emphasis is on the creation of predictive models

from data, also fits well in the data modeling division becoming the very hearth of the whole data

science activities. Moreover, a sub area of machine learning know as deep learning, has recently

got much attention due to its potential to automatically create complex features by training on

large datasets [118]. Thereby, machine learning can also be involved in the data representation

division of data science.

Finally, with the aim of wrapping up, Figure 3.2 represents the most important relations

between the terms discussed in this section.

34

Business Intelligence

Data Science

Data Mining

Machine Learning

Data Representation
& Transformation

Data Exploration
& Preparation

Computing with Data

Data Visualization

Data Modeling

Science about
Data Science

Analytics 1.0
(descriptive)

Analytics 2.0
& 3.0

(descriptive
& predictive)

Big Data

Math & Statistics

Software
Development

Analytics

Figure 3.2: Relationships between the discussed terms, the arrow can be interpreted as a “makes
use of” relation

C
H

A
P

T
E

R

4
DISTRIBUTED SYSTEMS: MAPREDUCE AND APACHE SPARK

The following chapter constitutes the final part of the theoretic foundation of this work, it

starts defining what distributed systems are and giving their main characteristics. After,

the discussion is oriented towards two important libraries and programming models for

implementing distributed computations in big data: MapReduce and Apache Spark. It is worth to

mention, that all the algorithms in this work have been implemented using the latter one.

4.1 Distributed Systems

There are many definitions of what a distributed system is, however, to start this section the

definition given by van Steen and Tanenbaum [155] was chosen:

"A distributed system is a collection of autonomous computing elements that appears

to its users as a single coherent system."

Four important aspects can be remarked from this definition:

1. Autonomy: the elements that conform the system can function in an independent manner

without being part of the system.

2. Computing element: Nothing is said about the computing elements being hardware or

software, they can be any of them.

3. Single system: the autonomous elements need to collaborate in some form such that they can

be seen as a single unit. This collaboration implies that the elements have to communicate

between each other, other definitions such as the one given by Coulouris et al. [30] specify

that this communication is made through message passing.

37

CHAPTER 4. DISTRIBUTED SYSTEMS: MAPREDUCE AND APACHE SPARK

4. Users: Similar to the computing elements, nothing is said about the users, they can be

persons or software.

Although the term "distributed systems" has never gathered the popularity of the terms

discussed in the previous chapter, for example: "big data" and "data science", the reality is that

none of these would have the attention they have now without the existence of the current

distributed systems. That is, practically all the information that has given rise the current big

data era, is coming from distributed systems that have become a normal part of the current

society’s life, such as: the Internet itself, social networks, email services, search engines, mobile

networks, the Internet of Things, etc.

4.1.1 Design Goals

van Steen and Tanenbaum [155] and Coulouris et al. [30] coincide that the main goal of designing

a distributed system is to enable or support the sharing of some resource. This resource can be

virtually anything from hardware peripherals, sensors, storage, data files, multimedia, software

services, etc. Moreover, after having established the resources that are going to be shared and

the necessity of a distributed system is clear, there are important goals to follow when designing

a distributed system [155], they are listed ahead.

Transparency. In many cases, the distribution of processes and resources wants to be hidden

(made transparent) from the final user of the system with the aim of making the use and

interaction with the system less complex. The concept of transparency can be applied in several

aspects of the system, for example, the access transparency refers to the hiding of the different

data representations, file systems, low-level communication protocols, operating systems, etc.

Location transparency refers to the fact the user cannot tell where an object is physically located

in the system, for example an URL can refer to host anywhere in the planet. Another important

aspect to be mentioned is failure transparency, this occurs when partial failures of the system

are hidden to the user and the system automatically recovers from them.

Openness. The openness of a system is determined by how easy the system can be extended,

used by and integrated into other systems. In order to accomplish this, the system must follow

clearly defined standards and their key interfaces must be well documented and published.

Scalability. Bondi [17] defines scalability as "the ability of a system to accommodate an

increasing number of elements or objects, to process growing volumes of work gracefully, and/or

to be susceptible to enlargement". Apart from being a design goal, scalability can indeed turn to

be the main reason why a distributed system needs to be designed. For example, a centralized

system composed by a single computing element can become a bottleneck when the demand

outgrows its capacities, thus a scalable distributed system can be the solution.

There are many dimensions where the scalability of a system can be measured, some of them

tend to be complex and hard to differentiate [17]. However, Neuman [119] identifies three main

dimensions, considered next:

38

4.1. DISTRIBUTED SYSTEMS

• Size scalability. This is the most direct interpretation, a system is size scalable when it

can adequately grow to support more users or provide more shared resources. This type of

scalability is basically limited by three factors: the computational capacity of the system,

the storage and memory capacities (including size and transfer rate) and the network

bandwidth. Faced with these factors, two alternatives can be followed. First, scaling up

consists in the increasing of the available computing resources of the system nodes that

provide the demanded services: upgrading their CPUs, memories, network interfaces, etc.

This alternative has an obvious limit when the nodes cannot be improved anymore. The

second alternative is known as scaling out. In this case, the system is expanded by adding

more nodes instead of improving the existent ones. A expanded discussion of this strategy

is given ahead.

• Geographical scalability. It is essentially based in network transmission speeds. In a

geographically scalable system, the users and resources may lie far apart without having

significant communication delay.

• Administrative scalability. It refers to the fact that a system can be administrated by

many independent organizations potentially having different policies with respect to the

management of resources and security.

Among the three previous dimensions, size scalability is the most interesting for this work.

Moreover, it is important to mention that the scale out strategy will be the only option when the

scale up strategy reaches its limit. Also in many cases, scaling out can be much more cost-effective

so it can be even used before trying to scale up [114]. van Steen and Tanenbaum [155] mention

that there are basically only three techniques to deal with distribution under the scale out

strategy: partitioning and distribution of work, hiding communication latencies and replication.

• Partitioning and distribution of work. The most important scaling technique for the pur-

poses of this work consists in spreading the load across nodes. This involves taking a

component, dividing it in parts and then distributing those parts between the available

servers. For example, this technique is applied in DNS (Internet Domain Name System)

were the overall namespace is divided into zones and different servers take responsibility

of different zones.

• Hiding communication latencies. The most common way of hiding this latencies is by chang-

ing the traditional synchronous communications scheme where the requesting application

blocks until a response is ready, to an asynchronous scheme where the application makes

a request and then it is interrupted when the response is ready. However, not all the

applications are able to leverage this type of communication.

• Replication. Replicating components across the system can be helpful in many ways. It

helps increasing the availability of a resource: in the case a node with one copy fails, the

39

CHAPTER 4. DISTRIBUTED SYSTEMS: MAPREDUCE AND APACHE SPARK

other node responds. Caching is a special form of replication, it consists in placing resources

more closely to their users, this way latency can be reduced. Moreover, a important design

decision is about making the replicas mutable or immutable. If replicas are mutable then

synchronization is needed in order to prevent consistency problems. However, in most

cases ensuring a strict consistency is very difficult or impossible to implement in a scalable

way [155]. For this reason, a distributed database system such as MongoDB provides

consistency by reading and writing to a main copy of the data [3], giving the option to the

application developer to read from other copies that may not be in a completely consistent

state.

4.1.2 Types of Distributed Systems

Before delving into the specific type of distributed system that is of interest in this work, is

important to give a glance to the three types of distributed systems considered by van Steen and

Tanenbaum [155], namely: distributed computing systems, distributed information systems and

pervasive systems.

Distributed computing systems. As its name suggests, this type of distributed systems are

focused in realizing computations. This category can be subdivided in three subcategories de-

pending on the homogeneity of the computing nodes and if they are local to an organization or

outsourced.

• Cluster computing. As mentioned by Sterling et al. [146], clusters are by far the most

common form of supercomputer available. They are conformed by nodes that have similar

or identical hardware and software configurations, commonly connected through a high-

speed local area network and are usually created as way for scaling out a task. This task is

distributed between the nodes and executed in much more efficient manner that a single

node in terms of relative-to-cost performance [146]. This last statement is specially true in

what are known as commodity clusters consisting of affordable and easy to obtain computer

hardware.

• Grid computing. According to [105], grid computing can be described by three terms. First

of all is virtualization, it refers to the fact that grids are conformed by virtual organizations,

understood as "dynamic groups of organizations that coordinate resource sharing". The next

two terms are directly derived from the former: heterogeneity, comes from the fact that the

virtual organizations may have different computing nodes in terms of hardware, operating

systems and network bandwidth. The last term is dynamic remarking that organizations

in a virtual organization can join and leave according to their needs.

• Cloud computing. The USA National Institute of Standards and Technology (NIST) de-

fines cloud computing as a "on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications, and services) that can

40

4.1. DISTRIBUTED SYSTEMS

be rapidly provisioned and released with minimal management effort or service provider

interaction" [112]. Due to its flexibility, cloud computing can be used to create a cluster

with homogeneous or heterogeneous nodes than can be managed by a single or by multiple

organizations.

Distributed information systems. van Steen and Tanenbaum [155] indicate that this type of

distributed systems emerged in organizations that were confronted with a wealth of networked

applications, but for which interoperability turned out to be a painful experience. These type

of systems are the result of the integration of applications into an enterprise-wide information

system.

Pervasive computing systems. This type of systems describe the emerging trend of seamlessly

integrating computing into the everyday physical world [143]. Examples of pervasive computing

systems are: smart homes, environmental monitoring systems and self-driving cars. Pervasive

systems are naturally distributed and have characteristics that make them unique. First, in

pervasive systems the separation between the users and the system components is much more

blurred. There is often no single dedicated interface, such as a screen/keyboard combination.

Instead, they are commonly equipped with many sensors that give input to the system and

actuators the provide information and feedback (outputs). Second, pervasive systems are context-

aware, they take decisions based on measures such as time, location, temperature, cardiac activity,

etc. Another important property in pervasive systems is autonomy. It indicates that this type

of systems do not usually have space for a system administrator and have to perform activities

such as adding new devices and updating in an automated manner. Finally the last property

to mention is intelligence, it suggests that these systems often use methods from the field of

artificial intelligence. However, distributed solutions for many problems in the field of artificial

intelligence are yet to be found [155].

4.1.3 Parallel Computing

According to Barney [9] parallel computing in a simple sense is "the simultaneous use of multiple

compute resources to solve a computational problem". This compute resources can include: a

single computer with multiple processors, an arbitrary number of computers connected by a

network or a combination of both. This broad definition along with the clarification of what

a compute resource can be, can lead to observe that a distributed system performs parallel

computations and that indeed distributed computing is a subset of parallel computing where the

compute resources are autonomous devices. However, there are also more restricted definitions of

what parallel computing is. For example van Steen and Tanenbaum [155] associates the concept of

parallel processing to the multiprocessor architecture, where multiple threads of control execute

at the same time while having access to a shared data in a single computing device. With this

definition, parallel computing and distributed computing are different sets that intersect in

the common case where the inner computing devices of a distributed system are multiprocessor

41

CHAPTER 4. DISTRIBUTED SYSTEMS: MAPREDUCE AND APACHE SPARK

devices that perform their work in parallel. Also, under this definition parallel computing is

very limited in terms of scalability because individual computing devices are often limited in

the amounts of memory and processors that can be plugged in the device. This last definition of

parallel computing is used in this work, unless otherwise specified.

Having presented the generalities of distributed systems, the following two sections delve

into two of most important distributed computation libraries used in the big data era: MapReduce

and Apache Spark.

4.2 MapReduce

Considering the classification given in the previous section, MapReduce can be defined as a

software framework for implementing a distributed computing system. MapReduce was first pre-

sented by Dean and Ghemawat [38] from Google Inc. as an important tool used for processing the

large amounts of data that this company deals with every day. In many cases, the computations

need for this data were conceptually simple and the complexity lied instead in the parallelization

of the work, the distribution of the data and the handling of the failures that are common in large

commodity clusters. MapReduce addresses this complexities providing the following benefits of a

distributed system:

• Distribution transparency in computations. MapReduce provides distribution transparency

in computations by automatically parallelizing the execution of a program in a potentially

large commodity cluster. Implementing a MapReduce program requires the definition of a

map function that processes a key/value pair and return a set of intermediate key/value

pairs, and a reduce function that produces final results by merging all intermediate values

associated with the same key. Once this two functions are defined, MapReduce takes care

of the work needed for parallelizing and distributing the work by breaking the data into

chunks, creating multiple instances of the map and reduce functions, allocating and acti-

vating them on available machines in the physical infrastructure, dispatching intermediary

results and ensuring optimal performance of the whole system.

• Failure transparency. MapReduce does its best to hide and automatically recover from

failures. A master node continuously monitors the execution in the cluster and if some

node stops responding or fails, then its work is automatically assigned to another node for

completion. The framework warranties that if the user-supplied map and reduce operations

are deterministic the results of a successful distributed execution with faults will be the

same as if them would have been produced by a non-faulting sequential execution.

• Location transparency. Before MapReduce was published, Ghemawat et al. [58] introduced

GFS (Google File System) as a scalable distributed file system for data-intensive appli-

cations. According to the authors, at the time of publishing, GFS was widely deployed

42

4.2. MAPREDUCE

within Google and in the largest cluster implementing it, the file system stored hundreds of

terabytes across over a thousand machines and was concurrently accessed by hundreds of

clients. Similarly to other distributed file systems, GFS provides location transparency by

hiding the exact nodes where the data is stored and by automatically moving it for load

balance or fault tolerance reasons. It also transparently replicates data for redundancy.

GFS was later used as one of the main data sources for the MapReduce engine.

• Size scalability. Size scalability is the main benefit of MapReduce. In order to provide it,

MapReduce follows the scale out approach, i.e., the computing power of the system can

grow by adding more nodes. As mentioned before, MapReduce automatically partitions the

data in chunks and assigns it to the different nodes, thus having more nodes will imply

that there is less data to process. However, adding more nodes not always will imply an

increase of the system performance, other factors can prevent this to happen, being the

following the most relevant:

– Network communication. The amount of nodes that can be added to a network is

limited, having too many nodes will saturate the network communications devices

affecting the whole system performance.

– Data is small. When the amount of data that a node receives is below a certain

threshold, it can become more efficient to process the whole data using smaller number

of nodes, reducing this way the amount of data transmission and the communication

needed to coordinate the work.

4.2.1 MapReduce Programming Model

An algorithm that needs to be implemented using MapReduce has to be expressed in terms of

two functions: map and reduce. These function names were taken from functional programming

languages such as Lisp even when they were originally not intended to parallelize computa-

tion [30]. Every algorithm in MapReduce then will go through the three main steps illustrated in

Figure 4.1 and described next.

1. Map step. The map function takes as input a key-value pair and produces a set of interme-

diate key-value pairs. However, the input to the whole algorithm will not only be a single

key-value pair but a set of them. The MapReduce engine will distribute these pairs between

M cluster tasks known as mappers and each of these mappers will call the map function for

each input pair.

2. Shuffle and sort step. After, the set of intermediate key-value pairs returned by all the

mappers is partitioned into R partitions using their keys, at the same time this partitions

are sorted also using the key. This step is performed by R cluster tasks known as reducers,

one reducer per partition.

43

CHAPTER 4. DISTRIBUTED SYSTEMS: MAPREDUCE AND APACHE SPARK

input

intval

intk_4

intk_4

key_1, val

key_2, val

key_3, val

map
step

intk_4

intval

intval

intval

intval

intval

intval

intval

intval

intval

intval

intval

intval

intval

intval

intval

intval

intval

intval

intval

intval

intval

intval

intval

shuffle
and sort

p
ar

ti
ti

o
n

_1
p

ar
ti

ti
o

n
_2

reduce
step

final
result

Figure 4.1: Main steps of a MapReduce execution, intk_n and intval, refer to intermediate keys
and values respectively

3. Reduce step. The reduce function accepts a single intermediate key and a set of values for

that key. It merges these values to produce a possibly smaller set of values. In this step,

each reducer task will invoke the reduce function for every single intermediate key and set

of values for this key assigned to its partition. The final result will be the join of all the

results returned from every invocation to the reduce function.

As an illustrative example of a MapReduce implementation, it is possible to consider the

problem of creating an inverted index for a set of documents that indicates for every word in the

set, the sorted list of documents where they appear. Algorithms 3 and 4 show the pseudo-code to

implement this algorithm.

4.3 Apache Hadoop

Apache Hadoop is an open-source software framework for distributed cluster computing and

processing of large data sets. The project was co-founded by Doug Cutting and Mike Cafarella,

who were inspired by the papers published by Google about the Google File System (GFS) [58]

44

4.3. APACHE HADOOP

Algorithm 3 Example of a map function implementation
1: key : document_id
2: value : document_content
3: words := remove_duplicates(tokenize(value))
4: result := {}
5: for all w in words do
6: result.add(w, key)
7: end for
8: return result

Algorithm 4 Example of a reduce function implementation
1: key : word
2: values_list : documents_ids
3: return (key, sorted(values_list))

and MapReduce [38]. Doug Cutting was a Yahoo employee when the project was published in

2006. The Hadoop project is made up of four main modules:

1. Hadoop Common. This module contains the utilities that give support to the rest of Hadoop

modules.

2. Hadoop Distributed File System (HDFS). HDFS is a distributed file system inspired by

GFS, it is one the most frequently used technologies for handle large unstructured data [46]

and the basis of the whole Hadoop project.

3. Hadoop YARN. YARN is a cluster resource management framework, it takes direct contact

with clients who want to make use of a Hadoop cluster, it allocates resources for the

applications using a scheduler, monitors jobs and nodes status and deals with failures.

4. Hadoop MapReduce. MapReduce leverages a YARN administered cluster for the processing

of large data sets using Google’s MapReduce programming model. It is usually fed with

data at high rates coming from HDFS.

Being an open-source project, Hadoop became the standard tool for big data processing [97],

its name was so frequently mentioned together with big data that it is possible to find phrases in

recognized media such as a "Hadoop has been synonymous of big data for years" [101].

As mentioned in [124], at Yahoo, Hadoop became one of the most critical underlying tech-

nologies. It was initially applied to web search, but over the years, it became central to many

other services with more than one billion users, such content personalization for increasing

engagement, ad targeting and optimization for serving the right ad to the right consumer, new

revenue streams from native ads and mobile search monetization, mail anti-spam etcetera.

