
AN IMS-LEARNING DESIGN PLAYER BASED ON
COPPERCORE ENGINE

José R. Hilera, José Escribano, Roberto Barchino, José M. Gutiérrez, Salvador Otón,
José J. Martínez, José A. Gutiérrez, Luis De Marcos

Department of Computer Science
University of Alcala

Alcala de Henares (Madrid) - Spain

ABSTRACT

In this paper we present a simple open source system programmed in Java that aims to analyze the basic services that
offers the Coppercore engine from the Open Universiteit Nederland. Coppercore services can be used in any e-learning
system to ensure conformance and compliance with the basic requirements of the IMS Global Consortium Learning
Designs Specification. The player developed can facilitate understanding of the possibilities offered by this IMS-LD
engine, and it can be extended in order to create more complex environments.

KEYWORDS

Learning Design, Unit of Learning, Coppercore engine.

1. INTRODUCTION

IMS-Learning Design (LD) is an IMS Global Consortium specification, whose goal is to provide a
containment framework of elements that can describe any design of a teaching-learning process in a formal
way (IMS, 2003a). In order to support the description of individualized learning designs, learner Properties,
Conditions, and Notifications are needed. The designs can be described by a meta-language, based on EML
(Hermans et al., 2003), and they might involve a single user or multiple users; the learning and instructional
designers and providers might take a behaviorist, cognitivist, constructivist, or some other approach; they
might require learners to work separately or collaboratively. These could all be captured in terms of a Method
containing Roles, Activity-structures, Environments and other related concepts (Koper, 2001).

IMS-LD is a pedagogically neutral specification, that supports mixed mode delivery (‘blended learning’),
enabling traditional approaches such as face-to-face teaching, the use of books and journals, lab work, and
field trips to be also specified as learning activities and combined with ICT (Information and Communication
Technologies) supported learning. What it brings to mixed mode teaching is the ability to specify both kinds
of learning in a Unit of Learning (UoL) that is itself in digital form. The primary use of IMS Learning Design
is to model units of learning by including an IMS Learning Design in a content package, preferably but not
necessarily, an IMS Content Package (IMS, 2004). An IMS Content Package is a zip file, and describes their
contents in an XML document called the ‘package manifest’, integrated in the file itself. To create a UoL,
IMS Learning Design is integrated with an IMS Content Package by including in the package manifest the
learning design element as another kind of organization within the <organizations> element.

<manifest>
 <metadata/>
 <organizations>
 <learning-design>
 [learning design elements here]
 </learning-design>
 </organizations>
 <resources/>
</manifest>
Learning Design specifies three levels of implementation and compliance. Learning Design Level A

includes everything described so far. It thus contains all the core vocabulary needed to support pedagogical

IADIS International Conference e-Learning 2008

363

diversity. Levels B and C add three additional concepts and their associated capabilities in order to support
more sophisticated behaviors. Learning Design Level B adds Properties and Conditions to level A, which
enable personalization and more elaborate sequencing and interactions based on learner portfolios. It can be
used to direct the learning activities as well as record outcomes. The separation of Properties and Conditions
into a separate Schema also enable it to be used independently of the rest of the Learning Design
Specification, typically as an enhancement to IMS Simple Sequencing (IMS, 2003b). Learning Design Level
C adds Notification to level B, which, although a fairly small addition to the specification, adds significantly
to the capability, but potentially also to the implementation task where something similar is not already in
place (IMS, 2003a).

As it can be observed in figure 1, the design of the learning (“Design Time” section), can be made by
means of the description of elements like roles, activities, frameworks, methods, properties, conditions and
notifications; using, for it, a publisher of learning units, like ReLoad or CopperAuthor. Next, a run time
environment is needed to control the execution of the learning process (“Run Time” section), by means of the
activation of a software denominated generically Learning Design (LD) Player. One of the most used is
ReLoad Player (http://www.reload.ac.uk), that is based on a Web engine named CopperCore
(http://coppercore.sourceforge.net), developed by the Open Universiteit Nederland (OUNL) (“Run time”
section).

