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Abstract. In e-learning initiatives content creators are usually required to 
arrange a set of learning resources in order to present them in a comprehensive 
way to the learner. Course materials are usually divided into reusable chunks 
called Learning Objects (LOs) and the ordered set of LOs is called sequence, so 
the process is called LO sequencing. In this paper an intelligent agent that 
performs the LO sequencing process is presented. Metadata and competencies 
are used to define relations between LOs so that the sequencing problem can be 
characterized as a Constraint Satisfaction Problem (CSP) and artificial 
intelligent techniques can be used to solve it. A Particle Swarm Optimization 
(PSO) agent is proposed, built, tuned and tested. Results show that the agent 
succeeds in solving the problem and that it handles reasonably combinatorial 
explosion inherent to this kind of problems.  
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1   Introduction 

Brusilovsky [1] envisages Web-based adaptive courses and systems as being able to 
achieve some important features including the ability to substitute teachers and other 
students support, and the ability to adapt (and so be used in) to different environments 
by different users (learners). These systems may use a wide variety of techniques and 
methods. Among them, curriculum sequencing technology “is to provide the students 
with the most suitable individually planned sequence of knowledge units to learn and 
sequence the learning tasks … to work with”. These methods derive from adaptive 
hypermedia field [2] and rely on complex conceptual models, usually driven by 
sequencing rules [3, 4]. E-learning traditional approaches and paradigms, that 
promote reusability and interoperability, are generally ignored, thus resulting in 
(adaptive) proprietary systems (such as AHA! [5]) and non-portable courseware.  

In this paper an innovative sequencing technique is proposed. E-learning standards 
and learning object paradigm are used in order to promote and ensure interoperability. 
Learning units’ sequences are defined in terms of competencies in such a way that 
sequencing problem can be modeled like a classical Constraint Satisfaction Problem 
(CSP). And Particle Swarm Optimization (PSO) is used to find a suitable sequence 



within the solution space respecting all constraints. In section 2, the problem model 
for competency-based learning object sequencing is presented. Section 3 describes the 
particle swarm optimization approach for solving the problem. Current literature is 
surveyed and several enhancements over the original algorithm are proposed. Section 
4 presents the results obtained from implementing and testing the intelligent algorithm 
in a real world situation (course sequencing in an online Master in Engineering 
program). And finally Section 5 depicts conclusions and future research lines. 

2   Learning Objects and Sequencing 

Within e-learning, the learning object paradigm drives almost all commercial 
initiatives. This paradigm encourages the creation of small reusable learning units 
called Learning Objects (LOs). These LOs are then assembled and/or aggregated in 
order to create greater units of instruction (lessons, courses, etc) [6].  

LOs must be arranged in a suitable sequence previously to its delivery to learners. 
Currently, sequencing is performed by instructors who do not create a personalized 
sequence for each learner, but instead create generic courses, targeting generic learner 
profiles. These sequences are then coded using a standard specification to ensure 
interoperability. Most commonly used specification is SCORM [7]. Courseware that 
conforms SCORM´s Content Aggregation Model  is virtually portable between a wide 
variety of Learning Management Systems (LMSs). Though, SCORM usage hinders 
the automatic LO sequencing due to its system-centered vision. Other metadata-
driven approaches offer better possibilities. Just LO metadata will enable automatic 
sequencing process to be performed. And the appropriate combination of metadata 
and competencies will enable adaptive and automatic content sequencing. 

2.1   Competencies for interoperable Learning Object Sequencing 

Competencies can be formally described as “multidimensional, comprised of 
knowledge, skills and psychological factors that are brought together in complex 
behavioral responses to environmental cues” [8]. Some e-learning trends are trying to 
standardize competency definitions so that they could be interchanged and processed 
by machines. It is worth quoting the following efforts: (1) IMS "Reusable Definition 
of Competency or Educational Objective” (RDCEO) specification [9]. (2) IEEE 
Learning Technology Standards Committee (LTSC) “Standard for Learning 
Technology - Data Model for Reusable Competency Definitions" specification 
(currently an approved standard, pending publishing) [10]. (3) HR-XML Consortium 
"Competencies (Measurable Characteristics) Recommendation" [11]. And, CEN/ISSS 
“A European Model for Learner Competencies” workshop agreement [12]. 