45

CHAPTER 4. DISTRIBUTED SYSTEMS: MAPREDUCE AND APACHE SPARK

However since its publication in 2006, many tools have appeared with the aim of improving

the services offered by Hadoop. Regarding MapReduce, this technology appeared in 2014 under

the name of Apache Spark.

4.4 Apache Spark

Apache Spark currently defines itself as "A unified analytics engine for large scale data pro-

cessing" [1]. It was first published in 2014, originally developed at the University of California,

Berkeley’s AMPLab and currently maintained by the Apache Software Foundation. Since its

publication, Spark has gone through a rapid evolution, changing its own definition in more than

one occasion and at the same time becoming one of the most popular frameworks for big data

analysis according to the recognized site KDnuggets 1.

Spark and MapReduce are similar in many ways. First of all, Spark is also a distributed

computing framework, and has all the benefits mentioned for MapReduce such as: distribution

transparency, automatic failure handling and recovering and size scalability. However, Spark

has many advantages over MapReduce, it was designed from the beginning to efficiently handle

iterative jobs in memory, such as the ones used by many data mining schemes, since this was one

of the main problems of MapReduce. This led to the quick development of a machine learning

library known as MLib [113]. Moreover, besides the Spark author’s own comparison [162, 163],

where Sparks results to be up to 100% faster for running a logistic regression model than Hadoop’s

MapReduce, others comparisons [141] have shown that Spark is faster than MapReduce in most of

the data analysis algorithms tested. Second, any MapReduce program can be directly translated

to Spark, i.e., the Spark primitives are a superset of MapReduce and the whole MapReduce model

can be completely expressed using the f latMap, groupByK ey and map operations in Spark.

It is worth noting that other models have already tried to fulfill the lack of efficient iterative

job handling of MapReduce. Two of them include HaLoop [20] and Twister [48]. However, even

though they support executing iterative MapReduce jobs, automatic data partitioning, and

Twister has also the ability to keep it in-memory, they both prevented an interactive data mining

and can indeed be considered subsets of Spark functionality. In any case, both projects have

become outdated.

Liu et al. [100] compared parallelized versions of a neural network algorithm over Hadoop,

HaLoop and Spark, concluding that Spark was the most efficient in all cases.

4.4.1 Spark Programming Model

The main concept behind the Spark model is what is known as the resilient distributed dataset

(RDD). Zaharia et al. [162, 163] defined an RDD as a read-only collection of objects, i.e., a dataset

partitioned and distributed across the nodes of a cluster. The RDD has the ability to automatically

1www.kdnuggets.com

46

www.kdnuggets.com

4.4. APACHE SPARK

driver

memory processors

RDD_part_1

RDD_part_2

executor

task_1

task_2

cluster
manager

memory processors

RDD_part_n executor

task_n

...

worker_1

worker_k

Figure 4.2: Spark Cluster Architecture

recover lost partitions through a lineage record that knows the origin of the data and possible

calculations done. Even more relevant for our purposes is the fact that operations run for an RDD

are automatically parallelized by the Spark engine; this abstraction frees the programmer from

having to deal with threads, locks and all other complexities of traditional parallel programming.

With respect to the cluster architecture, Spark follows the master-slave model. Through a

cluster manager (master), a driver program can access the cluster and coordinate the execution

of a user application by assigning tasks to the executors, i.e., programs that run in worker nodes

(slaves). By default, only one executor is run per worker. Regarding the data, RDD partitions are

distributed across the worker nodes, and the number of tasks launched by the driver for each

executor is set according to the number of RDD partitions residing in the worker. A detailed view

of the discussed architecture with respect to the physical nodes can be observed in Figure 4.2.

Two types of operations can be executed on an RDD, namely, actions and transformations.

Actions are the mechanism that permit to obtain results from a Spark cluster; five commonly

used actions are: reduce, sum, aggregate, takeSample and collect.

The reduce action is used to aggregate the elements of an RDD, by applying a commutative

and associative function that receives as arguments two elements of the RDD an returns one

element of the same type. Action sum is simply a shorthand for a reduce action that sums all the

47

CHAPTER 4. DISTRIBUTED SYSTEMS: MAPREDUCE AND APACHE SPARK

elements on the RDD.

The next mentioned action aggregate, has a similar behavior to reduce, but its return type

can be different from the type of the elements of the RDD. It works in two steps: the first one

aggregates the elements of each partition and returns an aggregated value for each of them, the

second one, merges these values between all partitions to a single one, that becomes the definitive

result of the action.

Lastly, actions takeSample and collect are also similar. The former takes an amount of

elements and returns a random sample of this size from the RDD. And the latter: collect, returns

an array with all the elements in the RDD. This operation has to be done with care, to avoid

exceeding the maximum memory available to the driver.

Transformations are mechanisms for creating an RDD from another RDD. Since RDDs are

read-only, a transformation creating a new RDD does not affect the original RDD. Some of the most

important transformations are: map, f latMap, reduceByK ey, f ilter and mapPartitions.

The first two transformations: map and f latMap are similar. Both return a new RDD that

is the result of applying a function to each element of the original one. In the case of map, the

function applied takes a single argument and returns a single element, thus the new RDD has

the same number of elements that the original one. In the case of f latMap, the applied function

takes a single element but it can return zero or more elements, therefore the resulting RDD is

not required to have the same number of elements as the original one.

The next transformation is reduceByK ey, it can only be applied to what is known as a

PairRDD, which is an RDD whose elements are key-value pairs, where the keys do not have

to be unique. The reduceByK ey transformation is used to aggregate the elements of an RDD,

which it does by applying a commutative and associative function that receives two values of the

PairRDD as arguments and returns one element of the same type. This reduction is applied by

key, i.e., elements with the same key are reduced such that the final result is a PairRDD with

unique keys, whose corresponding values are the result of the reduction.

The following transformation is mapPartitions, which receives, as a parameter, a function

that can handle all the elements of a partition and returns another collection of elements to

conform a new partition. The mapPartitions transformation is applied to all partitions in the

RDD to obtain a new transformed RDD. Since received and returned partitions do not need to

match in size, mapPartitions can thus reduce or increase the overall size of an RDD.

Finally, f ilter transformation is straightforward, it receives a boolean function to discrimi-

nate RDD elements to return a subset of it.

48

C
H

A
P

T
E

R

5
STATE OF THE ART OF DISTRIBUTED FEATURE SELECTION

This chapter represents the end of the first part of this work. Most of the theoretical con-

cepts and technologies needed to develop this and the following chapters were presented

in this first part. However, there is still one topic missing, it can be considered as the main

link between both parts of this work, this topic is distributed feature selection, the location of its

discussion at the core of this work coincides with the fact the this is main topic of it. This chapter

starts defining what distributed feature selection is and then discusses the recent scientific work

related to it.

5.1 Distributed Feature Selection

As its name suggests, distributed feature selection refers to the act of performing feature selection

using distributed computations, executed of course, in a distributed system. As it was said in

Chapter 2, feature selection is a dimensionality reduction technique that has emerged as an

important step in data mining. Its importance is clearly observed in the current era of big data,

where the volume, velocity and variety of the data keep increasing together with the necessity of

analyzing it to produce value.

Very few works have been devoted to the literal topic of “distributed feature selection” [50, 165],

being the work of Bolón-Canedo et al. [12] [14–16] maybe the most notable. Most of the related

work in the area prefer to use the term “parallel feature selection” even when many of them

implement solutions using distributed computing frameworks such as MapReduce and Spark.

This difference in the use of terms is caused by the diverse conceptions of parallel computing

discussed in Section 4.1.3 where some consider it as a super set of what distributed computing

is and others consider they refer to different sets that can intersect. An example of the latter

49

CHAPTER 5. STATE OF THE ART OF DISTRIBUTED FEATURE SELECTION

conception is the work of Hodge et al. [76] that includes both terms: parallel and distributed on

its title and presents two versions of the algorithm: a parallel version for a single machine with a

multi-core CPU and a distributed version implemented in a Hadoop cluster.

There are basically two main reasons to perform feature selection in a distributed manner.

The first and most common reason is to perform it as an answer to the problem of big data

(Section 3.1) in the field of feature selection. Although, feature selection algorithms are designed

to help data mining techniques deal with the the curse of dimensionality [10], the fact is that

under the big data scheme even the feature selection algorithms themselves can have problems

to deal with it. Bolón-Canedo et al. [13], in a review of the most widely used feature selection

methods, conclude that there is a growing need for scalable and efficient feature selection methods,

given that the existing ones are likely to prove inadequate for handling the increasing number

of features encountered in big data. This is of course, the reason to perform distributed feature

selection followed in this work. The second reason to perform it occurs when the features are

inherently distributed in different locations and cannot be centralized, maybe because they belong

to different organizations that have they own privacy constraints as in [8] or because the data is

distributed over too many distant locations and it becomes impractical to centralize it [32].

5.1.1 Recent Work

Following the reasons explained in the previous section, in recent years, many attempts have been

made to achieve more scalable feature selection methods by distributing or parallelizing work. In

what follows, a discussion of the recent work on the design of these new methods is presented

and organized according to three approaches: (i) search-oriented, (ii) dataset-split-oriented, and

(iii) filter-oriented.

Search-oriented parallelizations account for most approaches, in that the main aspects to be

parallelized are (i) the search guided by a classifier and (ii) the corresponding evaluation of the

resulting models. The following studies are classified in this category:

• Kubica et al. [89] developed parallel versions of three forward-search-based feature selection

algorithms, where a wrapper with a logistic regression classifier is used to guide a search

parallelized using the MapReduce model.

• Garcia et al. [55] presented a simple approach for parallel feature selection, based on

selecting random feature subsets and evaluating them in parallel using a classifier. In their

experiments they used a support vector machine (SVM) classifier and, in comparing their

results with those for a traditional wrapper approach, found lower accuracies but also much

shorter computation times.

• Wang et al. [157] used the Spark computing model to implement a feature selection strategy

for classifying network traffic. They first implemented an initial feature selection using

50

5.1. DISTRIBUTED FEATURE SELECTION

the Fisher score filter [45] and then performed, using a wrapper approach, a distributed

forward search over the best m features selected. Since the Fisher filter was used, however,

only numerical features could be handled.

• Silva et al. [142] addressed the feature selection scaling problem using an asynchronous

search approach, given that synchronous search, as commonly performed, can lead to

efficiency losses due to the inactivity of some processors waiting for other processors to

end their tasks. In their tests, they first obtained an initial reduction using a mutual

information [125] filter and then evaluated subsets using a random forest [75] classifier.

However, as stated by those authors, any other approach could be used for subset evaluation.

Dataset-split-oriented approaches have the main characteristic that parallelization is per-

formed by splitting the dataset vertically or horizontally, then applying existing algorithms to

the parts and finally merging the results following certain criteria. The following studies are

classified in this category:

• Peralta et al. [126] used the MapReduce model to implement a wrapper-based evolutionary

search feature selection method. The dataset was split by instances and the feature selection

method was applied to each resulting subset. Simple majority voting was used as a reduction

step for the selected features and the final subset of feature was selected according to a

user-defined threshold. All tests were carried out using the EPSILON dataset also used in

the second part of this work.

• Bolón-Canedo et al. [12] proposed a framework to deal with high dimensionality data by first

optionally ranking features using a feature selection filter, then partitioning vertically by

dividing the data according to features (columns) rather than, as commonly done, according

to instances (rows). After partitioning, another feature selection filter is applied to each

partition, and finally, a merging procedure guided by a classifier obtains a single set of

features. The authors experiment with five commonly used feature selection filters for the

partitions, namely, CFS [71], Consistency [33], INTERACT [166], Information Gain [129]

and ReliefF [88], and with four classifiers for the final merging, namely, C4.5 [130], Naive

Bayes [134], k-Nearest Neighbors [4] and SVM [156], and show that their own approach

significantly reduces execution times while maintaining and, in some cases, even improving

accuracy.

Finally, as it was mentioned in Chapter 2, filters are one type of feature selection methods that

solely rely in the intrinsic properties of the data and frequently require much less computation

resources when compared to other types. For these reason, they become an attractive choice when

trying to process large amounts of data. However, filter-based feature selection algorithms have

asymptotic complexities that depend on the number of features and/or instances in a dataset.

Many algorithms, such as the Correlation-based Feature Selection [70, 71] have quadratic

51

CHAPTER 5. STATE OF THE ART OF DISTRIBUTED FEATURE SELECTION

complexities, while the most frequently used algorithms have at least linear complexities [13],

this causes that under the big data scheme even this type of algorithms can turn unusable.

The work included in the last category: filter-oriented methods, include redesigned or new filter

methods that are, or become, inherently parallel. Unlike the methods in the other categories,

parallelization and distribution in this category methods can be viewed as an internal, rather

than external, element of the algorithm.

• Zhao et al. [167] described a distributed parallel feature selection method based on a

variance preservation criterion using the proprietary software SAS High-Performance Ana-

lytics. 1 One remarkable characteristic of the method is its support not only for supervised

feature selection, but also for unsupervised feature selection where no label information is

available. Their experiments were carried out with datasets with both high dimensionality

and a high number of instances.

• Ramírez-Gallego et al. [132] described scalable versions of the popular mRMR [125] feature

selection filter that included a distributed version using Spark. The authors showed that

their version that leveraged the power of a cluster of computers could perform much faster

than the original and processed much larger datasets.

• Lastly, Eiras-Franco et al. [47], using four distributed feature selection algorithms, three

of them filters, namely, InfoGain [129], ReliefF [88] and the CFS [71], reduce execution

times with respect to the original versions. However, in the CFS case, the version of those

authors focuses on regression problems where all the features, including the class label,

are numerical, with correlations calculated using the Pearson coefficient. A completely

different approach is required to design a parallel version for classification problems where

correlations are based on the information theory. Regarding the ReliefF implementation,

even when the processing is distributed in a Spark cluster, it was designed and tested to

work only with datasets that fit in the memory of a single computer since it requires to copy

the whole dataset on each computer of the cluster. Thereby, their ReliefF implementation

has scalability issues and is not able to fully process large datasets as the described in

Chapter 1.

The contributions of this dissertation described in the next part of this thesis can be cate-

gorized as a filter-oriented approach that builds on the two latter works [132], [47]. The fact

that their focus was not only on designing an efficient and scalable feature selection algorithm,

but also on preserving the original behavior (and obtaining the same final results) of traditional

filters, means that previous research focused on those filters is also valid for the new redesigned

versions. It is worth mentioning that scalable filters could feasibly be included in any of the

1http://www.sas.com/en_us/software/high-performance-analytics.html

52

http://www.sas.com/en_us/software/high-performance-analytics.html

5.2. RECENT WORK ON RELIEFF AND CFS FILTERS

methods mentioned in the search-oriented and dataset-split-oriented categories, where an initial

filtering step is implemented to improve performance.

5.2 Recent Work on ReliefF and CFS filters

In this last section, background work about the two chosen filter algorithms is presented, con-

sidering any type of effort in improving them in any form, in addition to their efficiency and

scalability.

5.2.1 Recent Work on ReliefF

As mentioned before, ReliefF is itself an extension of the original Relief algorithm developed

by Kira and Rendell [86], the latter was initially limited to binary class problems while the former

can handle multi-class problems. According to Urbanowicz et al. [152] Relief is recognized as one

of the most prominent filter-base feature selection technique and has given birth to whole family

of algorithms denominated as Relief-based algorithms (RBA), being ReliefF probably the most

popular.

Urbanowicz et al. [152] make an excellent revision and organization of the recent research

about RBAs, they classify the contributions under four categories according to the type of

improvement they focus on. Next, these categories are presented together with the considered

contributions belonging to them.

Core algorithm improvements. These improvements are related to the core design decisions

on the RBA, such as the process to select neighbors, the number of neighbors to select, the

weights for the neighbors of same class and the consideration or not of far instances in addition

to neighbors. Iterative Relief [44], I-RELIEF [148] and SWRF* [147] are examples of this, they

put weights on instances according to their distance to the target instance. The original ReliefF

algorithm defines a parameter k that sets the number of neighbors to be used, however other

subsequent proposals such as SURF [63] and Iterative Relief [44] employ a distance threshold

T to define instances as neighbors. SURF* [64] is an expansion of SURF that considers both

nearest and farthest instances from the target instance, I-RELIEF also makes this consideration.

MultiSURF* [62] also considers and scores near and far instances, however it defines a dead-

band zone in the middle in a manner that instances that fall within this band are excluded from

scoring. MultiSURF [153] preserves most aspects of MultiSURF* but eliminates the scoring

of far instances because even when this improves the detection of most complex interactions

in the genetic analysis field it deteriorates the ability to detect simpler associations. Finally,

ReliefSeq [111] takes a different approach from the others, instead of defining a threshold for

neighbors selection it dynamically increments k to a kmax value in a feature wise manner and

selects a k value that produces the largest feature weight in the final scoring. This is of course

53

CHAPTER 5. STATE OF THE ART OF DISTRIBUTED FEATURE SELECTION

very computationally intensive but the authors claim it provides greater flexibility in detecting

interactions between features.

Iterative improvements. Sun [148] point out that Relief makes an implicit assumption that

the nearest neighbors found in the original feature space are the ones in the weighted space and

that the algorithm lacks a mechanism to deal with outlier data. This causes its performance to

degrade as the number of irrelevant features increases. The central idea for reducing this problem

consists in executing the algorithm many times, each time considering the weights produced

in the previous execution such that low scoring features have less influence on the calculation

of distances in the following execution. Iterative Relief [44], I-RELIEF [148] and TuRF [117]

implement iterative approaches with differences.

Efficiency improvements. Respecting to efficiency, even when ReliefF can be considered fast

in normal sized datasets, it has a linear time complexity with respect to the number of features

and a scales quadratically with the number if instances when the sample size is set equal to the

number of instances (m = n). Examples of improvements in this area are the already discussed

work of Eiras-Franco et al. [47] and VLSReliefF [49, 94] that works by applying ReliefF to random

features subsets an then merging the results by selecting the largest local weight found for each

feature.