Figure 1. Components involved in the design and execution of a Unit of Learning (IMS)

CopperCore is an open source IMS Learning Design Engine that supports all three levels of IMS
Learning Design (A, B and C). IMS Learning Design is a complex, semantically rich specification, so it is
not trivial to provide full support for it. IMS Learning Design specifies a template of a synchronized and
personalized workflow through a course. In the runtime environment it must be use this template to provide a
user with an up-to-date view on his or her learning process. So, for example, when a UoL specifies a group
assignment where all learners need to complete a specific activity before they can proceed to the next
activity, the runtime environment should check this constraint and it should synchronize access to the second
activity by continuously checking to see if all users did already complete their first activity. All this checking,
synchronizing and personalizing is called the business logic of Learning Design, and this is exactly what
CopperCore handles for the developer. By implementing this business logic, CopperCore hides the
developers from these complexities when incorporating the IMS Learning Design specification.

CopperCore is a J2EE (Java Platform Enterprise Edition) runtime engine which can be used to
incorporate IMS Learning Design to an e-learning system, providing to developers three API's (Application
Programming Interfaces) and a Test Suite. Some characteristics are:

• full support for IMS Learning Design including level A, B and C
• has three API's covering publication, administration and delivery of IMS Learning Design
• exposes J2EE, native Java and SOAP (Simple Object Access Protocol) interfaces
• provides a validation library
• includes a command line interface to most of the API calls

ISBN: 978-972-8924-58-4 © 2008 IADIS

364

• includes an example of a publication interface
• includes an example of a web delivery interface
• is platform independent
• has built-in support for three relational databases (MS SQL Server/MSDE, PostgreSQL and

HSQLDB)
• is ready for use with JBoss application server, but runs on other application servers as well
• is licensed under the GNU GPL

Following sections of this document describe the design and implementation of a simple LD Player for
the Level A IMS-LD specification. It is programmed as a Java application which works with the run engine
Coppercore, that allows the user: (1) to load a UoL (for example, created with Reload editor), (2) to
administer the different executions, users and roles which can interact with the UoL and (3), finally, to
visualize the didactic content according to the profile of the user. This work is a first approach to the use of
Coppercore engine that can serve as aid to developers that wish to incorporate IMS-LD in an e-learning
platform. The source code of the application developed can be downloaded from
ftp://www.cc.uah.es/software/ldplayer1.zip.

2. IMS-LD PLAYER DESIGN

The architecture of developed software is made up basically of three elements programmed in Java (figure 2):
• Publisher: Java Web application with an interface that allows to load, in the Coppercore engine,

packed Units of Learning according to specification IMS Content Packaging, created previously
using an LD editor (for example ReLoad).

• Manager: Java Windows application to select the UoL to visualize among the loaded ones in the
Coppercore engine, to create executions and new users to support, and to assign them a role within
the available ones for the selected UoL.

• Player: HTML application to show the execution of the UoL selected for a user with a certain role.
This execution will contain the tree of content of the UoL for that user profile, and will allow
navigate the tree to show the content of the UoL. This content corresponds with the course materials
that are provided according to the level of knowledge or the interests of the use”.

Publication system is an application that is made up of an Web interface where the user introduces the
location of the UoL to load. Once it is selected, the request is sent to a class called Publisher_system, that
contains a method Post that loads the UoL in the execution engine; this method uses a private method named
load, that uses the interface of the Coppercore engine come with its load. Once finalized the load process, a
Web page with the result is generated, which contains a report of each step of the load, including errors
encountered. For integration with Coppercore engine, the following classes offered through the API of this
engine are used:

- org.coppercore.common.Message
- org.coppercore.common.MessageList
- org.coppercore.delegate.LDCourseManagerDelegate
- org.coppercore.dto.PublicationResult
- org.coppercore.dto.ValidationResult
- org.coppercore.exceptions.ConfigurationException
- org.coppercore.interfaces.LDCourseManagerHome

