
1

Designing Fuzzy Relations in Orthogonal Persistence
Object-Oriented Database Engines

Miguel-Ángel Sicilia1, José-Antonio Gutiérrez2, Elena García2

1 DEI Laboratory, Computer Science Department, Carlos III University
Av. Universidad 30, 28911 Leganés (Madrid), Spain

{msicilia}inf.uc3m.es
2 Computer Science Department, Alcalá University

Ctra. Barcelona km.33.600, 28871 Alcalá de Henares (Madrid), Spain
{jantonio.gutierrez, elena.garciab}@uah.es

Abstract. Semantic relations between concepts or data are common modeling
devices in various knowledge representation approaches. Fuzzy relations can be
defined as fuzzy subsets of the cartesian product of a number of domains, ex-
tending the notion of crisp relation. Associations in object-oriented modeling –
and more specifically in the Unified Modeling Language – can be interpreted as
crisp relations on the classifiers they connect, and thus the concept of associa-
tion can be extended to its fuzzy counterpart by representing a fuzzy relation on
the classes involved in the association. In this paper, the resolution form of a
fuzzy relation is described as a convenient way to represent fuzzy associations
in object-oriented programming languages, thus enabling an efficient practical
representation mechanism for them. Specific cases of fuzzy relations can also
be dealt with by adding semantic constraints to fuzzy associations. One of the
most interesting cases is that of similarity relations, which essentially general-
ize the notion of object equality to the fuzzy case. Fuzzy relations can be stored
in orthogonally persistent object databases by using the described fuzzy asso-
ciation design, as illustrated in this paper with a case study that uses the db4o
persistence engine.

Keywords. Fuzzy relations, similarity relations, object-oriented databases.

1 Introduction

A number of research groups have investigated the problem of modeling fuzziness (in
a broad sense, including imprecision and uncertainty, as defined in (Smets, 1997)) in
the context of object-oriented databases (OODB) (De Caluwe, 1998), and some of
their results include research implementations on top of commercial systems (Yazici
et al, 1998). Nonetheless, currently no commercial system is available that supports
fuzziness explicitly in its core physical or logical model, and existing database stan-
dards regarding object persistence sources – ODMG (Cattell 2000) and JDO (Russell
2001) – do not support neither fuzziness nor any other kind of generalized uncertainty
information representation (Klir, 1998) – in their data models.

2

Nonetheless, imperative OODB application programming interfaces stay very close to
the semantics and syntax of the object-oriented programming languages in which
they’re embedded – see, for example, (Atkinson 1996) – facilitating the construction
of research prototypes that extend commercial systems by adding a software layer
acting as a proxy filter (Gamma 1995) for the underlying non-fuzzy languages.
Relations between concepts are a very common construct in diverse knowledge repre-
sentation approaches, including modern ontology-description languages (Horrocks,
2002), and as such, they require specific physical representation mechanisms to be
efficiently handled by application software. In this work, we describe our approach
for the design of fuzzy relations in orthogonal persistent OODBs, evolved from ear-
lier work (Gutiérrez et al., 2002). More specifically, we concentrate on the design of
associations between database (or model) entities, and on the specific case of similar-
ity relations. We describe a case study that extends the db4o database engine inter-
faces to include general-purpose fuzzy associations, a concept that can be considered
an extension of the ODMG relationship construct (Cattell 2000). We also describe a
prototype version for the extensions described in this work, tested on the fully func-
tional db4o community edition, which can be freely redistributed in non-commercial
applications.

2 Fuzzy Relations and Object-Oriented Associations

2.1. Relations and Associations

A crisp relation represents the presence or absence of interconnectedness between the
elements of two or more sets. This concept is referred to as association when applied
to object oriented modeling. According to the Unified Modeling Language (UML)
(OMG 1999, Semantics section, 2-20) – the most widely used object-oriented model-
ing notation –, an association defines a semantic relationship between classifiers1, and
the instances of an association can be considered a set of tuples relating instances of
these classifiers, where each tuple value may appear at most once. A binary associa-
tion may involve one or two fuzzy relations (i.e. the unidirectional and bidirectional
cases), although due to the semantic interpretation of associations, they’re in many
cases considered to convey the same information (i.e. the association between authors
and books is interpreted in the same way despite the navigation direction).
Since it’s common practice to develop object-oriented software from previously de-
fined UML models, we can consider UML semantics as a model from which associa-
tions are implemented in specific object-oriented programming languages, by the
process of association design, which essentially consists in the selection of the con-
crete data structure that better fits the requirements of the association.