Data type improvements. One of ReliefF’s mayor flaws is its incapacity to detect redundant

features, some attempts have been made to overcome this flaw. For example, Li et al. [96]

used a forward selection algorithm to select non redundant critical quality characteristics of

complex industrial products. Zhang et al. [164] combined ReliefF with mRMR [125] to select

non redundant gene subsets that best discriminate biological samples of different types. Other

popular area of improvement is the adaptation of Relief to multi-label problems, Reyes et al.

[133] presented three proposals about it. Additionally Zafra et al. [161] extended ReliefF to the

problem of multi-instance learning.

5.2.2 Recent Work on CFS

The work related to the CFS algorithm has gone down a different path than ReliefF, there is no

CFS family of algorithms, since there has been very little work of creating improved versions

of it. CFS relevance comes from its practical value, since it has been and continuous to be used

in all sorts of applied research [7, 18, 21, 42, 79, 106] from the detection of partial discharges in

electrical equipment to the prediction of risk in the life insurance industry.

Section 2.4.4.7 stated the four main elements of CFS, namely: (i) subset evaluation heuristic

from test theory, (ii) features correlation measure: symmetrical uncertainty, (iii) search strategy:

best first search by default and (iv) secondary heuristic for detection of locally predictive features.

Regarding the third element, its important to mention that even when the default search strategy

is best first search, the main implementation of CFS in WEKA software has the option to use

other strategies such as: genetic algorithm, exhaustive search and random search between others.

54

5.2. RECENT WORK ON RELIEFF AND CFS FILTERS

This abundance of search options has limited the appearance of CFS versions with modified

search options. However, there are examples of this type of adaptation such as the following:

• Soliman and Rassem [145] present a modified version of CFS that uses an hybrid search

algorithm named QVICA-with EDA (Quantum Vaccined Immune Clonal Algorithm with

Estimation of Distribution Algorithm), this search algorithm implements a mixture of

many concepts from different optimization techniques. First of all, CSA (Clonal Selection

Algorithm) [37] is an evolutionary algorithm inspired in the behavior of the human immune

system, QEA (Quantum Inspired Evolutionary Algorithm) [72] is another evolutionary

approach this inspired by the concepts of quantum computing. QICA (Quantum Inspired

Immune Clonal Algorithm) [81] is hybrid algorithm that takes concepts form both QIEA

and CSA, it was designed in order to reduce population sizes and deal with problems with

a higher numbers of dimensions. On the other hand, EDAs (Estimation of Distribution

Algorithms) [92] are another type of optimization algorithms with a theoretical foundation

on probability theory. They, instead of using crossover or mutation operators like the genetic

algorithms, generate new individuals by sampling from a probability distribution estimated

from the individuals in a previous generation. Lastly, the QVICA-with EDA algorithm can

be described as derived version that introduces the vaccine operator (taken from ICA) and

the EDA sampling to the QICA algorithm. The algorithm is compared with a traditional

CFS implementation using genetic algorithms and shows to be more effective than it in

obtaining relevant and non-redundant features.

• Singh and Singh [144] propose another modification of CFS, named CFS-PSO where a

Particle Swarm Optimization (PSO) [84] algorithm is used for search subsets, however their

work is limited mainly because no comparisons are made with the original CFS algorithm.

• Dash and Patra [34], in a similar fashion to the previous, present a CFS version named CFS-

PSO-QR that uses the PSO algorithm for searching in high dimensional spaces. The authors

also propose a small change in the subset evaluation heuristic were the denominator does

not refer to the average correlation between the features but to the maximum correlation

between them. The “QR” part in the name of the algorithm refers to a post-processing step

were a “Quick Reduction” rough set theory based technique is used to find minimal sets of

non-redundant features on the results of the CFS-PSO step. The experiments made by the

authors are limited since no comparison with the traditional CFS versions are presented.

The other type of contributions related to the CFS algorithm go beyond the modification of

the search strategy, the following works are listed under this category:

• Nguyen et al. [120] represent the CFS’s subset evaluation heuristic as an optimization

problem and then transform it into a polynomial mixed 0-1 fractional programming problem

solving it with the aid of a branch-and-bound algorithm. Their experiments show that the

55

CHAPTER 5. STATE OF THE ART OF DISTRIBUTED FEATURE SELECTION

proposed method outperforms CFS with both the best first or the genetic algorithm search

strategies in the selected dataset by removing much more redundant features and still

keeping the classification accuracies or even getting better performances.

• Pomsuwan and Freitas [127] adapt the CFS algorithm to the context of longitudinal

classification where the features are measured repeatedly across several time points.

The proposed adaptation of CFS works in two phases. First, it explicitly treats different

values of the same feature across all time points as the same group of temporally related

features, performing feature selection separately within each group of such related features.

Second, it merges the selected features across all the groups in order to produce a single

set of selected features which is then used as input by classification algorithms. In their

comparisons with traditional CFS, their method obtained higher predictive accuracy.

56

Part II

Contribution

57

C
H

A
P

T
E

R

6
DISTRIBUTED FEATURE SELECTION WITH RELIEFF

This chapter describes the first proposal of this doctoral work. A distributed version of

the popular ReliefF feature selector named DiRelieF. In addition, after presenting and

discussing the design of the algorithm, a comparison of the results obtained with DiRelieF

and the version implemented in the WEKA platform is presented. This comparison was carried

out using four publicly available datasets with numbers of instances in the order of 107 and a

number of features that ranges in the order of 101 to 103. All the work proposed here has been

published in [122] and the source code is available at GitHub1.

6.1 DiReliefF

DiReliefF is a distributed and scalable redesign of the original ReliefF algorithm based on the

Spark computing model. DiReliefF is able to deal with much larger datasets in terms of both

instances and features than the traditional version would be able to handle.

The first design decision is where to concentrate the parallelization effort. As the ReliefF

algorithm could be described as an embarrassingly parallel algorithm since its outermost loop

goes through completely independent iterations, each of these can be directly executed in different

threads as stated by Robnik-Šikonja and Kononenko [135]. However, parallelizing the algorithm

in such way ties the parallelization to the number of samples m, and prevents Spark from

doing optimizations based on the resources available, the size of the dataset, the number of

partitions and the data locality. This would also require that every thread would read through

the whole dataset, while as is shown below, there is only one pass needed to process the distances

and calculate the feature weights. Furthermore, as mentioned in previous chapters, ReliefF

1https://github.com/rauljosepalma/DiReliefF

59

https://github.com/rauljosepalma/DiReliefF

CHAPTER 6. DISTRIBUTED FEATURE SELECTION WITH RELIEFF

algorithm’s complexity is O (m ·n ·a), where n is the number of instances in the dataset, m is

the number of samples taken from the n instances and a is the number of features. Moreover,

the most complex operation is the selection of the k nearest neighbors for two reasons: first, the

distance from the current sample to each of the instances must be calculated with O (n ·a) steps;

and second, the selection must be carried out in O (k · log(n)) steps. As a result, the parallelization

is focused on these stages rather than on the m independent iterations.

The ReliefF algorithm can be considered as a function applied to a dataset DS, having as

input parameters the number of samples m and the number of neighbors k, and returning as

output an a−size vector of weights W, as shown in (6.1). Thus, the ReliefF algorithm can be

interpreted as the calculation of each individual weight W[A], using (6.2), where sdiffs (6.3)

represents a function that returns the total sum of the differences in the A−th feature between a

given instance Ri, and a set NNC,i of k neighbors of this instance where all belong to a particular

class C. Using this, a series of steps in order to obtain the desired weights vector W can be

stated. These steps are summarized in Algorithm 5, shown graphically in Figure 6.1 and are fully

described in the following paragraphs.

(6.1) reliefF(DS, s,w)=W

(6.2) W[A]= 1
m

·
m∑

i=1

[
−sdiffs(A,Ri, cl(Ri))+

∑
C 6=cl(Ri)

[(
P(C)

1−P(cl(Ri))

)
sdiffs(A,Ri,C)

]]

(6.3) sdiffs(A,Ri,C)= 1
k
·

k∑
j=1

diff (A,Ri, NNC,i, j)

The dataset DS can be defined (see (6.4)) as a set of n instances each represented as a pair

I i = (Fi,Ci) of a vector of features Fi and a class Ci.

(6.4) DS = {(F1,C1), (F2,C2), · · · , (Fn,Cn)}

Given the initial definitions and assuming that the features types (nominal or continuous)

are stored as metadata, DiReliefF first calculates the maximum and minimum values for all

continuous features in the dataset. These values are needed by the diff function (see (2.7)

and (2.6)) in line 13. DiRelieF, as the original version, uses (2.5) for nominal features and selects

between (2.7) and (2.6) for continuous features via an initialization parameter. The task of finding

maximum and minimum values is efficiently achieved applying a reduce action with a function

f max (f min) that given two instances returns a third one containing the maximum (minimum)

values for each continuous feature. This is shown for maximum values on (6.5).

60

6.1. DIRELIEFF

Algorithm 5 DiReliefF
1: DS = input dataset
2:

3: {Begin steps distributed in cluster}
4:

5: (MAX , MIN) := max and min values for all continuous feats via reduce over DS
6: P := all class priors via reduceByK ey over DS
7: R := m samples obtained via takeSample from DS
8: DD := distances RDD from DS to R via map over DS
9: NN = global nearest neighbors matrix via aggregate over DD

10:

11: {End of distributed steps}
12:

13: SDIF = sum of differences matrix using diff , MAX and MIN over NN
14: W = weights vector using SDIF, P and equation (6.2)
15: return W

MAX = DS.reduce(f max)

MAX = (max(F1[1], · · · ,Fn[1]), · · · ,max(F1[a], · · · ,Fn[a]))(6.5)

The next step calculates the prior probabilities of all classes in DS. These values can be

essentially obtained by the means of a map and a reduceByK ey transformation. The former

returns a dataset with all instance classes paired with a value of one. The latter sums these ones

using the class as a key, thereby obtaining a set of pairs (Ci, count(Ci)) containing the classes

and the number of instances in DS belonging to that class, which can simply be divided by n

to obtain the priors. Equations (6.6) depict the previous discussion. Note that with the use of

collect, P is turned into a local array rather than an RDD.

f (I)= (cl(I),1)

g(a,b)= a+b

h((a,b))= (a,b/n)

P = DS.map(f).reduceByK ey(g).map(h).collect()

P = {(C1, prior(C1)), · · · , (Cc, prior(Cc))}(6.6)

A rather short step is the selection of the m samples, this is accomplished with the use of the

takeSample action, as shown in (6.7).

(6.7) R = (R1, · · · ,Rm)= DS.takeSample(m)

61

CHAPTER 6. DISTRIBUTED FEATURE SELECTION WITH RELIEFF

Next comes the computationally intensive step of finding the k nearest neighbors of each

sample for each class. First, the distances from every sample m to each of the n instances must

be found. This can be directly accomplished by the means of a map transformation applied to

DS, where for every instance I, a vector of distances from it to the m samples is returned (as

shown in (6.8)).

distances(I)= (distance(I,R1), · · · ,distance(I,Rm))

f (I)= (I,distances(I))

DD = DS.map(f)

DD = {(I1,distances(I1)), · · · (In,distances(In)))}(6.8)

Next, as shown in (6.9), the nearest neighbors NN matrix is obtained by using an aggregate

action, where each element NNC,i of this matrix is a set of the k nearest neighbors of a sample

Ri belonging to a class C. The use of an aggregate action is an important design decision since

it allows to obtain the NN matrix with a single pass through DD. Previous experiments showed

that trying to find the neighbors for each sample in independent loops was much less efficient.

As stated before, the aggregate action has two steps. The first step is defined in the function

localNN that returns a local neighbors matrix LNN for each partition of the RDD. This matrix

has a similar structure as the NN matrix but each element is treated instead as a k-sized binary

heap that is used to incrementally store the nearest neighbors found during the traverse of the

local partition.

The second step of the aggregate action is the merging of the local matrices. The defined

function mergeNN combines two local matrices by merging its individual binary heaps, keeping

only the elements with shorter distances. Once both functions have been defined, a call to the

aggregate action can be performed, providing also an empty matrix LNN structure (with empty

heaps) so that the localNN can start aggregating neighbors to it. Lastly, since the NN matrix

is obtained via an action, it is a local object and not an RDD. This step, which has been fully

implemented using parallel and distributed operations, is the most complex step in the algorithm.

NN =

NN1,1 · · · NN1,m

...
. . .

...

NNc,1 · · · NNc,m

NNC,i = (N1, · · · , Nk | ∀N cl(N)= C)

localNN(I,LNNin)= LNNout

mergeNN(LNNa,LNNb)= LNNmerged

NN = DS.aggregate(emptyNN, localNN,mergeNN)(6.9)

62

6.2. EXPERIMENTS AND RESULTS

Once the NN matrix is stored on the driver program, operations are not distributed in the

cluster anymore. However, this is not a problem but a requirement, because NN matrix is small,

c×m. The last step consists in obtaining the matrix SDIF. Each element SDIFC,i represents an

a-size vector, and each element of this vector stores the sum of the differences for the A-th feature

between the NNC,i set of neighbors and the Ri sample. Each element of the vector SDIFC,i can

be calculated by mapping the diff function over the A-th feature of all the instances in the NNC,i

set and then summing these differences. This map and sum functions are not RDD-related

anymore, but local equivalents that execute on the driver’s local threads. Finally, each element of

each vector of the matrix SDIF effectively represents the value shown in (6.3), thus, the final

vector of weights, W , can be easily calculated by applying (6.2) using the already obtained P set

with the prior probabilities. The above discussion is depicted in 6.10.

SDIFC,i = (sdiffs(1,Ri,C), · · · ,sdiffs(a,Ri,C))

f (N)= di f f (A, N,Ri)

SDIFC,i,A = sdiffs(A,Ri,C)= NNC,i.map(f).sum/k

SDIF =

SDIF1,1 · · · SDIF1,m

...
. . .

...

SDIFc,1 · · · SDIFc,m

(6.10)

Finally, there is one implementation issue worth mentioning. As previously stated, an RDD is

designed to be kept in memory but this does not happen automatically, therefore, if the RDD is

going to be used in future operations it must be explicitly cached. In our case, the most complex

part of the algorithm is the calculation of the DD and NN matrices. This calculation is effectively

performed in a single pass through the dataset initiated by the aggregate action, and therefore,

caching of any intermediate result would indeed cause a waste of resources. However, the initial

part of the algorithm that requires the calculations of the maximum, minimum and priors, each

require a pass through the dataset DS and therefore can take advantage of caching but only

when it fits in the distributed memory of the cluster. When it does not, caching does not help

because its benefits are outweighed by the time needed for writing the dataset to disk. As a result,

in our implementation caching is disabled by default but can be enabled with a parameter (it

should be enabled only when it can be assured that the dataset fits in the distributed memory).

6.2 Experiments and Results

In this section, experimental results obtained from different executions of the proposed algorithm

are presented. The experiments were performed with the aim of testing the algorithm scalability

and its time and memory consumption with respect to a traditional version in WEKA. Further

63

CHAPTER 6. DISTRIBUTED FEATURE SELECTION WITH RELIEFF

D

I1

I2

I3

...

D

m-distances

DD
map

In

localNN mergeNN

aggregate

np = num. of
partitions

NN1,1

classa-feats

k
-n

ei
g

h
b

o
rs

NN

NNc,1

...
...

...

NNc,m

...
...

...

NN1,m

...

...

...

SDIF1,1

a-diffs

...

SDIFc,1

map(diff).sum

SDIF1,m

...

SDIFc,m

...

...

...

SDIF

...

Figure 6.1: DiReliefF’s Main Pipeline

64

6.2. EXPERIMENTS AND RESULTS

tests were also performed in order to observe sample sizes where the algorithm’s weights become

stable. Since the distributed version was designed to return exactly the same results as the

non-distributed one, there was no need to perform tests comparing them.

For the realization of the tests, an 8-node cluster of virtual machines was used, one node is

used as a master and the rest are slaves, the cluster runs over the following hardware-software

configuration:

• Host Processors: 16 X Dual-Core AMD Opteron 8216

• Host Memory: 128 GB DDR2

• Host Storage: 7 TB SATA 2 Hard Disk

• Host Operating System: CentoOS 7

• Hypervisor: KVM (qemu-kvm 1.5.3)

• Guests Processors: 2

• Guests Memory: 16 GB

• Guests Storage: 500 GB

• Java version: OpenJDK 1.8

• Spark version: 1.6.1

• HDFS version: 2.6.4

• WEKA version: 3.8

During the first part of the experimental work, the ECBDL14 [6] dataset was used. This

dataset comes from the Protein Structure Prediction field, and it was used during the ECBLD14

Big Data Competition of the GECCO’2014 international conference. The dataset has approxi-

mately 33.6 million instances, 631 attributes, 2 classes, 98% of negative examples and occupies

about 56GB of disk space. In a second part of the experimental work, the other three datasets de-

scribed in Table 6.1 are used. HIGGS [137], from the UCI Machine Learning Repository [98], is a

recent dataset that represents a classification problem that distinguishes between a signal process

which produces the Higgs bosons and a background process which does not. KDDCUP99 [104]

represents data from network connections and classifies them between normal connections and

different types of attacks (a multi class problem). Finally, EPSILON is an artificial data set built

for the Pascal Large Scale Learning Challenge in 20082.

2http://largescale.ml.tu-berlin.de/about/

65

http://largescale.ml.tu-berlin.de/about/

CHAPTER 6. DISTRIBUTED FEATURE SELECTION WITH RELIEFF

Table 6.1: Datasets used in the experiments

Dataset No. of Inst. No. of
Feats.

Features Types Problem Type

ECBDL14 ∼33.6 mil-
lion

632 Numerical and
Categorical

Binary

HIGGS 11 million 28 Numerical Binary
KDDCUP99 ∼5 million 42 Numerical and

Categorical
Multi-class

EPSILON 1/2 million 2,000 Numerical Binary

Initially, all tests are run with a number of neighbors k = 10 which is a typical choice [88], and

a relatively low number of samples m = 10 to keep execution times reasonable. However, during

the stability tests larger number of samples are used. In addition, HDFS is used to store all the

datasets or samples of datasets in the experiments related to the distributed version. Conversely,

the local file system is used for the tests with the traditional version of ReliefF.