IADIS International Conference e-Learning 2008

365

Figure 2. Class architecture of the software developed

The administration system consists of an application with a graphical interface that offers to the user these
functions:

1) Load a UoL in the run engine, calling the publication application.
2) Create, or select an execution previously created, that will be supported by the run engine for a

certain UoL.
3) Create, or select a user created previously, who will be the user that will operate with the execution.
4) Assign one of the roles defined by the UoL to the assigned user.
All these operations are implemented with events that are transformed into calls to the interface of

Coppercore, using the following classes of this engine:
- org.coppercore.common.Message
- org.coppercore.common.MessageList
- org.coppercore.delegate.LDCourseManagerDelegate
- org.coppercore.delegate.LDEngineDelegate
- org.coppercore.dto.RunDto
- org.coppercore.dto.UolDto
- org.coppercore.exceptions.CopperCoreException
- org.coppercore.exceptions.ConfigurationException
- org.coppercore.interfaces.LDCourseManagerHome

Finally, the application for visualization is activated by the Administration System, once selected the
UoL, the execution and the user (with a selected role). This application consists of a Web interface that
receives the parameters of user and execution. The content of the interface is created from requests to the
class Player_web. This class reads the content tree included in the UoL, and returns XML code that is
transformed by means of extensible stylesheet XSL (W3C, 2006), so that it can be visualized by a Web
browser. The set integrated by XSL files for format conversion, Javascript files to control how to expand or
to contract the content tree or to show the context of a certain node of the tree, and the style sheets CSS, is
represented as the Format class in figure 2.

For the player creation, the compiled version of the Coppercore engine has been used (available in
http://coppercore.sourceforge.net/downloads.shtml). This software contains all that is required to execute the

ISBN: 978-972-8924-58-4 © 2008 IADIS

366

run-time engine, and provides the interface that services the created player. For that, packages’ series must be
created to replace Java packages from the original Coppercore application; these packages are (figure 3):

• publisher.war: This package contains the publication system, to allow the loading by units of
learning in the Coppercore engine.

• CopperCore-client.jar y CopperCore-common.jar: These two packages form the management
system, and they manage the unit of learning, executions, users and roles that the Coppercore
engine will handle.

• webplayer.war: This package contains the visualization application that allows to show the
content of the UoL, according to the execution, the user and the selected role.

publisher.war

Coppercore.ear

Manager

WebPlayer.war

CopperCore-client.jar CopperCore-common.jar

Interface_coppercore

.
Figure 3. Java packages generated

3. IMS-LD PLAYER OPERATION

In order to be able to execute the Coppercore engine the Java 2 Standard Edition SDK and a Web Java
application server, such as JBoss, must be installed. Coppercore engine can be started executing a command
coppercore.bat within the folder in which the developed application is stored. Next, to start the application, is
necessary to execute a batch file named ldplayer.bat to configure file system properties.

Once started, the management system is executed (figure 4). First, the Unit of Learning that we want to
visualize must be selected, so we press the Load button. This button launches the publication system, which
opens in a new web browser window (Internet Explorer in figure 5). In that window, the Browse button can
be pressed in order to select from the file browser the zip package that contains the UoL that is going to be
loaded. Once selected, by clicking the Load button it begins the UoL loading process in the environment.
Once finalized, a summary report will show us the load process result (Figure 6); if it appears some message
that begins with the string “(ERROR)”, it shows that any failures exist in the UoL that was being loaded. In
any another case the load process was correct and we may proceed to close by pressing the CLOSE button
from the report window.

IADIS International Conference e-Learning 2008

367

Figure 4. User interface of the Management System

Figure 5. User interface of the Publication System

Next, so that they appear in the management user interface the data about the UoL that has been loaded, is
due to press on the button Update and select UoL that is desired to execute of the list of units of learning
available. The following step would be to give a name to the execution that is going to create; for it a new
execution can be created, writing a name in the field Add run, and pressing the button Add, or one of the list
Run available can be selected. Then, a user for the execution is due to create; this one can be created writing
its name in the field Add user and pressing the button Add, or one in the list Users available can be selected.
Finally, the role of the user must be selected from the list Roles available; this information is provided by the
UoL, so it is not necessary to create no new role. Once selected the Uol, the execution, the user and his role,
it has to press on the button Run so that the visualization window is opened (figure 7).