1 A UML term referring to classes and class-like model elements that describe sets of entities.

3

2.2. Fuzzy Relations

Fuzzy relations are generalizations of the concept of crisp relation in which various
degrees of strength of relation are allowed (Klir 1988). A binary fuzzy relation R on

YX × is a fuzzy subset of that cartesian product as denoted in (1).

 ()(){ }),(|),(,, YXyxyxyxR R ×∈= µ (1)
All the relation concepts can be extended to the n-ary case, where

() nn XXXXXXR ×××⊂ KK 2121 ,,,
(2)

We’ll restrict ourselves to the binary case, since it’s the more common case in data-
base applications. Note that even in the recent UML version 1.4, the definition of
association relationship is considered to be ill defined (Stevens 2001). Nonetheless, in
this work, we’ll consider associations as literal tuples between model elements that
hold an additional value representing their membership grade to the association. This
assumption implies some constraints in the implementation of bidirectional associa-
tions, since both association ends should be aware of updates on the other one.
A common representation for fuzzy relations is an n-dimensional array (Klir 1988),
but this representation does not fit well in the object paradigm, in which a particular
object (element of one of the domains in the relation) only is aware of the tuples to
which it belongs (the links), and uses them to navigate to other instances. We have
extended the association concept to design fuzzy relations attached to classes in a
programming language, so that a particular instance has direct links (i.e. ‘knows’) to
instances associated with it. Access to the entire relation (that is, the union of the
individual links of all the instances in the association) is provided as a class responsi-
bility, as will be described later.

3 Design Case Study

The db4o2 object database system is a lightweight OODB engine that provides a
seamless Java language binding (it uses reflection run-time capabilities to avoid the
need to modify existing classes to make their instances storable) and a novel Query-
By-Example (QBE) interface based on the results of the SODA3 – Simple Object
Database Access – initiative.
Associations are stored in its Java native form in db4o, and therefore, special support
for fuzzy associations can be designed by using different standard object oriented
design techniques.

2 Available at <http://www.db4o.com>
3 Information available at <http://www.odbms.org/soda/>

4

3.1. Designing Binary Associations

The membership values of the relation must be kept apart from the instances of the
classes that participate in the association. A first approach could be that of building
Proxies for the instances – which will hold a reference to the instance at the other side
of the association and the membership grade – and storing them in a standard collec-
tion. The main benefit of this approach is simplicity, since only a class called for
example FuzzyLink (FL from now on) solves the representation problem, and it’s
enough for the case of association with cardinality one. We used this first approach
for comparison purposes with our final design.
A drawback of the FL approach for associations with multiple cardinalities is that the
responsibility of preserving relation properties is left to the domain-class designer.
This is one of the reasons that pushed us to a second approach in which the collection
semantics – and not the element semantics – are extended.

A B

+put()

«interface»
FuzzyAssociationEnd

1

-assoc 1

FuzzyUnorderedAssociationEnd

1

*

A B

1 -assoc*

«fuzzy»

(a) (b)

Fig. 1. Unidirectional Binary Association Design

The base of our fuzzy collection framework is a FuzzyAssociationEnd (FAE) inter-
face that defines common behavior for all fuzzy associations. Concrete classes im-
plement that interface to provide different flavors of associations. In this work, we’ll
restrict our discussion to a FuzzyUnorderedAssociationEnd (FUAE) class. The class
diagram in Fig. 1 shows how a unidirectional fuzzy association4 (b) from class A to
class B can be designed with our framework (a).
It should be noted that the put method can be used both to add and remove objects
from the relation – the latter case can be carried out by specifying a zero membership
(we have considered in this implementation that zero membership is equivalent to the
lack of a link). Since many associations that store different information may exist
between the same pair of classes, associations must be named. The class-instance
FUAE is responsible for maintaining a collection of the associations that are main-
tained as instances of it (i.e., this behavior is modeled as a class responsibility). These