Regarding the rest of the implementation parameters, two of them were left fixed for all the

experiments. The first one selects the original diff function in (2.6) for the distance evaluation of

numeric features, as this is the only one implemented in the WEKA version. However, it is worth

mentioning that since the ramp function in (2.7) requires a constant number of extra operations,

selecting it will simply multiply by a constant factor the total number of operations that the

algorithm has to execute, while also bringing the benefits mentioned before and explained by

Hong [77]. The second parameter refers to whether or not apply caching in Spark. As stated

above, caching provides benefits only when the entire dataset fully fits in memory. Therefore, it

was decided to disable caching for all the experiments in order to facilitate the interpretation of

the results.

An important configuration issue refers to driver memory consumption. In Spark computation

model, there is no communication between tasks, so all the task’s results will be sent to the

driver. This is especially important for the aggregate action, because every task performing

the localNN operation will return a LNN matrix to the driver that then is going to be merged.

The Spark configuration parameter spark.driver.maxResultSize has a default value of 1GB

but it was set to 6GB for all the experiments performed. This is specifically important for tests

involving larger matrix sizes, i.e., those with higher values of m or c.

6.2.1 Empirical Complexity

Figure 6.2 shows time and memory consumption behavior of the distributed version of ReliefF

version versus the one implemented in the WEKA platform for incrementally sized samples of

the ECBDL14 dataset. This dataset was selected because it has the largest amount of instances

and allows to show the limits of the WEKA implementation. Since the number of operations

66

6.2. EXPERIMENTS AND RESULTS

0 20 40 60 80 100
Percentage of instances of ECBDL14

0

20

40

60

80

100

120

140

160

180

E
x
e
cu

ti
o
n
 T
im

e
 (
m
in
u
te
s)

0 20 40 60 80 100
Percentage of instances of ECBDL14

0

10

20

30

40

50

60

70

80

90

M
e
m
o
ry
 C
o
n
su
m
p
ti
o
n
 (
G
B
)

Spark
WEKA

Figure 6.2: Execution time and memory consumption of Spark DiRelieF and WEKA ReliefF
versions

performed by the ReliefF algorithm depends only on the parameters m, n and a, and not on the

internal characteristics of the data, the other three datasets were not considered for this part. To

make the comparison possible, the WEKA version was executed under the host environment with

no virtualization. It is worth noting that for the WEKA version a 30% sample was the largest

that could be tested because larger samples would need more memory than is available in the

system (showing the lack of scalability). The distributed version, in addition to being able to

handle the whole dataset, preserves a linear behavior in relation to the number of instances, and

it is also capable of processing data in less time by leveraging the cluster nodes. Another fact to

observe is the change in the slope of the linear behavior observed by the Spark version between

the 40% and 50% samples of the dataset. This is due to the fact that during this interval the

dataset overflows the available memory in the cluster and the Spark engine starts using disk

storage. In other words, the algorithm is capable of maintaining a linear complexity even when

the dataset does not fit into memory.

The mentioned overflow issue can be observed on the right graph in Figure 6.2. This graph

shows a previously mentioned advantage of Spark, i.e, it is designed to run in commodity

hardware. A simple look to the memory consumption of the traditional version shows that

the required amount of memory quickly overgrows beyond the limits of an ordinary computer.

However, the distributed version using nodes with 16GB of memory is enough to handle the task.

Analogous run time results are obtained by varying the number of features and the number

of samples (see Figure 6.3) confirming an empirical complexity equivalent to the original one, i.e.,

O (m ·n ·a).

67

CHAPTER 6. DISTRIBUTED FEATURE SELECTION WITH RELIEFF

10 20 30 40 50 60 70 80 90 100
Percentage of features of ECBDL14

0

20

40

60

80

100

120

140

160

180

E
x

e
cu

ti
o

n
 T

im
e

 (
m

in
u

te
s)

10 20 30 40 50 60 70 80 90 100
Number of samples m for a 10% size ECBDL14

0

20

40

60

80

100

120

140

E
x

e
cu

ti
o

n
 T

im
e

 (
m

in
u

te
s)

Spark
WEKA

Figure 6.3: Execution time of Spark DiReliefF and WEKA ReliefF with respect to parameters a
and m

6.2.2 Scalability

In order to test scalability and to keep execution times within manageable limits, the largest

test was performed with a 30% sample size of the ECBDL14 dataset. Following this, 10% and

1% sample sizes were used. Also, in order to examine a smaller dataset, tests with 50% and 10%

samples of the HIGGS dataset were run.

Figure 6.4 shows the behavior of the distributed algorithm with respect to the number of

cores used. As it can be observed, adding cores at the beginning greatly contributes to reducing

the execution time, but once a threshold is reached, the contribution is rather subtle or even null.

Such threshold depends on the size of the dataset, in such a way that larger datasets can take

further advantage of larger number of cores. On the other hand, smaller datasets will face the

case were they do not have enough partitions to be distributed over all the cluster nodes. In this

latter case, adding more nodes will not provide any performance improvement. As an example to

quantify this fact, it can be observed in Figure 6.4 that the 30% sized sample of the ECBDL14

dataset can take advantage of 7 cores, while the 1% sample size only can take advantage of 4

cores. Similarly, there is no practical advantage of using more than 1 core for the 10% sample

size of the HIGGS dataset.

Figure 6.4 also shows with an horizontal line the execution time of the WEKA version for

30% sample of the ECBDL14 dataset. Since it can only take advantage of one core, the execution

time is constant. However, the time is better than the distributed version in the case where 4

or less cores are involved. This is because it does not need to deal with the driver scheduling,

the selection of an executor and communication between both of them over the network, as the

68

6.2. EXPERIMENTS AND RESULTS

0 2 4 6 8 10 12 14
Number of Executor Cores

0

50

100

150

200

250

300

350

400

E
x
e
cu

ti
o
n
 T
im

e
 (
m
in
u
te
s)

Spark 1% ECBDL14
Spark 10% ECBDL14
Spark 30% ECBDL14
Spark 10% HIGGS
Spark 50% HIGGS
WEKA 30% ECBDL14

Figure 6.4: Execution time of Spark DiReliefF and WEKA ReliefF with respect to the number of
cores involved

distributed version does. For this reason, the distributed version of ReliefF is only useful for large

datasets.

6.2.3 Stability

The following set of tests was made in order to check the stability of the algorithm. In this case,

with stability refers to similarity of the assigned weights for different executions in the same

dataset. The stability is important in the case of ReliefF since it selects a random sample in every

execution.

Many stability measures have been defined. A commonly used measure is the Consistency

Index presented by Kuncheva [90]. However, it cannot be directly applied because it requires

to define a threshold for the selection of a subset. Kalousis et al. [83] proposed the use of the

Pearson correlation coefficient to measure the similarity between features rankings, but previous

tests showed that it returns unstable results for the EPSILON and HIGGS (pure numerical)

datasets. For these reasons, here a simpler stability indicator was chosen, an average of the

absolute differences between every feature weights of two rankings. More formally, having two

feature ranking vectors W1 and W2, the average difference between them is calculated as shown

in (6.11).

69

CHAPTER 6. DISTRIBUTED FEATURE SELECTION WITH RELIEFF

10 20 30 40 50 60 70 80 90 100
Sample size (m)

0.005

0.010

0.015

0.020

0.025

0.030

0.035

A
v
g
.
D
if
f.

ECBDL14

0 50 100 150 200
Sample size (m)

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

A
v
g
.
D
if
f.

EPSILON

0 50 100 150 200
Sample size (m)

0.001

0.002

0.003

0.004

0.005

0.006

0.007

A
v
g
.
D
if
f.

HIGGS

0 50 100 150 200
Sample size (m)

0.00

0.01

0.02

0.03

0.04

0.05

A
v
g
.
D
if
f.

KDDCUP99

Figure 6.5: DiReliefF’s average difference in weight ranks for increasing values of m in different
datasets

W1= (w11,w12, · · · ,w1a)

W2= (w21,w22, · · · ,w2a)

AvgDiff = 1
a

a∑
A=1

|w1A −w2A|(6.11)

As Robnik-Šikonja and Kononenko [135] stated, the correct sample size m is problem de-

pendent, and as a consequence, all of the datasets described in Table 6.1 were used. Moreover,

their experiments showed that as the number of examples increases, the required sample size

diminishes. Figure 6.5 shows the results obtained and evidences that the biggest gain in stability

is obtained with a sample size between 50 and 100 instances, thereby confirming that relative

small sample sizes are enough to obtain stable results in the large scale datasets tested.

70

C
H

A
P

T
E

R

7
DISTRIBUTED FEATURE SELECTION WITH CFS

The chapter ahead presents the second and last contribution of this thesis work. A dis-

tributed version of the well known CFS feature selection technique, called DiCFS. In fact,

two versions of the algorithm were implemented and compared between them and with a

baseline, represented by the classical non-distributed implementation of CFS in WEKA. Also,

their benefits in terms of reduced execution time are compared with those of the CFS version

developed by Eiras-Franco et al. [47] for regression problems. All the source code was published

at Github1.

7.1 Distributed Correlation-Based Feature Selection (DiCFS)

As just mentioned, two algorithms conform the proposal. They represent alternative distributed

versions that use different partitioning strategies to process the data. As stated previously,

CFS has a time execution complexity of O (m2 · n) where m is the number of features and n

is the number of instances. This complexity derives from the first step shown in Algorithm 2,

the calculation of
(m+1

2
)

correlations between all pairs of features including the class, and the

fact that for each pair, O (n) operations are needed in order to calculate the entropies. Thus, to

develop a scalable version, the main focus in parallelization design must be on the calculation of

correlations.

Another important issue is that, although the original study by Hall [71] stated that all

correlations had to be calculated before the search, this is only a true requisite when a backward

best-first search is performed. In the case of the search shown in Algorithm 2, correlations can be

calculated on demand, i.e., on each occasion a new non-evaluated pair of features appears during

1https://github.com/rauljosepalma/DiCFS

71

https://github.com/rauljosepalma/DiCFS

CHAPTER 7. DISTRIBUTED FEATURE SELECTION WITH CFS

the search. In fact, trying to calculate all correlations in any dataset with a high number of

features and instances is prohibitive; the tests performed on the datasets described in Section 7.2

show that a very low percentage of correlations is actually used during the search and also that

on-demand correlation calculation is around 100 times faster when the default number of five

maximum fails is used.

Next, descriptions of the two alternative methods for calculating these correlations in a

distributed manner depending on the type of partitioning used, are given.

7.1.1 Horizontal Partitioning

Horizontal partitioning of the data may be the most natural way to distribute work between the

nodes of a cluster. Considering the default layout where the data is represented as a matrix D in

which the columns represent the different features and the rows represent the instances, then it

is natural to distribute the matrix by assigning different groups of rows to nodes in the cluster.

And if this matrix is represented as an RDD, this is exactly what Spark will automatically do.

Once the data is partitioned, Algorithm 2 (omitting line 1) can be started on the driver. The

distributed work will be performed on line 8, where the best subset in the queue is expanded and,

depending on this subset and the state of the search, a number nc of new pairs of correlations

will be required to evaluate the resulting subsets. Thus, the most complex step is the calculation

of the corresponding nc contingency tables that will allow to obtain the entropies and conditional

entropies that conform the symmetrical uncertainty correlation (see Equation (2.4)). These nc

contingency tables are partially calculated locally by the workers following Algorithm 6. As can

be observed, the algorithm loops through all the local rows, counting the values of the features

contained in pairs (declared in line 1) and storing the results in a map holding the feature pairs

as keys and the contingency tables as their matching values.

The next step is to merge the contingency tables from all the workers to obtain global results.

Since these tables hold simple value counts, they can easily be aggregated by performing an

element-wise sum of the corresponding tables. These steps are summarized in Equation (7.1),

where CTables is an RDD of keys and values, and where each key corresponds to a feature pair

and each value to a contingency table.

72

7.1. DISTRIBUTED CORRELATION-BASED FEATURE SELECTION (DICFS)

Algorithm 6 function localCTables(pairs)(partition)
1: pairs ← nc pairs of features
2: rows ← local rows of partition
3: m ← number of columns (features in D)
4: ctables ← a map from each pair to an empty contingency table
5: for all r ∈ rows do
6: for all (x, y) ∈ pairs do
7: ctables(x, y)(r(x), r(y)) += 1
8: end for
9: end for

10: return ctables

pairs = {
(f eata, f eatb), · · · , (f eatx, f eaty)

}
nc = |pairs|

CTables = D.mapPartitions(localCTables(pairs)).reduceByK ey(sum)

CTables =

((f eata, f eatb), ctablea,b)

...

((f eatx, f eaty), ctablex,y)

nc×1

(7.1)

Once the contingency tables have been obtained, the calculation of the entropies and condi-

tional entropies is straightforward since all the information necessary for each calculation is

contained in a single row of the CTables RDD. This calculation can therefore be performed in

parallel by processing the local rows of this RDD.

Once the distributed calculation of the correlations is complete, control returns to the driver,

which continues execution of line 8 in Algorithm 2. As can be observed, the distributed work only

happens when new correlations are needed, and this occurs in only two cases: (i) when new pairs

of features need to be evaluated during the search, and (ii) at the end of the execution if the user

requests the addition of locally predictive features.

To sum up, every iteration in Algorithm 2 expands the current best subset and obtains a

group of subsets for evaluation. This evaluation requires a merit, and the merit for each subset is

obtained according to Figure 7.1, which illustrates the most important steps in the horizontal

partitioning scheme using a case where correlations between features f2 and f1 and between f2

and f3 are calculated in order to evaluate a subset.

7.1.2 Vertical Partitioning

Vertical partitioning has already been proposed in Spark by Ramírez-Gallego et al. [132], using

another important FS filter, mRMR. Although mRMR is a ranking algorithm (it does not select

73

CHAPTER 7. DISTRIBUTED FEATURE SELECTION WITH CFS

1

0

0

Dataset D

1

1

2

0

2

0

0

1

1

0

0

1

1

f1 f2 f3 label

0 0 0 1

part-1

part-2

f1f2

0

0

0

1

1

0

f3f2

2

0

0

0

0

0

0

0

0

0

0

1

0

0

1

0

1

0

1

1

0

0

0

0

0

0

0

0

0

1

part-3

Local CTables per partition

m
ap

P
ar

ti
ti

o
n

s

re
d

u
ce

B
y

K
ey

f1f2

2

0

0

1

1

1

f3f2

1

1

1

0

1

1

Global CTables

Use CTables
to calculate SU between

f1 and f2 and
between f3 and f2

Use correlations
to evaluate the

Merit of a feature
subset

Figure 7.1: Horizontal partitioning steps for a small dataset D to obtain the correlations needed
to evaluate a features subset

74

7.1. DISTRIBUTED CORRELATION-BASED FEATURE SELECTION (DICFS)

I1

I2

I3

I4

I5

I6

I7

partition1

partition2

F1

F1

F2

F2

F3

F3

F4

F4

I1 I2 I3 I4

I5 I6 I7

I1 I2 I3 I4

I5 I6 I7

I1 I2 I3 I4

I5 I6 I7

I1 I2 I3 I4

I5 I6 I7

F1 F2 F3 F4

F1 F2 F3 F4

F1 F2 F3 F4

F1 F2 F3 F4

F1 F2 F3 F4

F1 F2 F3 F4

F1 F2 F3 F4

Figure 7.2: Example of a columnar transformation of a small dataset with two partitions, seven
instances and four features (from [132])

subsets), it also requires the calculation of information theory measures such as entropies and

conditional entropies between features. Since data is distributed horizontally by Spark, those

authors propose two main operations to perform the vertical distribution:

• Columnar transformation. Rather than use the traditional format whereby the dataset

is viewed as a matrix whose columns represent features and rows represent instances,

a transposed version is used in which the data represented as an RDD is distributed by

features and not by instances, in such a way that the data for a specific feature will in most

cases be stored and processed by the same node. Figure 7.2, based on [132], explains the

process using an example based on a dataset with two partitions, seven instances and four

features.

• Feature broadcasting. Because features must be processed in pairs to calculate conditional

entropies and because different features can be stored in different nodes, some features are

broadcast over the cluster so all nodes can access and evaluate them along with the other

stored features.

75

CHAPTER 7. DISTRIBUTED FEATURE SELECTION WITH CFS

In the case of the adapted mRMR [132], since every step in the search requires the comparison

of a single feature with a group of remaining features, it proves efficient, at each step, to broadcast

this single feature (rather than multiple features). In the case of the CFS, the core issue is that,

at any point in the search when expansion is performed, if the size of subset being expanded is k,

then the correlations between the m−k remaining features and k−1 features in the subset being

expanded have already been calculated in previous steps; consequently, only the correlations

between the most recently added feature and the m−k remaining features are missing. Therefore,

the proposed operations can be applied efficiently in the CFS just by broadcasting the most

recently added feature.

The disadvantages of vertical partitioning are that (i) it requires an extra processing step to

change the original layout of the data and this requires shuffling, (ii) it needs data transmission

to broadcast a single feature in each search step, and (iii) the fact that, by default, the dataset is

divided into a number of partitions equal to the number of features m in the dataset may not

be optimal for all cases (while this parameter can be tuned, it can never exceed m). The main

advantage of vertical partitioning is that the data layout and the broadcasting of the compared

feature move all the information needed to calculate the contingency table to the same node,

which means that this information can be more efficiently processed locally. Another advantage

is that the whole dataset does not need to be read every time a new set of features has to be

compared, since the dataset can be filtered by rows to process only the required features.

Due to the nature of the search strategy (best-first) used in the CFS, the first search step will

always involve all features, so no filtering can be performed. For each subsequent step, only one

more feature per step can be filtered out. This is especially important with high dimensionality

datasets: the fact that the number of features is much higher than the number of search steps

means that the percentage of features that can be filtered out is reduced.

A number of experiments were performed to quantify the effects of the advantages and

disadvantages of each approach and to check the conditions in which one approach was better

than the other.