ISBN: 978-972-8924-58-4 © 2008 IADIS

368

Figure 6. Summary report about the the load of a UoL

In the visualization window (Web browser) then appears the name of the selected UoL, followed by the
root of the execution tree. By clicking on the icon with symbol “+”, it is possible to unfold the content of the
course contained in the UoL (figure 7 shows a course example about “Java language”). After unfolding the
content, if it is selected any of the objects, a description of its content appears. In addition, if the object
contains an associate environment this will appear in the lower left corner with the word Environment.

The execution environment can also be unfolded, since in a UoL, within the environment of each object,
it is stored course content that can be visualized depending on the profile of the user. By clicking on any
content element, corresponding course materials will be loaded in the left window (figure 7).

4. CONCLUSIONS

The Coppercore run engine provides a complete interface for the creation of players that allows to explore all
the characteristics of specification IMS Learning Design in the three levels (A, B and C). The player
developed allows to give a vision of the possibilities of the Coppercore engine for level A, supporting the
most elementary contents, but it can be extended in order to allow to create more complex environments, like
complete forums, in which the users can interact among them and with the tutor to solve their doubts on the
education process. And even monitoring how it is developed the process of learning by the different users to
obtain statistics of processes and possible improvements of the learning. The authors’ intention is to extend
the player functionality with characteristics of IMS Learning Design levels B and C, and to integrate it in the
EDVI e-learning platform (Barchino et al., 2005) that was previously developed in the University of Alcala.
EDVI supports well known specifications in this context: SCORM (ADL, 2006) or IMS QTI (IMS, 2006).

IADIS International Conference e-Learning 2008

369

Figure 7. Visualization system playing the learning design of a “Java Language” course

ACKNOWLEDGEMENT

This research is co-funded by: (1) the Spanish Ministry of Industry, Tourism and Commerce PROFIT
program (grants FIT-350200-2007-6 and FIT-350101-2007-9) and Plan Avanza program (grant PAV-
070000-2007-103), (2) the Spanish Ministry of Education and Science PROFIT program (grant CIT-410000-
2007-5) and (3) Castilla-La Mancha autonomous community under the educational innovation cooperation
program (grant EM2007-004). Authors also want to acknowledge support from the TIFyC research group.

REFERENCES

ADL, 2006. Sharable Content Object Reference Model (SCORM). ADL Advanced Distributed Learning.
http://www.adlnet.gov/scorm/

Barchino, R., Otón, S. and Gutiérrez, J.M., 2005. An Example of Learning Management System. Proceedings of IADIS
Virtual Multi Conference on Computer Science and Information Systems (MCCSIS 2005).

Hermans, H., Manderveld, J. and Vogten, H., 2003. Educational Modelling Language. Open University of the
Netherlands. http://hdl.handle.net/1820/77/

IMS, 2003a. IMS Learning Design Specification. IMS Global Learning Consortium.
http://www.imsglobal.org/learningdesign/

IMS, 2003b. IMS Simple Sequencing Specification. IMS Global Learning Consortium.
http://www.imsglobal.org/simplesequencing/

IMS, 2004. IMS Content Packaging Specification. IMS Global Learning Consortium.
http://www.imsglobal.org/content/packaging/

IMS, 2006. IMS Question & Test Interoperability Specification. IMS Global Learning Consortium.
http://www.imsglobal.org/content/question/

Koper, E.J.R., 2001. Modelling units of study from a pedagogical perspective: the pedagogical metamodel behind EML.
Open University of the Netherlands. http://eml.ou.nl

W3C, 2006. Extensible Stylesheet Language (XSL). World Wide Web Consortium. http://www.w3.org/TR/xsl/.

ISBN: 978-972-8924-58-4 © 2008 IADIS

370