According to RDCEO and IEEE nomenclature, a competency record is called 
‘Reusable Competency Definition’ (RCD). RCDs can be attached to LOs in order to 
define their prerequisites and their learning outcomes. We have used this approach to 
model LO sequences. By defining a competency (or a set of competencies) as a LO 
outcome, and by defining the same competency as the prerequisite for another LO (fig 
1), a constraint between the two LOs is established so that the first one must precede 



the second LO in a valid sequence. Metadata (MD) definitions are attached to LOs, 
and within those definitions references to competencies (prerequisites and learning 
outcomes) are included. LOM [13] records have been used for specifying LO 
metadata. LOM element 9, ‘Classification’, is used to include competency references 
as recommended in [14, 15]. So, LOM element 9.1, ‘Purpose’, is set to ‘prerequisite’ 
or ‘educational objective’ from among the permitted vocabulary for this element; and 
LOM element 9.2 ‘Taxon Path’, including its sub-elements, is used to reference the 
competency (note that more than one Classification element can be included in one 
single LO in order to specify more than one prerequisite and/or learning outcome). 

 

 
Fig 1. LO sequencing through competencies 

3   Competency-based Intelligent Sequencing 

Given a random LOs’ sequence modeled as described above, the question of finding a 
correct sequence can be envisaged as a classical Constraint Satisfaction Problem 
(CSP). In this manner, the solution space comprises all possible sequences (n! will be 
its size, total number of states, for n LOs), and a (feasible) solution is a sequence that 
satisfies all established constraints. LO permutations inside the sequence are the 
operations that define transitions between states. So we face a permutation problem, 
which is a special kind of CSP. 

3.1   Mathematical Characterization 

According to [16] a CSP is triple (X,D,C) where X={x0,x1,…,x(n-1)} is a finite set of 
variables, D is a function that maps each variable to its corresponding domain D(X), 
and Cij  Di × Dj is a set of constraints for each pair of values (i, j) with 0≤i<j<n. To 
solve the CSP is to assign all variables xi in X a value from its domain D, in such a 
way that all constraints are satisfied. A constraint is satisfied when (xi,xj)  C(i,j), and 
then (xi, xj) it is said to be a valid assignment. If (xi, xj)  C(i,j) then the assignment (xi, 
xj) violates the constraint. 

If all solutions from a CSP are permutations of a given tuple then it is said that the 
problem is a permutation CSP or PermutCSP. A PermutCSP is defined by a quadruple 
(X,D,C,P) where (X,D,C) is a CSP and P=<v0, v1, …, vn-1> is a tuple of |X|=n values. 



A solution S of a PermutCSP must be a solution of (X,D,C) and a complete 
permutation of P. 

The learning object sequencing problem could be modeled as a PermutCSP. For 
example, considering five learning objects titled 1,2,3,4 and 5, the PermutCSP which 
only solution is the set S={1,2,3,4,5} (all learning objects must be ordered) can be 
defined as: 
 X = {x1,x2,x3,x4,x5} 
 D(Xi) = {1,2,3,4,5}  xi  X 
 C = { x(i+1)-xi>0 : xi  X, i  {1,2,3,4} } 
 P = <1,2,3,4,5> 

3.2   Particle Swarm Optimization for Learning Object Sequencing 

Particle Swarm Optimization (PSO) is an evolutionary computing optimization 
algorithm. PSO mimics the behavior of social insects like bees. A random initialized 
particles’ population (states) flies through the solution space sharing the information 
they gather. Particles use this information to dynamically adjust their velocity and 
cooperate towards finding a solution. Best solution found: (1) by a particle is called 
pbest, (2) within a set of neighbor particles is called nbest, (3) and within the whole 
swarm is called gbest. PSO have been used to solve a wide variety of problems [17].  

Original PSO [18, 19] is intended to work on continuous spaces. A discrete binary 
version was presented in [20]. This version uses the concept of velocity as a 
probability of changing a bit state from zero to one or vice versa. A version that deals 
with permutation problems was introduced in [21]. In this latter version, velocity is 
computed for each element in the sequence, and this velocity is also used as a 
probability of changing the element, but in this case, the element is swapped 
establishing its value to the value in the same position in nbest. The mutation concept 
was also introduced in the permutPSO version; after updating each particle´s velocity, 
if the current particle is equal to nbest then two randomly selected positions from the 
particle sequence are swapped. In [21] is demonstrated that permutation PSO 
outperforms genetic algorithms for the N-Queens problem. So we decided to try PSO, 
before any other technique, for LO sequencing problem. Discrete full-informed 
version [22] of the PSO was implemented in order to test its performance for solving 
the LO sequencing problem. But several other issues concerning design and 
implementation of the PSO were decided. In the rest of this section each of these 
issues is discussed and the selection criteria are explained. 

 
Fitness Function. It is critical to choose a function that accurately represents the 
goodness of a solution [23]. A standard penalty function is a common choice for 
CSPs. We propose the following formula: 

 
(1) 

where s is the LO sequence, n is the number of LOs in s, s[i] is the i-th LO in the 
sequence, and prn is the number of prerequisites in a LO not delivered by their 



predecessors in the sequence. prn is computed using a function that recursively 
process all outcomes delivered by previous LOs in the sequence, checking for each 
prerequisite accomplishment.  