7.2 Experiments

The experiments tested and compared time-efficiency and scalability for the horizontal and

vertical DiCFS approaches so as to check whether they improved on the original non-distributed

version of the CFS. In addition, tests and comparisons of execution times with those reported in

the research made by [47] were also performed.

Analogously with DiReliefF, no experiments were needed to compare the quality of the results

for the distributed and non-distributed CFS versions as the distributed versions were designed to

return the same results as the original algorithm.

The experiments were performed on a single master node and up to ten slave nodes from the

76

7.2. EXPERIMENTS

big data platform of the Galician Supercomputing Technological Centre (CESGA). 2 The nodes

have the following configuration:

• CPU: 2 X Intel Xeon E5-2620 v3 @ 2.40GHz

• CPU Cores: 12 (2X6)

• Total Memory: 64 GB

• Network: 10GbE

• Master Node Disks: 8 X 480GB SSD SATA 2.5" MLC G3HS

• Slave Node Disks: 12 X 2TB NL SATA 6Gbps 3.5" G2HS

• Java version: OpenJDK 1.8

• Spark version: 1.6

• Hadoop (HDFS) version: 2.7.1

• WEKA version: 3.8.1

Regarding the datasets, the same group of datasets described in Table 6.1 in Chapter 6

were used. With respect to algorithm parameter configuration, two defaults were used in all

the experiments: the inclusion of locally predictive features and the use of five consecutive fails

as a stopping criterion. These defaults apply to both distributed and non-distributed versions.

Moreover, for the vertical partitioning version, the number of partitions was equal to the number

of features, as set by default in [132]. The horizontally and vertically distributed versions of the

CFS are labeled DiCFS-hp and DiCFS-vp, respectively.

First, the execution times for the four algorithms in the datasets using ten slave nodes with

all their cores available were compared. For the case of the non-distributed version of the CFS,

the implementation provided in the WEKA platform [69] was used. The results are shown in

Figure 7.3.

Note that, with the aim of offering a comprehensive view of execution time behavior, Figure 7.3

shows results for sizes larger than the 100% of the datasets. To achieve these sizes, the instances

in each dataset were duplicated as many times as necessary. Its important to note that since

ECBDL14 is a very large dataset, its temporal scale is different from that of the other datasets.

Regarding the non-distributed version of the CFS, Figure 7.3 does not show results for WEKA

in the experiments on the ECBDL14 dataset, because it was impossible to execute that version

in the CESGA platform due to memory requirements exceeding the available limits. This also

occurred with the larger samples from the EPSILON dataset for both algorithms: DiCFS-vp and

2http://bigdata.cesga.es/

77

http://bigdata.cesga.es/

CHAPTER 7. DISTRIBUTED FEATURE SELECTION WITH CFS

0 100 200 300 400 500
Percentage of Instances (ECBDL14 Dataset)

0

5

10

15

20

25

30

35

40

45

E
x
e
cu
ti
o
n
 T
im

e
 (
m
in
)

0 100 200 300 400 500
Percentage of Instances (EPSILON Dataset)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

E
x
e
cu
ti
o
n
 T
im

e
 (
m
in
)

0 100 200 300 400 500
Percentage of Instances (HIGGS Dataset)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

E
x
e
cu
ti
o
n
 T
im

e
 (
m
in
)

0 100 200 300 400 500
Percentage of Instances (KDDCUP99 Dataset)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

E
x
e
cu
ti
o
n
 T
im

e
 (
m
in
) DiCFS-hp

DiCFS-vp

WEKA

Figure 7.3: Execution time with respect to percentages of instances in four datasets, for DiCFS-hp
and DiCFS-vp using ten nodes and for a non-distributed implementation in WEKA using a single
node

DiCFS-hp. Even when it was possible to execute the WEKA version with the two smallest samples

from the EPSILON dataset, these samples are not shown because the execution times were

too high (19 and 69 minutes, respectively). Figure 7.3 shows successful results for the smaller

HIGGS and KDDCUP99 datasets, which could still be processed in a single node of the cluster, as

required by the non-distributed version. However, even in the case of these smaller datasets, the

execution times of the WEKA version were worse compared to those of the distributed versions.

Regarding the distributed versions, DiCFS-vp was unable to process the oversized versions

of the ECBDL14 dataset, due to the large amounts of memory required to perform shuffling.

The HIGGS and KDDCUP99 datasets showed an increasing difference in favor of DiCFS-hp,

this was due to the fact that these datasets have much smaller feature sizes than ECBDL14

and EPSILON. As mentioned earlier, DiCFS-vp ties parallelization to the number of features

in the dataset, so datasets with small numbers of features were not able to fully leverage the

cluster nodes. Another view of the same issue is given by the results for the EPSILON dataset; in

this case, DiCFS-vp obtained the best execution times for the 300% sized and larger datasets.

This was because there were too many partitions (2,000) for the number of instances available

78

7.2. EXPERIMENTS

0 50 100 150 200 250 300 350 400
Percentage of Features (ECBDL14 Dataset)

0

20

40

60

80

100

E
x
e
cu
ti
o
n
 T
im

e
 (
m
in
)

0 100 200 300 400 500
Percentage of Features (EPSILON Dataset)

0

20

40

60

80

100

E
x
e
cu
ti
o
n
 T
im

e
 (
m
in
)

0 100 200 300 400 500
Percentage of Features (HIGGS Dataset)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

E
x
e
cu
ti
o
n
 T
im

e
 (
m
in
)

0 100 200 300 400 500
Percentage of Features (KDDCUP99 Dataset)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
E
x
e
cu
ti
o
n
 T
im

e
 (
m
in
) DiCFS-hp

DiCFS-vp

Figure 7.4: Execution times with respect to different percentages of features in four datasets for
DiCFS-hp and DiCFS-vp

in smaller than 300% sized datasets; further experiments showed that adjusting the number

of partitions to 100 reduced the execution time of DiCFS-vp for the 100% EPSILON dataset

from about 2 minutes to 1.4 minutes (faster than DiCFS-hp). Reducing the number of partitions

further, however, caused the execution time to start increasing again.

Figure 7.4 shows the results for similar experiments, except that this time the percentage of

features in the datasets was varied and the features were copied to obtain oversized versions

of the datasets. It can be observed that the number of features had a greater impact on the

memory requirements of DiCFS-vp. This caused problems not only in processing the ECBDL14

dataset but also the EPSILON dataset. A quadratic time complexity in the number of features

can be observed and how the temporal scale in the EPSILON dataset (with the highest number

of dimensions) matches that of the ECBDL14 dataset. As for the KDDCUP99 dataset, the results

show that increasing the number of features obtained a better level of parallelization and a

slightly improved execution time of DiCFS-vp compared to DiCFS-hp for the 400% dataset version

and above.

An important measure of the scalability of an algorithm is speed-up, which is a measure that

79

CHAPTER 7. DISTRIBUTED FEATURE SELECTION WITH CFS

indicates how capable an algorithm is of leveraging a growing number of nodes so as to reduce

execution times. The speed-up definition used is shown in Equation (7.2), all the available cores

for each node (i.e., 12) were used. The experimental results are shown in Figure 7.5, where it

can be observed that, for all four datasets, DiCFS-hp scales better than DiCFS-vp. It can also

be observed that the HIGGS and KDDCUP datasets are too small to take advantage of the use

of more than two nodes and also that practically no speed-up improvement is obtained from

increasing this value.

To summarize, the experiments show that even when vertical partitioning results in shorter

execution times (the case in certain circumstances, e.g., when the dataset has an adequate

number of features and instances for optimal parallelization according to the cluster resources),

the benefits are not significant and may even be eclipsed by the effort invested in determining

whether this approach is indeed the most efficient approach for a particular dataset or a particular

hardware configuration or in fine-tuning the number of partitions. Horizontal partitioning should

therefore be considered as the best option in the general case.

(7.2) speedup(m)=
[

execution time on 2 nodes
execution time on m nodes

]
Lastly, a comparison of the DiCFS-hp approach with that of Eiras-Franco et al. [47], was

performed. In [47] the authors describe a Spark-based distributed version of the CFS for regres-

sion problems. The comparison was based on their experiments with the HIGGS and EPSILON

datasets but using hardware available. Those datasets were selected as only having numerical

features and so could naturally be treated as regression problems. Table 7.1 shows execution

time and speed-up values obtained for different sizes of both datasets for both distributed and

non-distributed versions and considering them to be classification and regression problems.

Regression-oriented versions for the Spark and WEKA versions are labeled RegCFS and Reg-

WEKA, respectively, the number after the dataset name represents the sample size and the letter

indicates whether the sample had removed or added instances (i) or removed or added features (f).

In the case of oversized samples, the method used was the same as described above, i.e., features

or instances were copied as necessary. The experiments were performed using ten cluster nodes

for the distributed versions and a single node for the WEKA version. The resulting speed-up was

calculated as the WEKA execution time divided by the corresponding Spark execution time.

The original experiments in [47] were performed only using EPSILON_50i and HIGGS_100i.

It can be observed that much better speed-up was obtained by the DiCFS-hp version for EP-

SILON_50i but in the case of HIGGS_100i, the resulting speed-up in the classification version

was lower than the regression version. However, in order to have a better comparison, two more

versions for each dataset were considered, Table 7.1 shows that the DiCFS-hp version has a

better speed-up in all cases except in HIGGS_100i dataset mentioned before.

80

7.2. EXPERIMENTS

2 3 4 5 6 7 8 9 10
Number of Nodes (ECBDL14 (25%) Dataset)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

S
p
e
e
d
-U
p

2 3 4 5 6 7 8 9 10
Number of Nodes (EPSILON Dataset)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

S
p
e
e
d
-U
p

2 3 4 5 6 7 8 9 10
Number of Nodes (HIGGS Dataset)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

S
p
e
e
d
-U
p

2 3 4 5 6 7 8 9 10
Number of Nodes (KDDCUP99 Dataset)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

S
p
e
e
d
-U
p

DiCFS-hp

DiCFS-vp

Ideal

Figure 7.5: Speed-up for four datasets for DiCFS-hp and DiCFS-vp

Table 7.1: Execution time and speed-up values for different CFS versions for regression and
classification

Dataset Execution Time (sec) Speed-Up
WEKA RegWEKA DiCFS-hp RegCFS RegCFS DiCFS-hp

EPSILON_25i 1011.42 655.56 58.85 63.61 10.31 17.19
EPSILON_25f 393.91 703.95 25.83 55.08 12.78 15.25
EPSILON_50i 4103.35 2228.64 76.98 110.13 20.24 53.30
HIGGS_100i 182.86 327.61 21.34 23.70 13.82 8.57
HIGGS_200i 2079.58 475.98 28.89 26.77 17.78 71.99
HIGGS_200f 934.07 720.32 21.42 34.35 20.97 43.61

81

Part III

Conclusions and Future Work

83

C
H

A
P

T
E

R

8
CONCLUSIONS AND FUTURE WORK

This section describes the conclusions drawn by the author after following the research

process required in the elaboration of this dissertation. This process started with the

study and analysis of the theoretical concepts about data mining, machine learning, big

data and feature selection, continued with the definition of its objectives and finished with the

design, test and publication of the contributions described in the previous part. Also, scientific

work can never be considered as ended, there is always space for improvement and there are

always promising paths to be followed. This future work is also stated in this chapter.

The chapter is divided in three small sections, the first two respectively present the specific

conclusions and future work for each of the two contributions presented in the previous part.

Finally, the last section presents conclusions and future work from a general point of view.

The referred contributions were described and cited in Section 1.2.

8.1 DiReliefF: Conclusions and Future Work

Chapter 6 of this thesis presented DiRelieF, a distributed version of the well-known ReliefF

feature selection algorithm. This version was implemented using the Apache Spark programming

model to deal with current Big Data requirements such as failure recovery and scalability over

a cluster of commodity computers. Even when the ReliefF algorithm is easily parallelizable by

associating jobs to each independent iteration and then merging its results, this method ties

the number of jobs to the sample size (number of iterations) and requires an equal number of

passes through the dataset. For this reason an alternative version based on the Spark map and

aggregate operations and on the use of binary heaps was designed. This version does not suffer

the problems mentioned and requires a single pass through the whole dataset to perform the

85

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

main operations of the algorithm compared to the m passes required by the original version.

As part of the experimental work, the proposal was compared with a non distributed version of

the algorithm implemented on the WEKA platform. The results showed that the non distributed

version is poorly scalable, i.e., it is unable to handle large datasets due to memory requirements.

Conversely, DiReliefF is fully scalable and provides better execution times and memory usage

when dealing with large datasets. Experiments also showed that the algorithm is capable of

returning stable results with sample sizes that are much smaller than the size of the complete

dataset.

Regarding future work, two promising lines are the following:

• Define a statistically sound method for selecting the sample size m, also even when it was

shown that the method becomes stable with small sample sizes, it would be very important

to determine how much the sample size in large datasets affects the quality of the results.

• The most resource demanding step in the algorithm is the calculation of the nearest

neighbors of the selected sample instance in all classes. An important future line of research

is to evaluate the application of techniques that return approximate nearest neighbors such

as Locally Sensitive Hashing, and determine how does its use affect the final results of the

ReliefF algorithm.

• As mentioned in Section 5.2.1, many versions have been derived from the Relief algorithm

some of them for tasks other than binary and multi-class classification (ReliefF), subsequent

research work could be made in the adaptation of DiRelieF to work as a scalable version for

these derived versions and possibly serve to other types of tasks such as multi-instance

and multi-label learning.

8.2 DiCFS: Conclusions and Future Work

Chapter 7 described two parallel and distributed versions of the CFS filter-based feature selection

algorithm using the Apache Spark programming model: DiCFS-hp and DiCFS-vp. These two

versions essentially differ in how the dataset is distributed across the nodes of the cluster. The first

version distributes the data by splitting rows (instances) and the second version, following [132],

distributes the data by splitting columns (features). As the outcome of a four-way comparison

of DiCFS-vp and DiCFS-hp, a non-distributed implementation in WEKA and a distributed

regression version in Spark, the following conclusions can be drawn:

• As was expected, both DiCFS-vp and DiCFS-hp were able to handle larger datasets in

much a more time-efficient manner than the classical WEKA implementation. Moreover, in

many cases they were the only feasible way to process certain types of datasets because of

prohibitive WEKA memory requirements.

86

8.3. GENERAL CONCLUSIONS AND FUTURE WORK

• Of the horizontal and vertical partitioning schemes, the horizontal version (DiCFS-hp)

proved to be the best option in the general case due to its greater scalability and its

natural partitioning mode that enables the Spark framework to make better use of cluster

resources.

• For classification problems, the benefits obtained from distribution compared to non-

distribution version can be considered equal to or even better than the benefits already

demonstrated for the regression domain [47].

Regarding future research, an especially interesting line is whether it is necessary for

this kind of algorithm to process all the data available or whether it would be possible to

design automatic sampling procedures that could guarantee that, under certain circumstances,

equivalent results could be obtained. In the case of the CFS, this question becomes more pertinent

in view of the study of symmetrical uncertainty in datasets with up to 20,000 samples by Hall

[70], where tests showed that symmetrical uncertainty decreased exponentially with the number

of instances and then stabilized at a certain number. Another line of future work could be research

into different data partitioning schemes that could, for instance, improve the locality of data

while overcoming the disadvantages of vertical partitioning.

8.3 General Conclusions and Future Work

Going back to Section 1.1 were the research objective was formulated, and observing the results

obtained from both designed algorithms, it is possible to conclude that the objective of “developing

new versions of existing important feature selection methods so that they are able to cope with

large datasets in a scalable fashion” was successfully accomplished for the specific cases of ReliefF

and CFS feature selection algorithms. Both versions are ready to serve as valuable tools to other

researchers and practitioners in different fields that may want to process large datasets for their

own objectives.

Respecting the platform used for the implementation of the algorithms, i.e.: Apache Spark,

it has been of great aid, the high level concepts the framework provides had made possible the

implementation of the algorithms without worrying about the common lower level details such as

thread synchronizations and failure recovery. Its not a surprise that by the time of writing this

last section Apache Spark has consolidated as one of the most important large data processing

tools available.

Finally, the approach followed in this work can also be tested with other widely used feature

selection algorithms. It is clear that each method imposes its own challenges to over pass, but the

current work can form part of a background for future works that may archive similar or better

results with other algorithms.

87

BIBLIOGRAPHY

[1] Apache Spark Web Site.

URL spark.apache.org.

[2] Small and Midsize Companies Look to Make Big Gains With Big Data, 2012.

URL http://global.sap.com/news-reader/index.epx?PressID=19188.

[3] MongoDB FAQ Page, 2018.

URL https://www.mongodb.com/faq{#}consistency.

[4] David W. Aha, Dennis Kibler, and Marc K. Albert.

Instance-Based Learning Algorithms.

Machine Learning, 6(1):37–66, 1991.

ISSN 15730565.

doi: 10.1023/A:1022689900470.

[5] Amir H Alavi and Amir H Gandomi.

Big data in civil engineering.

Automation in Construction, 79:1–2, 2017.

ISSN 0926-5805.

doi: https://doi.org/10.1016/j.autcon.2016.12.008.

URL http://www.sciencedirect.com/science/article/pii/S0926580516305246.

[6] Jaume Bacardit, Paweł Widera, Alfonso Márquez-chamorro, Federico Divina, Jesús S.

Aguilar-Ruiz, and Natalio Krasnogor.

Contact map prediction using a large-scale ensemble of rule sets and the fusion of multiple

predicted structural features.

Bioinformatics, 28(19):2441–2448, 2012.

ISSN 13674803.

doi: 10.1093/bioinformatics/bts472.

[7] Eman M. Bahgat, Sherine Rady, Walaa Gad, and Ibrahim F. Moawad.

Efficient email classification approach based on semantic methods.

Ain Shams Engineering Journal, 9(4):3259–3269, 2018.

ISSN 20904479.

89

spark.apache.org
http://global.sap.com/news-reader/index.epx?PressID=19188
https://www.mongodb.com/faq{#}consistency
http://www.sciencedirect.com/science/article/pii/S0926580516305246

BIBLIOGRAPHY

doi: 10.1016/j.asej.2018.06.001.

[8] Madhushri Banerjee and Sumit Chakravarty.