4 We have used a <<fuzzy>> UML stereotype to mark fuzzy associations.

5

different associations are represented by instances a FuzzyUnorderedAssociation
(FUA) class. Therefore, FUA instances represent entire generic associations and store
the union of the links that belong to it. An example of an association User-Subject
called ‘interested-in’ may be coded in Java as follows:

public class Subject{
 public String _name;
 public FuzzyUnorderedAssociationEnd _fasoc;
 public Subject(String name){
 _name = name;
 _fasoc = new FuzzyUnorderedAssociationEnd
 ("isInterestedIn", false);
 }
 public void registerInterest(Object o, double mu){
 _fasoc.putLink(o, mu);
 }
 public Iterator interestedPeople(){
 return _fasoc.values().iterator();
 }
 /...
}

Iterations may be performed on the links with an specialization of the Iterator inter-
face that returns the elements wrapped in FuzzyElement instances, as shown in the
following code fragment.

for (Iterator it=xml.interestedPeople();it.hasNext();){
 FuzzyElement e = (FuzzyElement) it.next();
 System.out.println(e.getGrade()+(User)e.getObject());
}

3.2. Representation details

In our design, links are indexed with their membership values as keys, using sets to
hold links with the same value (see Fig. 2). In order to turn feasible this approach,
real values representing membership values should be stored with a reasonable preci-
sion. Note that more than five decimal numbers is seldom needed in common applica-
tions (that is, a tuple with µR=0.50001 is hardly distinguishable from another with µR
=0.5000) in most common applications.
The union of all FUAE that belong to the same association is maintained in a FUA
instance. These instances are stored as a class member of the FUAE class (see Fig.3),
so that integrity is preserved in insertion and removal of links. This design also en-
ables an easy maintenance of integrity if the association is implemented in both direc-
tions.
Using dictionaries with fixed precision-membership values as keys provides perform-
ance benefits in common operations on fuzzy sets, like alpha-cuts, outperforming
common container classes (bags, sets and lists). The rationale behind this organiza-
tion is that association traversal would be often done by specifying a minimum mem-
bership grade, that is, to obtain an element of the partition of the fuzzy relation.

6

FuzzyUnorderedAssociationEnd : java.lang.Class

 : java.util .Hashtable

FUAE1FUAE2

isInterestedIn : FUAisParticipantInSIG : FUA

FUAE2

Fig.2. FUA instances as the union of FUAE ones.

This way, we are representing the relation by its resolution form (3).

RRR Λ∈= αα α
α
U (3)

where ΛR is the level set of R , Rα denotes an α-cut of the fuzzy relation and αRα is a
fuzzy relation as defined in (4).

),(),(yxyx RR αα
µαµα ⋅= (4)

The implementation is an extension of Java’s HashMap collection, which essentially
substitutes the add behavior with that of a link operation that is sketched as follows:

public Object link(Object key, Object value){

 if (key.getClass() == Double.class){
 double mu = ((Double)key).doubleValue();
 // truncates to current precision:
 mu = truncateTo(mu);
 // Get the set of elements with the given mu:
 HashSet elements=(HashSet)this.get(new Double(mu));
 if (elements == null){
 HashSet aux = new HashSet();
 aux.add(value);
 super.put(new Double(mu), aux);
 }else
 elements.add(value);
 }

// Inform the association that a new link has been added:
 if (association !=null)
 association.put(key, this, value);
 return null;

}

7

Figure 3 illustrates our described design by showing a “is interested in” relation be-
tween the set U of the users of a Web site and the set S of subjects of the page it
serves.

u1 : User

u3 : User

u2 : User

sports : Subject

music : Subject

 : FUAE

 : FUAE

mu = 1
 : Set

mu
0.45 : Set

mu = 0.2
 : Set

mu = 0.6
 : Set

mu
0.8 : Set u3 : User

Figure 3. An example “is interested in” fuzzy relation.