The fitness value of a feasible solution should be zero, so PSO tries to minimize 
this function. When a solution fitness function call returns 0, the operation of the 
algorithm is stopped returning the current state (solution). 

 
PSO Parameters. One important advantage of PSO is that it uses a relative small 
number of parameters compared with other techniques like genetic algorithms. 
However, much literature on PSO parameter subject has been written. Among it, Hu 
et. al. [21] established the set of parameters so that PSO works properly for solving 
permutation problems. We decided to take their recommendations, and parameters 
were set as follows: Learning rates (c1, c2) are set to 1.49445 and the inertial weight 
(w) is computed according to the following equation: 

w = 0.5 + (rnd() / 2) (2) 

Population size was set to 20 particles and the fully informed version of PSO was 
used. The number of iterations was also defined as an input parameter. It was used as 
a measurement of the number of calls to the fitness function that were allowed to find 
a solution. It should be noted that some problems may not have a solution, so number 
of iterations setting can avoid infinite computing 

 
Proposed improvements. During the initial agent development we found that in 
some situations the algorithm got stuck in a local minimum, and it was not able to 
find a feasible solution. For that reason, two enhancements were envisaged in order to 
improve algorithm performance for LO sequencing. First improvement is to change 
pbest and gbest values when an equal or best fitness value is found by a particle. In 
other words all particle`s comparisons concerning pbest and gbest against the actual 
state were set to less or equal (<=). Original algorithm determines that pbest and gbest 
only change if a better state is found (comparisons <). Second improvement is to 
randomly decide whether the permutation of a particle’s position was performed from 
gbest or from pbest (p=0.5). In the original version all permutations are done 
regarding gbest. These changes resemble to be quite logical ways for increasing 
particles’ mobility and for avoiding quick convergence to local minimums. 

Finally, when the implementation was finished and test suites were being launched 
a deeper knowledge of the solution space was acquired by the authors and an 
additional improvement was introduced due to the following fact: It could be 
observed that in huge solution spaces some velocity values tend to grow indefinably 
and fast in one direction. So that these ‘great’ values reduce the probability assigned 
to other values from moving towards gbest when normalized velocity is computed. 
This problem was avoided introducing a special function that limits the velocity of 
each value to a maximum value. It seems evident that this value must not be a fixed 
parameter and that it must depend on the number of learning objects that comprise the 
sequence. Initially, it was decided to set the velocity limit equal to the number of LOs 
in the sequence. Therefore, each velocity value of the normalized velocity vector 
(Vnorm) is not allowed to grow beyond a maximum value equal to the number of 
learning objects in the sequence. This improvement also intends to introduce a 



massive movement towards gbest when the number of iterations increase and all the 
velocity values reach that limit, so that the region close to gbest is explored. It should 
be noted that mutation ensures that these particles are close to but not equal to gbest 
in order to not lose computational resources exploring the same solution repeatedly. 

The following code presents the final algorithm code with all these improvements. 
 
initialize the population 
do { 
  for each particle { 
    calculate fitness value 
    if (new fitness <= gBest) 
      set gbest = currentValue 
    if (new fitness <= pBest) 
      set pbest = currentValue 
    Calculate new velocity as 
      Vnew = w × Vold+ (c1×rnd()×(pbest-currentValue)) 
                   + (c2×rnd()×(gbest-currentValue)) 
    Normalize Velocity as 
      Vnorm = Vnew/max(Vnew) 
    Check Vnorm limit 
      for each v[i] in  Vnorm { 
        if(v[i] > length(X)) 
          v[i] = length(X) 
      } 
    Update particle value 
      for each v[i] in Vnorm { 
          if(rand() < 0.5) 
            swap currentValue[i] for  
              currentValue[indexOf(pBest, currentValue[i] 
          else 
            swap currentValue[i] for  
              currentValue[indexOf(gBest, currentValue[i] 
      } 
    Check Mutation 
      if (currentValue = gBest) swap two  
        random positions from currentValue 
  } 
} until termination criterion is met 

 
where currentValue is a vector of n learning objects representing the current 

position of the particle (state or solution being computed), and, Vnew, Vold and Vnorm are 
vectors of n positions representing different velocities required by the algorithm. 

4   Results 

The PSO algorithm for LOs sequencing described above was implemented using 
Microsoft Visual Studio C#. We wanted to test its performance in a real scenario so a 
problem concerning course sequencing for a Master in Engineering (M.Eng.) program 
in our institution was chosen for testing. The (web engineering) M.Eng, program 
comprises 23 courses (subjects) grouped in:  
• Basic courses (7). All of them must be completed before taking any other kind 

of course. There may be restrictions between two basic courses, for example 
‘HTML’ course must precede ‘Javascript’ course, 

• ‘Itinerary’ courses (5) that must be taken in a fixed ordered sequence. 