Privacy Preserving Feature Selection for Distributed Data Using Virtual Dimension.

In Proceedings of the 20th ACM International Conference on Information and Knowledge

Management, CIKM ’11, pages 2281–2284, New York, NY, USA, 2011. ACM.

ISBN 978-1-4503-0717-8.

doi: 10.1145/2063576.2063946.

URL http://doi.acm.org/10.1145/2063576.2063946.

[9] Blaise Barney.

Introduction to parallel computing.

Lawrence Livermore National Laboratory, 6(13):10, 2010.

[10] R Bellman.

Dynamic Programming.

Rand Corporation research study. Princeton University Press, 1957.

ISBN 9780691079516.

URL https://books.google.it/books?id=wdtoPwAACAAJ.

[11] R Bellman.

Adaptive Control Processes: A Guided Tour.

Princeton Legacy Library. Princeton University Press, 1961.

[12] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos.

Distributed feature selection: An application to microarray data classification.

Applied Soft Computing, 30:136–150, may 2015.

ISSN 15684946.

doi: 10.1016/j.asoc.2015.01.035.

URL http://linkinghub.elsevier.com/retrieve/pii/S156849461500054X.

[13] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos.

Recent advances and emerging challenges of feature selection in the context of big data.

Knowledge-Based Systems, 86:33–45, 2015.

ISSN 09507051.

doi: 10.1016/j.knosys.2015.05.014.

[14] Verónica Bolón-Canedo.

Novel feature selection methods for high dimensional data.

PhD thesis, 2014.

[15] Verónica Bolón-Canedo, Noelia Sánchez-Maroño, and Amparo Alonso-Betanzos.

90

http://doi.acm.org/10.1145/2063576.2063946
https://books.google.it/books?id=wdtoPwAACAAJ
http://linkinghub.elsevier.com/retrieve/pii/S156849461500054X

BIBLIOGRAPHY

A review of feature selection methods on synthetic data.

Knowledge and Information Systems, 34(3):483–519, 2012.

ISSN 0219-3116.

doi: 10.1007/s10115-012-0487-8.

URL http://dx.doi.org/10.1007/s10115-012-0487-8.

[16] Verónica Bolón-Canedo, Noelia Sánchez-Maroño, and Joana Cerviño-Rabuñal.

Scaling Up Feature Selection: A Distributed Filter Approach.

pages 121–130. Springer Berlin Heidelberg, 2013.

doi: 10.1007/978-3-642-40643-0_13.

URL http://link.springer.com/10.1007/978-3-642-40643-0{_}13.

[17] André B. Bondi.

Characteristics of scalability and their impact on performance.

In Proceedings of the second international workshop on Software and performance - WOSP

’00, pages 195–203, New York, New York, USA, 2000. ACM Press.

ISBN 158113195X.

doi: 10.1145/350391.350432.

URL http://portal.acm.org/citation.cfm?doid=350391.350432.

[18] Noorhannah Boodhun and Manoj Jayabalan.

Risk prediction in life insurance industry using supervised learning algorithms.

Complex & Intelligent Systems, 4(2):145–154, jun 2018.

ISSN 2199-4536.

doi: 10.1007/s40747-018-0072-1.

[19] Dhruba Borthakur and Others.

HDFS architecture guide.

Hadoop Apache Project, 53:1–13, 2008.

[20] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D Ernst.

HaLoop.

Proceedings of the VLDB Endowment, 3(1-2):285–296, sep 2010.

ISSN 21508097.

doi: 10.14778/1920841.1920881.

URL http://dl.acm.org/citation.cfm?doid=1920841.1920881.

[21] Jingjing Cao, Kai Liu, Lin Liu, Yuanhui Zhu, Jun Li, and Zhi He.

Identifying mangrove species using field close-range snapshot hyperspectral imaging and

machine-learning techniques.

Remote Sensing, 10(12), 2018.

91

http://dx.doi.org/10.1007/s10115-012-0487-8
http://link.springer.com/10.1007/978-3-642-40643-0{_}13
http://portal.acm.org/citation.cfm?doid=350391.350432
http://dl.acm.org/citation.cfm?doid=1920841.1920881

BIBLIOGRAPHY

ISSN 20724292.

doi: 10.3390/rs10122047.

[22] Rich Caruana and Alexandru Niculescu-Mizil.

An empirical comparison of supervised learning algorithms.

Proceedings of the 23rd international conference on Machine learning, C(1):161–168, 2006.

ISSN 1595933832.

doi: 10.1145/1143844.1143865.

URL http://portal.acm.org/citation.cfm?doid=1143844.1143865.

[23] John M. Chambers.

Greater or lesser statistics: a choice for future research.

Statistics and Computing, 3(4):182–184, 1993.

ISSN 09603174.

doi: 10.1007/BF00141776.

[24] Varun Chandola, Arindam Banerjee, and Vipin Kumar.

Anomaly detection: A survey.

ACM computing surveys (CSUR), 41(3):15, 2009.

[25] Girish Chandrashekar and Ferat Sahin.

A survey on feature selection methods.

Computers & Electrical Engineering, 40(1):16–28, jan 2014.

ISSN 00457906.

doi: 10.1016/j.compeleceng.2013.11.024.

URL http://www.sciencedirect.com/science/article/pii/S0045790613003066.

[26] Olivier Chapelle, Bernhard Schlkopf, and Alexander Zien.

Semi-Supervised Learning.

The MIT Press, 1st edition, 2006.

ISBN 0262514125, 9780262514125,.

[27] Cisco/Systems.

The Zettabyte Era — Trends and Analysis, 2016.

URL http://www.cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/vni-hyperconnectivity-wp.html.

[28] William S. Cleveland.

Data science: An action plan for expanding the technical areas of the field of statistics.

Statistical Analysis and Data Mining, 7(6):414–417, 2014.

ISSN 19321872.

doi: 10.1002/sam.11239.

92

http://portal.acm.org/citation.cfm?doid=1143844.1143865
http://www.sciencedirect.com/science/article/pii/S0045790613003066
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html

BIBLIOGRAPHY

[29] Gordon V. Cormack.

Email Spam Filtering: A Systematic Review.

Foundations and Trends® in Information Retrieval, 1(4):335–455, 2008.

ISSN 1554-0669.

doi: 10.1561/1500000006.

URL http://www.nowpublishers.com/article/Details/INR-006.

[30] George Coulouris, Jean Dollimore, and Tim Kindberg.

Distributed Systems: Concepts and Design.

Pearson, 5 edition, 2011.

ISBN 978-0132143011.

[31] Michael Cox and David Ellsworth.

Application-Controlled Demand Paging for Out-of-Core Visualization.

Proceedings of the 8th IEEE Visualization ’97 Conference, pages 235–244, 1997.

[32] Kamalika Das, Kanishka Bhaduri, and Hillol Kargupta.

A local asynchronous distributed privacy preserving feature selection algorithm for large

peer-to-peer networks.

Knowledge and Information Systems, 24(3):341–367, sep 2010.

ISSN 0219-3116.

doi: 10.1007/s10115-009-0274-3.

URL https://doi.org/10.1007/s10115-009-0274-3.

[33] Manoranjan Dash and Huan Liu.

Consistency-based search in feature selection.

Artificial Intelligence, 151(1-2):155–176, dec 2003.

ISSN 00043702.

doi: 10.1016/S0004-3702(03)00079-1.

URL http://linkinghub.elsevier.com/retrieve/pii/S0004370203000791.

[34] Sujata Dash and B N Patra.

Redundant gene selection based on genetic and quick-reduct algorithms.

International Journal on Data Mining and Intelligent Information Technology Applications,

3(2):1–9, 2013.

[35] Thomas H Davenport.

Competing on analytics.

Harvard Business Review, 84(1):98, 2006.

[36] Thomas H Davenport.

Analytics 3.0.

93

http://www.nowpublishers.com/article/Details/INR-006
https://doi.org/10.1007/s10115-009-0274-3
http://linkinghub.elsevier.com/retrieve/pii/S0004370203000791

BIBLIOGRAPHY

Harvard Business Review, 91(12):64——–+, 2013.

[37] L Nunes De Castro and Fernando J Von Zuben.

The clonal selection algorithm with engineering applications.

In Proceedings of GECCO, volume 2000, pages 36–39, 2000.

[38] Jeffrey Dean and Sanjay Ghemawat.

MapReduce: Simplified Data Processing on Large Clusters.

Communications of the ACM, 51(1):107, 2008.

URL http://dl.acm.org/citation.cfm?id=1327452.1327492.

[39] Joaquín Derrac, Salvador García, and Francisco Herrera.

A Survey on Evolutionary Instance Selection and Generation.

International Journal of Applied Metaheuristic Computing, 1(1):60–92, 2010.

ISSN 1947-8283.

doi: 10.4018/jamc.2010102604.

URL http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/

jamc.2010102604.

[40] Vasant Dhar.

Data science and prediction.

Communications of the ACM, 56(12):64–73, 2013.

ISSN 00010782.

doi: 10.1145/2500499.

URL http://dl.acm.org/citation.cfm?doid=2534706.2500499.

[41] Francis X. Diebold.

A Personal Perspective on the Origin(s) and Development of ’Big Data’: The Phenomenon,

the Term, and the Discipline, Second Version.

SSRN Electronic Journal, 2012.

ISSN 1556-5068.

doi: 10.2139/ssrn.2202843.

URL http://www.ssrn.com/abstract=2202843.

[42] Chelsea Dobbins and Reza Rawassizadeh.

Towards Clustering of Mobile and Smartwatch Accelerometer Data for Physical Activity

Recognition.

Informatics, 5(2):29, jun 2018.

ISSN 2227-9709.

doi: 10.3390/informatics5020029.

[43] David Donoho.

94

http://dl.acm.org/citation.cfm?id=1327452.1327492
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jamc.2010102604
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jamc.2010102604
http://dl.acm.org/citation.cfm?doid=2534706.2500499
http://www.ssrn.com/abstract=2202843

BIBLIOGRAPHY

50 Years of Data Science.

R Software, page 41, 2015.

ISSN 1061-8600.

doi: 10.1080/10618600.2017.1384734.

[44] Bruce Draper, Carol Kaito, and Jose Bins.

Iterative Relief.

In 2003 Conference on Computer Vision and Pattern Recognition Workshop, pages 62–62.

IEEE, jun 2003.

doi: 10.1109/CVPRW.2003.10065.

URL http://ieeexplore.ieee.org/document/4624323/.

[45] R O Duda, P E Hart, and D G Stork.

Pattern Classification.

John Wiley & Sons, 2001.

ISBN 0471056693.

URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.

1318{&}rep=rep1{&}type=pdf.

[46] Kalpana Dwivedi and Sanjay Kumar Dubey.

Analytical review on Hadoop Distributed file system.

Proceedings of the 5th International Conference on Confluence 2014: The Next Generation

Information Technology Summit, pages 174–181, 2014.

ISSN 13869477.

doi: 10.1109/CONFLUENCE.2014.6949336.

[47] Carlos Eiras-Franco, Verónica Bolón-Canedo, Sabela Ramos, Jorge González-Domínguez,

Amparo Alonso-Betanzos, and Juan Touriño.

Multithreaded and Spark parallelization of feature selection filters.

Journal of Computational Science, 17:609–619, nov 2016.

ISSN 18777503.

doi: 10.1016/j.jocs.2016.07.002.

URL http://linkinghub.elsevier.com/retrieve/pii/S1877750316301107.

[48] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-hee Bae, Judy Qiu,

and Geoffrey Fox.

Twister : A Runtime for Iterative MapReduce.

In Proceedings of the ACM International Symposium on High Performance Distributed

Computing (HPDC), 2010.

ISBN 9781605589428.

doi: 10.1145/1851476.1851593.

95

http://ieeexplore.ieee.org/document/4624323/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.1318{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.1318{&}rep=rep1{&}type=pdf
http://linkinghub.elsevier.com/retrieve/pii/S1877750316301107

BIBLIOGRAPHY

[49] Margaret J. Eppstein and Paul Haake.

Very large scale ReliefF for genome-wide association analysis.

In 2008 IEEE Symposium on Computational Intelligence in Bioinformatics and Computa-

tional Biology, pages 112–119. IEEE, sep 2008.

ISBN 978-1-4244-1778-0.

doi: 10.1109/CIBCB.2008.4675767.

URL http://ieeexplore.ieee.org/document/4675767/.

[50] Ahmed K. Farahat, Ahmed Elgohary, Ali Ghodsi, and Mohamed S. Kamel.

Distributed Column Subset Selection on MapReduce.

In 2013 IEEE 13th International Conference on Data Mining, pages 171–180. IEEE, dec

2013.

ISBN 978-0-7695-5108-1.

doi: 10.1109/ICDM.2013.155.

URL http://ieeexplore.ieee.org/document/6729501/.

[51] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth.

From Data Mining to Knowledge Discovery in Databases.

AI Magazine, 17(3):37, 1996.

ISSN 0738-4602.

[52] Usama M Fayyad and Keki B Irani.

Multi-Interval Discretization of Continuos-Valued Attributes for Classification Learning,

1993.

ISSN 15730565.

URL http://trs-new.jpl.nasa.gov/dspace/handle/2014/35171.

[53] Amir Gandomi and Murtaza Haider.

Beyond the hype: Big data concepts, methods, and analytics.

International Journal of Information Management, 35(2):137–144, apr 2015.

ISSN 0268-4012.

doi: 10.1016/J.IJINFOMGT.2014.10.007.

URL https://www.sciencedirect.com/science/article/pii/

S0268401214001066{#}bbib0110.

[54] John Gantz and David Reinsel.

Extracting Value from Chaos State of the Universe: An Executive Summary.

IDC iView, (June):1–12, 2011.

URL http://idcdocserv.com/1142.

[55] Daniel J Garcia, Lawrence O Hall, Dmitry B Goldgof, and Kurt Kramer.

96

http://ieeexplore.ieee.org/document/4675767/
http://ieeexplore.ieee.org/document/6729501/
http://trs-new.jpl.nasa.gov/dspace/handle/2014/35171
https://www.sciencedirect.com/science/article/pii/S0268401214001066{#}bbib0110
https://www.sciencedirect.com/science/article/pii/S0268401214001066{#}bbib0110
http://idcdocserv.com/1142

BIBLIOGRAPHY

A Parallel Feature Selection Algorithm from Random Subsets.

In Proceedings of the intl. workshop on parallel data mining, pages 1–12, 2004.

[56] S García, J Luengo, J A Sáez, V López, and F Herrera.

A Survey of Discretization Techniques: Taxonomy and Empirical Analysis in Supervised

Learning.

IEEE Transactions on Knowledge and Data Engineering, 25(4):734–750, apr 2013.

ISSN 1041-4347.

doi: 10.1109/TKDE.2012.35.

[57] Salvador García, Julián Luengo, and Francisco Herrera.

Feature Selection.

In Data Preprocessing in Data Mining, pages 163–193. Springer International Publishing,

Cham, 2015.

ISBN 978-3-319-10247-4.

doi: 10.1007/978-3-319-10247-4_7.

URL http://dx.doi.org/10.1007/978-3-319-10247-4{_}7.

[58] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.

The Google file system.

In Proceedings of the nineteenth ACM symposium on Operating systems principles - SOSP

’03, 2003.

ISBN 1581137575.

doi: 10.1145/945449.945450.

[59] E E Ghiselli.

Theory of Psychological Measurement.

McGraw-Hill series in psychology. McGraw-Hill, 1964.

ISBN 9780070231405.

URL https://books.google.es/books?id=mmh9AAAAMAAJ.

[60] Jorge González-Domínguez, Verónica Bolón-Canedo, Borja Freire, and Juan Touriño.

Parallel feature selection for distributed-memory clusters.

Information Sciences, jan 2019.

ISSN 0020-0255.

doi: 10.1016/J.INS.2019.01.050.

URL https://www.sciencedirect.com/science/article/pii/S0020025519300635.

[61] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

Deep Learning.

MIT Press, 2016.

URL http://www.deeplearningbook.org/.

97

http://dx.doi.org/10.1007/978-3-319-10247-4{_}7
https://books.google.es/books?id=mmh9AAAAMAAJ
https://www.sciencedirect.com/science/article/pii/S0020025519300635
http://www.deeplearningbook.org/

BIBLIOGRAPHY

[62] Delaney Granizo-Mackenzie and Jason H Moore.

Multiple Threshold Spatially Uniform ReliefF for the Genetic Analysis of Complex Human

Diseases.

In Leonardo Vanneschi, William S Bush, and Mario Giacobini, editors, Evolutionary

Computation, Machine Learning and Data Mining in Bioinformatics, pages 1–10,

Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

ISBN 978-3-642-37189-9.

[63] Casey S Greene, Nadia M Penrod, Jeff Kiralis, and Jason H Moore.

Spatially Uniform ReliefF (SURF) for computationally-efficient filtering of gene-gene

interactions.

BioData Mining, 2(1):5, 2009.

ISSN 1756-0381.

doi: 10.1186/1756-0381-2-5.

URL http://biodatamining.biomedcentral.com/articles/10.1186/

1756-0381-2-5.

[64] Casey S Greene, Daniel S Himmelstein, Jeff Kiralis, and Jason H Moore.

The Informative Extremes: Using Both Nearest and Farthest Individuals Can Improve

Relief Algorithms in the Domain of Human Genetics.

In Clara Pizzuti, Marylyn D Ritchie, and Mario Giacobini, editors, Evolutionary Compu-

tation, Machine Learning and Data Mining in Bioinformatics, pages 182–193, Berlin,

Heidelberg, 2010. Springer Berlin Heidelberg.

ISBN 978-3-642-12211-8.

[65] Quanquan Gu, Zhenhui Li, and Jiawei Han.

Generalized fisher score for feature selection.

arXiv preprint arXiv:1202.3725, 2012.

[66] Isabelle Guyon and André Elisseeff.

An Introduction to Variable and Feature Selection.

Journal of Machine Learning Research (JMLR), 3(3):1157–1182, 2003.

ISSN 00032670.

doi: 10.1016/j.aca.2011.07.027.

[67] Peter Haig and Dietmar Krick.