Some common operations found are obtaining the interest of a user in a specific sub-
ject, obtaining the set of subjects a user is interested in and obtaining the set of users
which match a specific preference profile (that are interested in a set of subjects).
Note that often associations require a specific ordering (i.e. insertion or by an specific
attribute). Specializations of the classes of our library are expected to add those be-
haviors.

3.3. Similarity Relations

Similarity relations can be considered as an extension of the concept of equality, and
can be implemented as special reflexive fuzzy associations with added support for
similarity semantics. A fuzzy similarity relation is a reflexive, symmetric and transi-
tive fuzzy relation, where reflexivity and symmetry are defined as in (5).

),(),(
1),(

xyyx
xx

RR

R

µµ
µ

=
=

(5)

The transitivity property is usually implemented as max-mix transitivity according to
the formula in (6).

[])),(),,(min(max),(yzzxyx RRDzR µµµ ∈≤ (6)

Our approach is that of storing similarity relations defined on a class with crisp
boundaries – other approaches define similarity on attribute values for non-crisp
classes (Aksoy 1996). In our framework, a function object is required at similarity
relation construction to specify the concrete transitivity formula (i.e. substituting the
inequality with a specific value). An overloaded put method version inserts links in
the similarity relation without the explicit specification of a membership value. The
actual value is derived from the existing ones in the relation, if possible, through the
transitive formula.

8

 An overloaded version of db4o the query interface (the ObjectContainer.get()
method) provides access to similarity-enriched QBE queries and gives explicit access
to fuzzy associations as well. QBE queries with similarity comparison operators can
be constructed by extending the notion of SODA query constraints with fuzzy com-
parison operators. As the ObjectContainer class acts as a factory for its instances,
we’ve extended it through delegation – the class is called FuzzyObjectCon-
tainer(FOC). Basically, when a object whose class holds a similarity relation is
passed as a template to method get in FOC, not only the instance is retrieved, but also
all the similarity related instances. Another version of get that takes an additional
parameter allows the query to specify a minimum similarity grade for the instances
retrieved.

3.4. Performance considerations

The cardinality of the level set of a fuzzy association with precision m is bounded by
10m –1, and therefore, the number of sets of links with the same membership value in
an association is always below or equal to that number. In a degenerate case, the
number of links L in the association would be equal to the number of sets, but this is
not a common case. In cases in which the number of links is much greater than the
number of different membership values, the efficiency of operations that query sub-
sets of the relation increases significantly.

0

5000

10000

15000

20000

25000

30000

#objects

Figure 4. Iteration retrieval time and total number of objects.

Theoretically, the navigational nature of object databases and persistence engines
are well suited to operations that only require the physical retrieval of a number of
objects, like the retrieval of elements by a membership grade or threshold.

We have carried out several experiments to try to understand the performance
behavior of our design. We used a unidirectional fuzzy association from Subjects to
Users, systematically measuring retrieval time5 (understood as the time required to
query the association and traverse all its links) for increasing cardinalities of users,
subjects and links between them (the membership values for the links were randomly

5 On a Windows XP machine with 256MB RAM and Pentium IV 1500MHz processor.

9

generated and the number of links was always above the number of users or subjects).
The memory requirements of the Java virtual machine constrained the measures to
total object (users + subjects) count below 10,000 (in the experiment, the number of
links was the max(#users, #subjects)). The first finding was that retrieval times in-
creased significantly with total object count above four thousand objects approxi-
mately, as showed in Figure 4. We also observed that retrieval time increased slightly
less with increases in the number instances of User than with increases on Subject
(which holds the data structure).

The dashed line in Figure 4 summarizes the measures of an alternative implemen-
tation using Java LinkedList to store the link collection. As showed in that figure,
no significant performance overhead is added with our approach from simpler ones.
Nonetheless, the retrieval by membership values or by membership threshold (α–
cuts) is significantly improved (this is clear from asymptotic analysis, due to the O(1)
efficiency of search in HashSet).

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

10 10
0

10
00

50
00

10
00

0
50

00
0

10
00

00

25
00

00

50
00

00

75
00

00

10
00

00
0

#links

Figure 5. Random α–cut retrieval time increase and number of links.