• Compulsory courses (5). There may be restrictions between two compulsory 
courses. 

• Elective courses (6). Additional constraints regarding any other course may be 
set. 

All courses have a (expected) learning time that range from 30 to 50 hours. They 
are delivered online using a LMS [24] and they have their metadata records. 
Competency records were created to specify LOs’ restrictions, and LOs’ metadata 
records were updated to reflect prerequisite and learning outcome competencies as 
detailed in section 2. A feasible sequence must have 23 LOs satisfying all constraints. 
The graph showing all LOs and constraints is very complex, and so it is to calculate 
the exact number of feasible solutions. Just estimations have been used. We have 
estimated that the relation between feasible solutions and total solutions order is 
8,9x1012. This number reflects the number of states (non-feasible solutions) for each 
feasible solution. 

Once the problem was established, PSO agent parameters were set to test four 
different configurations that reflect all possibilities concerning the first two proposed 
improvements introduced in Section 3. These configurations are: 
• Configuration 1. Comparisons for changing particle pbest and gbest values are 

set to strictly less (<). Permutation of the particle position is performed 
regarding gbest. These are the original settings. 

• Configuration 2. Comparisons set to less or equal (<=). All permutations are 
performed from gbest.  

• Configuration 3. Comparison set to strictly less (<). Permutation of the particle 
position is randomly selected from gbest or from pbest. 

• Configuration 4. . Comparison set to less o equal (<=). Permutation of the 
particle position is randomly selected from gbest or from pbest. 

Figure 2 shows the results for the four configurations. Each configuration was run 
100 times and the results represent the mean fitness value evolution. From the results, 
it can be seen that all configurations converge to a feasible solution, but configuration 
1 (original settings) outperform all others. Configurations 1 and 2 show similar 
performance but configuration 1 reaches before any other a 100% success ratio in 100 
runs. 

All these tests were run checking the normalized velocity limit (third proposed 
improvement in Section 3.2). In order to test the real performance of this 
improvement, the four configuration sets where run without performing the velocity 
check. Table 1 compares the results obtained in both cases by showing the mean 
values required for 100 runs to reach a solution. As it can be shown velocity check 
dramatically improves performance and original settings (concerning the other two 
improvements) also displays better performance for both cases. 

The tested scenario may seem to have many feasible solutions that would make 
doubtful PSO performance in more ‘challenging’ scenarios, so PSO agent was tested 
in ‘more difficult’ situations. Test sequences of 5, 10, 20, 30, 40, 50, 60, 75 and 100 
LOs with only one feasible solution were designed. Each test suite was run 100 times 
with and without the velocity check and mean values were computed. Figure 3 shows 
the results and it supports the argument that velocity control improves agent 
performance as the solution space size grows. It could also be inferred that the 
proposed PSO agent handles reasonably combinatorial explosion for this particular 



problem. It should be noted that while the number of learning objects grows linearly 
the size of the solution space grows exponentially. 

 

 
Fig 2. PSO Configurations performance comparison 

Table 1.  Mean number of fitness evaluations for each configuration with and without 
normalized velocity check 

Configuration μ Fitness Evaluations 
without Velocity Check 

μ Fitness Evaluations 
with Velocity Check 

Conf 1. comp <, permut gbest (original) 1158 641 
Conf 2. comp <=, permut gbest 1237 645 
Conf 3. comp <, permut gbest/pbest 1817 1008 
Conf 4. comp <=, permut gbest/pbest 1412 975 

5   Conclusions and Future Work 

The purpose of the study was to design, develop and test a PSO agent that performs 
automatic LO sequencing through competencies. The PSO for permutation problem 
have been extended for the LO sequencing problem. Testing three envisaged 
improvements was also performed. Results show that: (1) PSO succeeds in solving 
the problem, (2) the original configuration is the best one, and (3) velocity check for 
limiting the normalized velocity of each particle value improves performance in the 
tested scenarios. 

 



 
Fig 3. Number of fitness evaluations required for different number of LOs 

Further implications arise from the model proposal (Section 2): (1) E-learning 
standards are promoted. XML records and bindings are used, so elements will be 
easily interchanged and processed by compliant systems. (2) Instructor’s role is 
automated reducing costs. Sequencing process works even in complex scenarios were 
humans face difficulties. And (3), the model can be extended to an automated 
intelligent system for building personalized e-learning experiences. But this third 
implication is more appertained to future work. Sequencing process can be 
complemented with gap analysis process and competency learner modeling 
techniques to build personalized courses. This courses could also be SCORM [7] 
compliant, so they could be imported to current LMSs. 
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