Data at Edge. Watson down to Earth, 2015.

URL https://www-935.ibm.com/services/multimedia/Vortrag{_}IBM{_}Peter-Krick.

pdf.

[68] Alon Halevy, Peter Norvig, and Fernando Pereira.

98

http://biodatamining.biomedcentral.com/articles/10.1186/1756-0381-2-5
http://biodatamining.biomedcentral.com/articles/10.1186/1756-0381-2-5
https://www-935.ibm.com/services/multimedia/Vortrag{_}IBM{_}Peter-Krick.pdf
https://www-935.ibm.com/services/multimedia/Vortrag{_}IBM{_}Peter-Krick.pdf

BIBLIOGRAPHY

Unreasonable Effectiveness of Data.

2009.

ISSN 15411672.

doi: 10.1109/MIS.2009.36.

[69] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian

Witten.

The WEKA data mining software: An update.

SIGKDD Explorations, 11(1):10–18, 2009.

ISSN 19310145.

doi: 10.1145/1656274.1656278.

[70] Mark A. Hall.

Correlation-based feature selection for machine learning.

PhD Thesis., Department of Computer Science, Waikato University, New Zealand, (April),

1999.

doi: 10.1.1.37.4643.

[71] Mark A. Hall.

Correlation-based Feature Selection for Discrete and Numeric Class Machine Learning.

pages 359–366, jun 2000.

URL http://dl.acm.org/citation.cfm?id=645529.657793.

[72] Kuk-Hyun Han and Jong-Hwan Kim.

Quantum-inspired evolutionary algorithms with a new termination criterion, H/sub/spl

epsi//gate, and two-phase scheme.

IEEE transactions on evolutionary computation, 8(2):156–169, 2004.

[73] Harlan Harris, Sean Murphy, and Marck Vaisman.

Analyzing the Analyzers: An Introspective Survey of Data Scientists and Their Work.

" O’Reilly Media, Inc.", 2013.

[74] Jerónimo Hernández-González, Iñaki Inza, and Jose A. Lozano.

Weak supervision and other non-standard classification problems: A taxonomy.

Pattern Recognition Letters, 69:49–55, 2016.

ISSN 01678655.

doi: 10.1016/j.patrec.2015.10.008.

[75] Tin Kam Ho.

Random Decision Forests.

99

http://dl.acm.org/citation.cfm?id=645529.657793

BIBLIOGRAPHY

In Proceedings of the Third International Conference on Document Analysis and Recognition

(Volume 1) - Volume 1, ICDAR ’95, pages 278——–, Washington, DC, USA, 1995. IEEE

Computer Society.

ISBN 0-8186-7128-9.

URL http://dl.acm.org/citation.cfm?id=844379.844681.

[76] Victoria J. Hodge, Simon O’Keefe, and Jim Austin.

Hadoop neural network for parallel and distributed feature selection.

Neural Networks, 78:24–35, 2016.

ISSN 18792782.

doi: 10.1016/j.neunet.2015.08.011.

URL http://dx.doi.org/10.1016/j.neunet.2015.08.011.

[77] Se June Hong.

Use of Contextual Information for Feature Ranking and Discretization.

IEEE Trans. on Knowl. and Data Eng., 9(5):718–730, sep 1997.

ISSN 1041-4347.

doi: 10.1109/69.634751.

URL http://dx.doi.org/10.1109/69.634751.

[78] IDC / EMC.

The Digital Universe of Opportunities.

IDC / EMC Report, page 17, 2014.

URL http://www.emc.com/collateral/analyst-reports/

idc-digital-universe-2014.pdf.

[79] Ephraim T. Iorkyase, Christos Tachtatzis, Ian A. Glover, and Robert C. Atkinson.

RF-based location of partial discharge sources using received signal features.

High Voltage, 4(1):28–32, mar 2018.

ISSN 2397-7264.

doi: 10.1049/hve.2018.5027.

[80] Manar Jaradat, Moath Jarrah, Abdelkader Bousselham, Yaser Jararweh, and Mahmoud

Al-Ayyoub.

The Internet of Energy: Smart Sensor Networks and Big Data Management for Smart

Grid.

Procedia Computer Science, 56:592–597, 2015.

ISSN 1877-0509.

doi: https://doi.org/10.1016/j.procs.2015.07.250.

URL http://www.sciencedirect.com/science/article/pii/S1877050915017317.

100

http://dl.acm.org/citation.cfm?id=844379.844681
http://dx.doi.org/10.1016/j.neunet.2015.08.011
http://dx.doi.org/10.1109/69.634751
http://www.emc.com/collateral/analyst-reports/idc-digital-universe-2014.pdf
http://www.emc.com/collateral/analyst-reports/idc-digital-universe-2014.pdf
http://www.sciencedirect.com/science/article/pii/S1877050915017317

BIBLIOGRAPHY

[81] Licheng Jiao, Yangyang Li, Maoguo Gong, and Xiangrong Zhang.

Quantum-inspired immune clonal algorithm for global optimization.

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(5):1234–

1253, 2008.

[82] Enric Junqué de Fortuny, David Martens, and Foster Provost.

Predictive Modeling with Big Data.

Mary Ann Liebert Inc, 1(4), 2013.

doi: 10.1089/big.2013.0037.

URL https://www.liebertpub.com/doi/pdf/10.1089/big.2013.0037.

[83] Alexandros Kalousis, Julien Prados, and Melanie Hilario.

Stability of feature selection algorithms: a study on high-dimensional spaces.

Knowledge and Information Systems, 12(1):95–116, 2006.

ISSN 0219-3116.

doi: 10.1007/s10115-006-0040-8.

URL http://dx.doi.org/10.1007/s10115-006-0040-8.

[84] James; Kennedy and Russell; Eberhart.

Particle swarm optimization.

Encyclopedia of Machine Learning, pages 1942–1948, 1995.

ISSN 1935-3812.

doi: 10.1007/s11721-007-0002-0.

[85] Gang-Hoon Kim, Silvana Trimi, and Ji-Hyong Chung.

Big-data applications in the government sector.

Communications of the ACM, 57(3):78–85, 2014.

[86] Kenji Kira and Larry A. Rendell.

A Practical Approach to Feature Selection.

Machine Learning Proceedings 1992, pages 249–256, jan 1992.

doi: 10.1016/B978-1-55860-247-2.50037-1.

URL https://www.sciencedirect.com/science/article/pii/

B9781558602472500371.

[87] Kenji Kira and Larry A Rendell.

The feature selection problem: Traditional methods and a new algorithm.

In Aaai, volume 2, pages 129–134, 1992.

[88] Igor Kononenko.

Estimating attributes: Analysis and extensions of RELIEF.

Machine Learning: ECML-94, 784:171–182, 1994.

101

https://www.liebertpub.com/doi/pdf/10.1089/big.2013.0037
http://dx.doi.org/10.1007/s10115-006-0040-8
https://www.sciencedirect.com/science/article/pii/B9781558602472500371
https://www.sciencedirect.com/science/article/pii/B9781558602472500371

BIBLIOGRAPHY

ISSN 03029743.

doi: 10.1007/3-540-57868-4.

URL http://www.springerlink.com/index/10.1007/3-540-57868-4.

[89] Jeremy Kubica, Sameer Singh, and Daria Sorokina.

Parallel Large-Scale Feature Selection.

In Scaling Up Machine Learning, number February, pages 352–370. 2011.

ISBN 9781139042918.

doi: 10.1017/CBO9781139042918.018.

URL http://ebooks.cambridge.org/ref/id/CBO9781139042918A143.

[90] L I Kuncheva.

A stability index for feature selection.

International Multi-conference: artificial intelligence and applications, pages 390–395,

2007.

[91] Doug Laney.

META Delta.

Application Delivery Strategies, 949(February 2001):4, 2001.

ISSN 09505849.

doi: 10.1016/j.infsof.2008.09.005.

[92] Pedro Larrañaga and Jose A Lozano.

Estimation of distribution algorithms: A new tool for evolutionary computation, volume 2.

Springer Science & Business Media, 2001.

[93] Chen Hang (Udacity) Lee.

3 Data Careers Decoded and What It Means for You, 2014.

URL https://blog.udacity.com/2014/12/data-analyst-vs-data-scientist-vs-data-engineer.

html.

[94] Kwan-Yeung Lee, Pengfei Liu, Kwong-Sak Leung, and Man-Hon Wong.

Very large scale relieff algorithm on gpu for genome-wide association study.

In Proceedings of the International Conference on Parallel and Distributed Processing

Techniques and Applications (PDPTA), page 78. The Steering Committee of The World

Congress in Computer Science, Computer˜. . . , 2015.

[95] David D Lewis.

Feature selection and feature extraction for text categorization.

In Proceedings of the workshop on Speech and Natural Language, pages 212–217. Associa-

tion for Computational Linguistics, 1992.

102

http://www.springerlink.com/index/10.1007/3-540-57868-4
http://ebooks.cambridge.org/ref/id/CBO9781139042918A143
https://blog.udacity.com/2014/12/data-analyst-vs-data-scientist-vs-data-engineer.html
https://blog.udacity.com/2014/12/data-analyst-vs-data-scientist-vs-data-engineer.html

BIBLIOGRAPHY

[96] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P. Trevino, Jiliang Tang,

and Huan Liu.

Feature Selection: A Data Perspective.

jan 2016.

URL http://arxiv.org/abs/1601.07996.

[97] K C Li, H Jiang, and A Y Zomaya.

Big Data Management and Processing.

Chapman & Hall/CRC Big Data Series. CRC Press, 2017.

ISBN 9781351650045.

URL https://books.google.hn/books?id=JVkkDwAAQBAJ.

[98] M Lichman.

UCI Machine Learning Repository, 2013.

URL http://archive.ics.uci.edu/ml.

[99] Huan Liu and Lei Yu.

Toward integrating feature selection algorithms for classification and clustering.

IEEE Transactions on Knowledge and Data Engineering, 17(4):491–502, apr 2005.

ISSN 1041-4347.

doi: 10.1109/TKDE.2005.66.

[100] Yang Liu, Lixiong Xu, and Maozhen Li.

The Parallelization of Back Propagation Neural Network in MapReduce and Spark.

International Journal of Parallel Programming, pages 1–20, feb 2016.

ISSN 0885-7458.

doi: 10.1007/s10766-016-0401-1.

URL http://link.springer.com/10.1007/s10766-016-0401-1.

[101] Mathew Lodge.

Cloudera and Hortonworks merger means Hadoop’s influence is declining.

Venturebeat, 2018.

URL https://venturebeat.com/2018/10/06/cloudera-and-hortonworks-merger-means-hadoops-influence-is-declining.

[102] John Loughrey and Pádraig Cunningham.

Overfitting in Wrapper-Based Feature Subset Selection: The Harder You Try the Worse it

Gets.

In Max Bramer, Frans Coenen, and Tony Allen, editors, Research and Development in

Intelligent Systems XXI, pages 33–43, London, 2005. Springer London.

ISBN 978-1-84628-102-0.

[103] Heng Luo, Pierre Luc Carrier, Aaron Courville, and Yoshua Bengio.

103

http://arxiv.org/abs/1601.07996
https://books.google.hn/books?id=JVkkDwAAQBAJ
http://archive.ics.uci.edu/ml
http://link.springer.com/10.1007/s10766-016-0401-1
https://venturebeat.com/2018/10/06/cloudera-and-hortonworks-merger-means-hadoops-influence-is-declining

BIBLIOGRAPHY

Texture Modeling with Convolutional Spike-and-Slab RBMs and Deep Extensions.

Proceedings of the 16th International Conference on Artificial Intelligence and Statistics

(AISTATS), 31:415–423, 2012.

ISSN 15337928.

URL http://arxiv.org/abs/1211.5687.

[104] Justin Ma, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker.

Identifying Suspicious URLs : An Application of Large-Scale Online Learning.

In Proceedings of the International Conference on Machine Learning (ICML), Montreal,

Quebec, 2009.

[105] Frederic Magoules, Jie Pan, Kiat-An Tan, and Abhinit Kumar.

Introduction to grid computing.

CRC Press, 2009.

ISBN 978-1420074062.

[106] Ruchika Malhotra and Anjali Sharma.

Analyzing Machine Learning Techniques for Fault Prediction Using Web Applications.

Journal of Information Processing Systems, 14(3):751–770, jun 2018.

ISSN 1976-913X.

doi: 10.3745/JIPS.04.0077.

[107] James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles

Roxburgh, and Angela H Byers.

Big data: The next frontier for innovation, competition, and productivity, may 2011.

URL http://www.mckinsey.com/Insights/MGI/Research/

Technology{%}5C{_}and{%}5C{_}Innovation/Big{%}5C{_}data{%}5C{_}The{%}5C{_}next{%}5C{_}frontier{%}5C{_}for{%}5C{_}innovation.

[108] Vivien Marx.

Biology: The big challenges of big data, 2013.

[109] John Mashey.

Big Data... and the Next Wave of InfraStress.

In 1999 USENIX Annual Technical Conference, Monterey, California, 1999.

URL http://static.usenix.org/event/usenix99/invited{_}talks/mashey.pdf.

[110] Andrew McAfee and Erik Brynjolfsson.

Big data: the management revolution.

Harvard business review, 90(10):60–66,68,128, 2012.

ISSN 0017-8012.

doi: 10.1007/s12599-013-0249-5.

URL http://www.ncbi.nlm.nih.gov/pubmed/23074865.

104

http://arxiv.org/abs/1211.5687
http://www.mckinsey.com/Insights/MGI/Research/Technology{%}5C{_}and{%}5C{_}Innovation/Big{%}5C{_}data{%}5C{_}The{%}5C{_}next{%}5C{_}frontier{%}5C{_}for{%}5C{_}innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology{%}5C{_}and{%}5C{_}Innovation/Big{%}5C{_}data{%}5C{_}The{%}5C{_}next{%}5C{_}frontier{%}5C{_}for{%}5C{_}innovation
http://static.usenix.org/event/usenix99/invited{_}talks/mashey.pdf
http://www.ncbi.nlm.nih.gov/pubmed/23074865

BIBLIOGRAPHY

[111] Brett A McKinney, Bill C White, Diane E Grill, Peter W Li, Richard B Kennedy, Gregory A

Poland, and Ann L Oberg.

ReliefSeq: A Gene-Wise Adaptive-K Nearest-Neighbor Feature Selection Tool for Finding

Gene-Gene Interactions and Main Effects in mRNA-Seq Gene Expression Data.

PLOS ONE, 8(12):1–12, 2013.

doi: 10.1371/journal.pone.0081527.

URL https://doi.org/10.1371/journal.pone.0081527.

[112] P M Mell and T Grance.

The NIST definition of cloud computing.

Technical report, National Institute of Standards and Technology, Gaithersburg, MD, 2011.

URL https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.

pdf.

[113] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman,

Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold

Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet Talwalkar.

MLlib: Machine Learning in Apache Spark.

CoRR, 2015.

URL http://arxiv.org/abs/1505.06807.

[114] Maged Michael, Jose E Moreira, Doron Shiloach, and Robert W Wisniewski.

Scale-up x scale-out: A case study using nutch/lucene.

In 2007 IEEE International Parallel and Distributed Processing Symposium, page 441.

IEEE, 2007.

[115] Tom M Mitchell.

Machine Learning.

Number 1. 1997.

ISBN 0070428077.

doi: 10.1145/242224.242229.

URL http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20{&}path=

ASIN/0070428077.

[116] Pabitra Mitra, C A Murthy, and Sankar K Pal.

Unsupervised Feature Selection Using Feature Similarity.

IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI, 24(3):301–312,

2002.

ISSN 01628828.

doi: 10.1109/34.990133.

URL http://dx.doi.org/10.1109/34.990133.

105

https://doi.org/10.1371/journal.pone.0081527
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://arxiv.org/abs/1505.06807
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20{&}path=ASIN/0070428077
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20{&}path=ASIN/0070428077
http://dx.doi.org/10.1109/34.990133

BIBLIOGRAPHY

[117] Jason H Moore and Bill C White.

Tuning ReliefF for Genome-Wide Genetic Analysis.

In Elena Marchiori, Jason H Moore, and Jagath C Rajapakse, editors, Evolutionary Com-

putation,Machine Learning and Data Mining in Bioinformatics, pages 166–175, Berlin,

Heidelberg, 2007. Springer Berlin Heidelberg.

ISBN 978-3-540-71783-6.

[118] Maryam M Najafabadi, Flavio Villanustre, Taghi M Khoshgoftaar, Naeem Seliya, Randall

Wald, and Edin Muharemagic.

Deep learning applications and challenges in big data analytics.

Journal of Big Data, 2(1):1–21, 2015.

ISSN 21961115.

doi: 10.1186/s40537-014-0007-7.

[119] B Clifford Neuman.

Scale in Distributed Systems.

Readings in Distributed Computing Systems, pages 463–489, 1994.

[120] Hai Thanh Nguyen, Katrin Franke, and Slobodan Petrovic.

Improving Effectiveness of Intrusion Detection by Correlation Feature Selection.

INTERNATIONAL JOURNAL OF MOBILE COMPUTING AND MULTIMEDIA COMMU-

NICATIONS, 3(1):21–34, 2011.

ISSN 1937-9412.

doi: 10.4018/jmcmc.2011010102.

[121] Frederick L Oswald and Dan J Putka.

Big data methods in the social sciences.

Current Opinion in Behavioral Sciences, 18:103–106, 2017.

ISSN 2352-1546.

doi: https://doi.org/10.1016/j.cobeha.2017.10.006.

URL http://www.sciencedirect.com/science/article/pii/S2352154617300359.

[122] Raul Jose Palma-Mendoza, Daniel Rodriguez, and Luis De-Marcos.

Distributed ReliefF-based feature selection in Spark.

Knowledge and Information Systems, 57(1):1–20, jan 2018.

ISSN 02193116.

doi: 10.1007/s10115-017-1145-y.

URL http://link.springer.com/10.1007/s10115-017-1145-y.

[123] D. J. Patil and Thomas H. Davenport.

Data Scientist the sexiest job of the 21st century.