Figure 5 compares the retrieval time increase with the number of links stored,
when retrieving a randomly generated α–cuts. The efficiency decrease is significantly
lower in the FUAE implementation for large number of links. Sorting the list by
membership reduces retrieval time in the medium case, but it still has worse perform-
ance than our approach. The activationDepth parameter of db4o is an impor-
tant factor in these results. It must be reduced from the default 5 value to 2 or 1 to
obtain a significant improvement, since with the default, the entire object graph is
always retrieved.

In addition, improvements in retrieval of links by membership were found in com-
parative experiments with relational-like persistence managers (MS Access) for large
cardinalities.

10

4 Conclusions and Future Work

The resolution form of a fuzzy relation is a convenient way of representing fuzzy
associations, and subsequently storing them in orthogonal persistence engines. Addi-
tional constraints on link insertion semantics can be added to obtain specialized rela-
tions like similarity relations. This association design can be stored and retrieved
efficiently in object persistence engines by simply obtaining a reference to the object
that embodies one of the association ends.

Future work should address a more detailed empirical evaluation on a number of
different object persistence systems, and a refinement of the current structure to di-
rectly represent α–cuts as objects, which could improve the current approach in re-
trieving elements by specifying a membership threshold.

Acknowledgements
Thanks to Carl Rosenberg from db4o that assisted us in some technical aspects of
the storage in the db4o database engine.

References
(Aksoy 1996) Aksoy, D. Yazici, A. George, R. : Extending similarity-based fuzzy object-

oriented data model. Proceedings of the 1996 ACM symposium on Applied Computing
SAC 1996: 542-546

(Atkinson 1996) M.P. Atkinson, L. Daynes, M.J. Jordan, T. Printezis, S. Spence. An Or-
thogonally Persistent Java, ACM Sigmod Record, Volume 25, Number 4, December 1996.

(Cattell 2000) Cattell, R. G. G. (editor) The Object Data Standard: ODMG 3.0. Morgan Kauf-
mann Publishers, 2000.

(De Caluwe 1998) De Caluwe, R. (ed.), Fuzzy and Uncertain Object-Oriented Databases:
Concepts and Models (Advances in Fuzzy Systems, Applications and Theory, V. 13). 1998.

(Gamma 1995) Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of
Reusable Object Oriented Design. Addison Wesley (1995)

(Gutiérrez et al., 2002) Gutierrez, J. A., Sicilia, M. A., Garcia: Integrating fuzzy associations
and similarity relations in object oriented database systems. In: Proc. Intl. Conf. On Fuzzy
Sets Theory and its Applications, FSTA 2002, Liptovský, Slovak Republic (2002) 66-67

(Horrocks, 2002) Horrocks, I.: DAML+OIL: A Reason-able Web Ontology Language. 8th
International Conference on Extending Database Technology (EDBT 2002) 2-13

(Klir 1988) Klir, G.J. & Folger, T.A. Fuzzy Sets, Uncertainty and Information, Prentice Hall,
Canada Inc., Toronto, 1988.

(Klir, 1998) Klir, G. & Wierman, M. (1998), Uncertainty-Based Information. Elements of
Generalized Information Theory, Springer-Verlag, New-York, 1998.

(OMG 1999) Object Management Group, OMG Unified Modeling Language Specification,
Version 1.3. June 1999.

(Stevens 2001) Stevens, P., On Associations in the Unified Modelling Language, Proceedings
of UML2001, Springer-Verlag, 2001.

(Russell 2001) Russell, C. et al, Java Data Objects (JDO) Version 1.0 proposed final draft,
Java Specification Request JSR000012.

(Smets, 1997) Smets, P.: Imperfect information: Imprecision-Uncertainty. In: Motro, A.,
Smets, P. (eds.) Uncertainty Management in Information Systems: From Needs to Solutions,
Kluwer Aca-demic Publishers (1997) 225–254

11

(Yazici et al, 1998) Adnan Yazici, Roy George, Demet Aksoy: Design and Implementation
Issues in the Fuzzy Object-Oriented Data Model. Information Sciences 108(1-4): 241-260
(1998)