106

http://www.sciencedirect.com/science/article/pii/S2352154617300359
http://link.springer.com/10.1007/s10115-017-1145-y

BIBLIOGRAPHY

Harvard Business Review, (October), 2012.

URL https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century.

[124] Srini Penchikala.

Peter Cnudde on How Yahoo Uses Hadoop, Deep Learning and Big Data Platform.

InfoQ, 2016.

URL https://www.infoq.com/articles/peter-cnudde-yahoo-big-data.

[125] Hanchuan Peng, Fuhui Long, and Chris Ding.

Feature selection based on mutual information: criteria of max-dependency, max-relevance,

and min-redundancy.

IEEE transactions on pattern analysis and machine intelligence, 27(8):1226–38, aug 2005.

ISSN 0162-8828.

doi: 10.1109/TPAMI.2005.159.

URL http://www.ncbi.nlm.nih.gov/pubmed/16119262.

[126] Daniel Peralta, Sara del Río, Sergio Ramírez-Gallego, Isaac Riguero, Jose M Benitez, and

Francisco Herrera.

Evolutionary Feature Selection for Big Data Classification : A MapReduce Approach

Evolutionary Feature Selection for Big Data Classification : A MapReduce Approach.

Mathematical Problems in Engineering, 2015(JANUARY), 2015.

doi: 10.1155/2015/246139.

URL http://sci2s.ugr.es/sites/default/files/2015-hindawi-peralta.pdf.

[127] Tossapol Pomsuwan and Alex A. Freitas.

Feature selection for the classification of longitudinal human ageing data.

In X Gottumukkala, R and Ning, X and Dong, G and Raghavan, V and Aluru, S and

Karypis, G and Miele, L and Wu, editor, IEEE International Conference on Data Mining

Workshops, ICDMW, volume 2017-Novem of International Conference on Data Mining

Workshops, pages 739–746, 345 E 47TH ST, NEW YORK, NY 10017 USA, 2017. IEEE;

IEEE Comp Soc; Cisco; Citi, IEEE.

ISBN 9781538614808.

doi: 10.1109/ICDMW.2017.102.

[128] William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery.

Numerical recipes in C, volume 2.

Cambridge Univ Press, 1982.

[129] J R Quinlan.

Induction of Decision Trees.

Mach. Learn., 1(1):81–106, mar 1986.

107

https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://www.infoq.com/articles/peter-cnudde-yahoo-big-data
http://www.ncbi.nlm.nih.gov/pubmed/16119262
http://sci2s.ugr.es/sites/default/files/2015-hindawi-peralta.pdf

BIBLIOGRAPHY

ISSN 0885-6125.

doi: 10.1023/A:1022643204877.

URL http://dx.doi.org/10.1023/A:1022643204877.

[130] J Ross Quinlan.

C4.5: Programs for Machine Learning, volume 1.

1992.

ISBN 1558602380.

doi: 10.1016/S0019-9958(62)90649-6.

URL http://portal.acm.org/citation.cfm?id=152181{%}5Cnhttp://www.amazon.

com/C4-5-Programs-Machine-Learning-Kaufmann/dp/1558602380.

[131] Lawrence R Rabiner and Biing-Hwang Juang.

Fundamentals of speech recognition.

1993.

[132] Sergio Ramírez-Gallego, Iago Lastra, David Martínez-Rego, Verónica Bolón-Canedo,

José Manuel Benítez, Francisco Herrera, and Amparo Alonso-Betanzos.

Fast-mRMR: Fast Minimum Redundancy Maximum Relevance Algorithm for High-

Dimensional Big Data.

International Journal of Intelligent Systems, 32(2):134–152, feb 2017.

ISSN 08848173.

doi: 10.1002/int.21833.

URL http://doi.wiley.com/10.1002/int.21833.

[133] Oscar Reyes, Carlos Morell, and Sebastián Ventura.

Scalable extensions of the ReliefF algorithm for weighting and selecting features on the

multi-label learning context.

Neurocomputing, 161:168–182, 2015.

ISSN 09252312.

doi: 10.1016/j.neucom.2015.02.045.

[134] Irina Rish.

An empirical study of the naive Bayes classifier.

In IJCAI 2001 workshop on empirical methods in artificial intelligence, volume 3, pages

41–46. IBM, 2001.

[135] Marko Robnik-Šikonja and Igor Kononenko.

Theoretical and Empirical Analysis of ReliefF and RReliefF.

Machine Learning, 53(1/2):23–69, 2003.

ISSN 08856125.

108

http://dx.doi.org/10.1023/A:1022643204877
http://portal.acm.org/citation.cfm?id=152181{%}5Cnhttp://www.amazon.com/C4-5-Programs-Machine-Learning-Kaufmann/dp/1558602380
http://portal.acm.org/citation.cfm?id=152181{%}5Cnhttp://www.amazon.com/C4-5-Programs-Machine-Learning-Kaufmann/dp/1558602380
http://doi.wiley.com/10.1002/int.21833

BIBLIOGRAPHY

doi: 10.1023/A:1025667309714.

URL http://link.springer.com/10.1023/A:1025667309714.

[136] Robert Rose.

Defining analytics: a conceptual framework.

ORMS-Today, 43(3), 2016.

URL https://www.informs.org/ORMS-Today/Public-Articles/

June-Volume-43-Number-3/Defining-analytics-a-conceptual-framework.

[137] Peter Sadowski, Pierre Baldi, and Daniel Whiteson.

Searching for Higgs Boson Decay Modes with Deep Learning.

Advances in Neural Information Processing Systems 27 (Proceedings of NIPS), pages 1–9,

2014.

ISSN 10495258.

[138] Yvan Saeys, Iñaki Inza, and Pedro Larrañaga.

A review of feature selection techniques in.

Bioinformatics, 23(19):2507–2517, 2007.

ISSN 1367-4803, 1460-2059.

doi: 10.1093/bioinformatics/btm344.

[139] Arthur L Samuel.

Some Studies in Machine Learning Using the Game of Checkers.

3(3):535–554, 1959.

URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.368.

2254{&}rep=rep1{&}type=pdf.

[140] N Sánchez-Maroño, A Alonso-Betanzos, and M Tombilla-Snaromán.

Filter methods for feature selection–a comparative study.

Intelligent Data Engineering and Automated Learning - IDEAL 2007, pages 178–187, 2007.

doi: 10.1007/978-3-540-77226-2.

URL http://link.springer.com/chapter/10.1007/978-3-540-77226-2{_}19.

[141] Juwei Shi, Yunjie Qiu, Umar Farooq Minhas, Limei Jiao, Chen Wang, Berthold Reinwald,

and Fatma Özcan.

Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics.

Proc. VLDB Endow., 8(13):2110–2121, sep 2015.

ISSN 2150-8097.

doi: 10.14778/2831360.2831365.

URL http://dx.doi.org/10.14778/2831360.2831365.

[142] Jorge Silva, Ana Aguiar, and Fernando Silva.

109

http://link.springer.com/10.1023/A:1025667309714
https://www.informs.org/ORMS-Today/Public-Articles/June-Volume-43-Number-3/Defining-analytics-a-conceptual-framework
https://www.informs.org/ORMS-Today/Public-Articles/June-Volume-43-Number-3/Defining-analytics-a-conceptual-framework
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.368.2254{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.368.2254{&}rep=rep1{&}type=pdf
http://link.springer.com/chapter/10.1007/978-3-540-77226-2{_}19
http://dx.doi.org/10.14778/2831360.2831365

BIBLIOGRAPHY

Parallel Asynchronous Strategies for the Execution of Feature Selection Algorithms.

International Journal of Parallel Programming, pages 1–32, feb 2017.

ISSN 0885-7458.

doi: 10.1007/s10766-017-0493-2.

URL http://link.springer.com/10.1007/s10766-017-0493-2.

[143] Natalia Silvis-Cividjian.

Pervasive Computing.

Undergraduate Topics in Computer Science, 2017.

[144] Surender Singh and Ashutosh Kumar Singh.

Web-Spam Features Selection Using CFS-PSO.

Procedia Computer Science, 125:568–575, jan 2018.

ISSN 1877-0509.

doi: 10.1016/J.PROCS.2017.12.073.

URL https://www.sciencedirect.com/science/article/pii/S1877050917328375.

[145] Omar S Soliman and Aliaa Rassem.

Correlation Based Feature Selection Using Quantum Bio Inspired Estimation of Distribu-

tion Algorithm.

In Chattrakul Sombattheera, Nguyen Kim Loi, Rajeev Wankar, and Tho Quan, editors,

Multi-disciplinary Trends in Artificial Intelligence, number Ml, pages 318–329, Berlin,

Heidelberg, 2012. Springer Berlin Heidelberg.

ISBN 978-3-642-35455-7.

[146] Thomas Sterling, Matthew Anderson, and Maciej Brodowicz.

High Performance Computing.

Morgan Kaufmann, 2018.

ISBN 9780124201583.

doi: 10.1016/C2013-0-09704-6.

URL https://linkinghub.elsevier.com/retrieve/pii/C20130097046.

[147] Matthew E Stokes and Shyam Visweswaran.

Application of a spatially-weighted Relief algorithm for ranking genetic predictors of

disease.

BioData mining, 5(1):20, 2012.

[148] Yijun Sun.

Iterative RELIEF for feature weighting: algorithms, theories, and applications.

IEEE transactions on pattern analysis and machine intelligence, 29(6):1035–1051, 2007.

[149] Murdoch TB and Detsky AS.

110

http://link.springer.com/10.1007/s10766-017-0493-2
https://www.sciencedirect.com/science/article/pii/S1877050917328375
https://linkinghub.elsevier.com/retrieve/pii/C20130097046

BIBLIOGRAPHY

The inevitable application of big data to health care.

JAMA, 309(13):1351–1352, apr 2013.

ISSN 0098-7484.

URL http://dx.doi.org/10.1001/jama.2013.393.

[150] Grigorios Tsoumakas, Ioannis Katakis, and An Overview.

Multi-Label Classification : An Overview.

International Journal of Data Warehousing and Mining, 3(September):1–13, 2007.

ISSN 15483924.

doi: 10.1109/ICWAPR.2007.4421677.

URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.

9401{&}rep=rep1{&}type=pdf.

[151] John W. Tukey.

The Future of Data Analysis.

The Annals of Mathematical Statistics, 33(1):1–67, 1962.

ISSN 0003-4851.

doi: 10.1214/aoms/1177704711.

URL http://projecteuclid.org/euclid.aoms/1177704711.

[152] Ryan J. Urbanowicz, Melissa Meeker, William La Cava, Randal S. Olson, and Jason H.

Moore.

Relief-based feature selection: Introduction and review.

Journal of Biomedical Informatics, 85:189–203, sep 2018.

ISSN 1532-0464.

doi: 10.1016/J.JBI.2018.07.014.

URL https://www.sciencedirect.com/science/article/pii/S1532046418301400.

[153] Ryan J Urbanowicz, Randal S Olson, Peter Schmitt, Melissa Meeker, and Jason H Moore.

Benchmarking relief-based feature selection methods for bioinformatics data mining.

Journal of biomedical informatics, 85:168–188, 2018.

[154] Mark van Rijmenam.

Big Data at Walmart is All About Big Numbers; 40 Petabytes a Day!, 2015.

URL https://datafloq.com/read/big-data-walmart-big-numbers-40-petabytes/

1175.

[155] Maarten van Steen and Andrew Tanenbaum.

Distributed Systems.

CreateSpace Independent Publishing Platform, 2017.

ISBN 978-1543057386.

111

http://dx.doi.org/10.1001/jama.2013.393
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.9401{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.9401{&}rep=rep1{&}type=pdf
http://projecteuclid.org/euclid.aoms/1177704711
https://www.sciencedirect.com/science/article/pii/S1532046418301400
https://datafloq.com/read/big-data-walmart-big-numbers-40-petabytes/1175
https://datafloq.com/read/big-data-walmart-big-numbers-40-petabytes/1175

BIBLIOGRAPHY

[156] V Vapnik.

The Nature of Statistical Learning Theory, 1995.

[157] Yong Wang, Wenlong Ke, and Xiaoling Tao.

A Feature Selection Method for Large-Scale Network Traffic Classification Based on Spark.

Information, 7(1):6, feb 2016.

ISSN 2078-2489.

doi: 10.3390/info7010006.

URL http://www.mdpi.com/2078-2489/7/1/6.

[158] Ian H. Witten, Eibe Frank, and Mark a. Hall.

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, volume 54.

2011.

ISBN 9780123748560.

doi: 10.1002/1521-3773(20010316)40:6<9823::AID-ANIE9823>3.3.CO;2-C.

URL http://www.cs.waikato.ac.nz/{~}ml/weka/book.html{%}5Cnhttp://www.

amazon.com/Data-Mining-Practical-Techniques-Management/dp/0123748569.

[159] Rui Xu and D Wunsch.

Survey of clustering algorithms.

IEEE Transactions on Neural Networks, 16(3):645–678, may 2005.

ISSN 1045-9227.

doi: 10.1109/TNN.2005.845141.

[160] Lei Yu and Huan Liu.

Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution.

International Conference on Machine Learning (ICML), pages 1–8, 2003.

ISSN 01469592.

doi: citeulike-article-id:3398512.

URL http://www.aaai.org/Papers/ICML/2003/ICML03-111.pdf.

[161] Amelia Zafra, Mykola Pechenizkiy, and Sebastián Ventura.

ReliefF-MI: An extension of ReliefF to multiple instance learning.

Neurocomputing, 75(1):210–218, 2012.

ISSN 09252312.

doi: 10.1016/j.neucom.2011.03.052.

[162] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica.

Spark : Cluster Computing with Working Sets.

HotCloud’10 Proceedings of the 2nd USENIX conference on Hot topics in cloud computing,

page 10, 2010.

112

http://www.mdpi.com/2078-2489/7/1/6
http://www.cs.waikato.ac.nz/{~}ml/weka/book.html{%}5Cnhttp://www.amazon.com/Data-Mining-Practical-Techniques-Management/dp/0123748569
http://www.cs.waikato.ac.nz/{~}ml/weka/book.html{%}5Cnhttp://www.amazon.com/Data-Mining-Practical-Techniques-Management/dp/0123748569
http://www.aaai.org/Papers/ICML/2003/ICML03-111.pdf

BIBLIOGRAPHY

ISSN 03642348.

doi: 10.1007/s00256-009-0861-0.

[163] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, and Ankur Dave.

Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster comput-

ing.

NSDI’12 Proceedings of the 9th USENIX conference on Networked Systems Design and

Implementation, page 2, 2012.

ISSN 00221112.

doi: 10.1111/j.1095-8649.2005.00662.x.

URL https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.

pdf.

[164] Yi Zhang, Chris Ding, and Tao Li.

Gene selection algorithm by combining reliefF and mRMR.

BMC Genomics, 9(Suppl 2):S27, 2008.

ISSN 1471-2164.

doi: 10.1186/1471-2164-9-S2-S27.

URL http://bmcgenomics.biomedcentral.com/articles/10.1186/

1471-2164-9-S2-S27.

[165] Liang Zhao, Zhikui Chen, Yueming Hu, Geyong Min, and Zhaohua Jiang.

Distributed Feature Selection for Efficient Economic Big Data Analysis.

IEEE Transactions on Big Data, 4(2):164–176, jun 2018.

ISSN 2332-7790.

doi: 10.1109/TBDATA.2016.2601934.

URL https://ieeexplore.ieee.org/document/7549067/.

[166] Zheng Zhao and Huan Liu.

Searching for interacting features.

IJCAI International Joint Conference on Artificial Intelligence, pages 1156–1161, 2007.

ISSN 10450823.

doi: 10.3233/IDA-2009-0364.

[167] Zheng Zhao, Ruiwen Zhang, James Cox, David Duling, and Warren Sarle.

Massively parallel feature selection: an approach based on variance preservation.

Machine Learning, 92(1):195–220, jul 2013.

ISSN 0885-6125.

doi: 10.1007/s10994-013-5373-4.

URL http://link.springer.com/10.1007/s10994-013-5373-4.

113

https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf
http://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-9-S2-S27
http://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-9-S2-S27
https://ieeexplore.ieee.org/document/7549067/
http://link.springer.com/10.1007/s10994-013-5373-4

BIBLIOGRAPHY

[168] Zhi-hua Zhou.

Multi-instance learning: a survey.

AI Lab, Department of Computer Science and Technology, pages 1–31, 2004.

ISSN 03029743.

doi: 10.1109/CVPR.2012.6247772.

URL http://cs.nju.cn/zhouzh/zhouzh.files/publication/techrep04.pdf.

114

http://cs.nju.cn/zhouzh/zhouzh.files/publication/techrep04.pdf

	List of Tables
	List of Figures
	Background
	Introduction
	Research Objective and Methodology
	Contributions and Publications
	Overview of the document

	Feature Selection
	Knowledge Discovery in Databases Process
	Data Mining and Machine Learning
	Data Preprocessing
	Feature Selection
	Categorization
	Feature Evaluation Metrics
	Evaluating Feature Selection
	Filter-based Feature Selection Algorithms

	Big Data and Other Related Terms
	Big Data
	Big Data Related Terms
	Business Intelligence
	Analytics
	Data Science
	Data Science, Data Mining and Machine Learning

	Distributed Systems: MapReduce and Apache Spark
	Distributed Systems
	Design Goals
	Types of Distributed Systems
	Parallel Computing

	MapReduce
	MapReduce Programming Model

	Apache Hadoop
	Apache Spark
	Spark Programming Model

	State of the Art of Distributed Feature Selection
	Distributed Feature Selection
	Recent Work

	Recent Work on ReliefF and CFS filters
	Recent Work on ReliefF
	Recent Work on CFS

	Contribution
	Distributed Feature Selection with ReliefF
	DiReliefF
	Experiments and Results
	Empirical Complexity
	Scalability
	Stability

	Distributed Feature Selection with CFS
	Distributed Correlation-Based Feature Selection (DiCFS)
	Horizontal Partitioning
	Vertical Partitioning

	Experiments

	Conclusions and Future Work
	Conclusions and Future Work
	DiReliefF: Conclusions and Future Work
	DiCFS: Conclusions and Future Work
	General Conclusions and Future Work

	Bibliography

