
Particle Swarms for Competency-based Curriculum
Sequencing

Luis de-Marcos1 , José-Javier Martínez1, José-Antonio Gutiérrez1

1 Computer Science Department. University of Alcalá.

Ctra. Barcelona km 33.6. Alcalá de Henares, Spain
{luis.demarcos, josej.martinez, jantonio.gutierrez}@uah.es

Abstract. In e-learning initiatives content creators are usually required to
arrange a set of learning resources in order to present them in a comprehensive
way to the learner. Course materials are usually divided into reusable chunks
called Learning Objects (LOs) and the ordered set of LOs is called sequence, so
the process is called LO sequencing. In this paper an intelligent agent that
performs the LO sequencing process is presented. Metadata and competencies
are used to define relations between LOs so that the sequencing problem can be
characterized as a Constraint Satisfaction Problem (CSP) and artificial
intelligent techniques can be used to solve it. A Particle Swarm Optimization
(PSO) agent is proposed, built, tuned and tested. Results show that the agent
succeeds in solving the problem and that it handles reasonably combinatorial
explosion inherent to this kind of problems.

Keywords: e-Learning, Learning Object Sequencing, Swarm Intelligence,
Particle Swarm Optimization (PSO)

1 Introduction

Brusilovsky [1] envisages Web-based adaptive courses and systems as being able to
achieve some important features including the ability to substitute teachers and other
students support, and the ability to adapt (and so be used in) to different environments
by different users (learners). These systems may use a wide variety of techniques and
methods. Among them, curriculum sequencing technology “is to provide the students
with the most suitable individually planned sequence of knowledge units to learn and
sequence the learning tasks … to work with”. These methods derive from adaptive
hypermedia field [2] and rely on complex conceptual models, usually driven by
sequencing rules [3, 4]. E-learning traditional approaches and paradigms, that
promote reusability and interoperability, are generally ignored, thus resulting in
(adaptive) proprietary systems (such as AHA! [5]) and non-portable courseware.

In this paper an innovative sequencing technique is proposed. E-learning standards
and learning object paradigm are used in order to promote and ensure interoperability.
Learning units’ sequences are defined in terms of competencies in such a way that
sequencing problem can be modeled like a classical Constraint Satisfaction Problem
(CSP). And Particle Swarm Optimization (PSO) is used to find a suitable sequence

within the solution space respecting all constraints. In section 2, the problem model
for competency-based learning object sequencing is presented. Section 3 describes the
particle swarm optimization approach for solving the problem. Current literature is
surveyed and several enhancements over the original algorithm are proposed. Section
4 presents the results obtained from implementing and testing the intelligent algorithm
in a real world situation (course sequencing in an online Master in Engineering
program). And finally Section 5 depicts conclusions and future research lines.

2 Learning Objects and Sequencing

Within e-learning, the learning object paradigm drives almost all commercial
initiatives. This paradigm encourages the creation of small reusable learning units
called Learning Objects (LOs). These LOs are then assembled and/or aggregated in
order to create greater units of instruction (lessons, courses, etc) [6].

LOs must be arranged in a suitable sequence previously to its delivery to learners.
Currently, sequencing is performed by instructors who do not create a personalized
sequence for each learner, but instead create generic courses, targeting generic learner
profiles. These sequences are then coded using a standard specification to ensure
interoperability. Most commonly used specification is SCORM [7]. Courseware that
conforms SCORM´s Content Aggregation Model is virtually portable between a wide
variety of Learning Management Systems (LMSs). Though, SCORM usage hinders
the automatic LO sequencing due to its system-centered vision. Other metadata-
driven approaches offer better possibilities. Just LO metadata will enable automatic
sequencing process to be performed. And the appropriate combination of metadata
and competencies will enable adaptive and automatic content sequencing.

2.1 Competencies for interoperable Learning Object Sequencing

Competencies can be formally described as “multidimensional, comprised of
knowledge, skills and psychological factors that are brought together in complex
behavioral responses to environmental cues” [8]. Some e-learning trends are trying to
standardize competency definitions so that they could be interchanged and processed
by machines. It is worth quoting the following efforts: (1) IMS "Reusable Definition
of Competency or Educational Objective” (RDCEO) specification [9]. (2) IEEE
Learning Technology Standards Committee (LTSC) “Standard for Learning
Technology - Data Model for Reusable Competency Definitions" specification
(currently an approved standard, pending publishing) [10]. (3) HR-XML Consortium
"Competencies (Measurable Characteristics) Recommendation" [11]. And, CEN/ISSS
“A European Model for Learner Competencies” workshop agreement [12].

According to RDCEO and IEEE nomenclature, a competency record is called
‘Reusable Competency Definition’ (RCD). RCDs can be attached to LOs in order to
define their prerequisites and their learning outcomes. We have used this approach to
model LO sequences. By defining a competency (or a set of competencies) as a LO
outcome, and by defining the same competency as the prerequisite for another LO (fig
1), a constraint between the two LOs is established so that the first one must precede

the second LO in a valid sequence. Metadata (MD) definitions are attached to LOs,
and within those definitions references to competencies (prerequisites and learning
outcomes) are included. LOM [13] records have been used for specifying LO
metadata. LOM element 9, ‘Classification’, is used to include competency references
as recommended in [14, 15]. So, LOM element 9.1, ‘Purpose’, is set to ‘prerequisite’
or ‘educational objective’ from among the permitted vocabulary for this element; and
LOM element 9.2 ‘Taxon Path’, including its sub-elements, is used to reference the
competency (note that more than one Classification element can be included in one
single LO in order to specify more than one prerequisite and/or learning outcome).

Fig 1. LO sequencing through competencies

3 Competency-based Intelligent Sequencing

Given a random LOs’ sequence modeled as described above, the question of finding a
correct sequence can be envisaged as a classical Constraint Satisfaction Problem
(CSP). In this manner, the solution space comprises all possible sequences (n! will be
its size, total number of states, for n LOs), and a (feasible) solution is a sequence that
satisfies all established constraints. LO permutations inside the sequence are the
operations that define transitions between states. So we face a permutation problem,
which is a special kind of CSP.

3.1 Mathematical Characterization

According to [16] a CSP is triple (X,D,C) where X={x0,x1,…,x(n-1)} is a finite set of
variables, D is a function that maps each variable to its corresponding domain D(X),
and Cij Di × Dj is a set of constraints for each pair of values (i, j) with 0≤i<j<n. To
solve the CSP is to assign all variables xi in X a value from its domain D, in such a
way that all constraints are satisfied. A constraint is satisfied when (xi,xj) C(i,j), and
then (xi, xj) it is said to be a valid assignment. If (xi, xj) C(i,j) then the assignment (xi,
xj) violates the constraint.

If all solutions from a CSP are permutations of a given tuple then it is said that the
problem is a permutation CSP or PermutCSP. A PermutCSP is defined by a quadruple
(X,D,C,P) where (X,D,C) is a CSP and P=<v0, v1, …, vn-1> is a tuple of |X|=n values.

A solution S of a PermutCSP must be a solution of (X,D,C) and a complete
permutation of P.

The learning object sequencing problem could be modeled as a PermutCSP. For
example, considering five learning objects titled 1,2,3,4 and 5, the PermutCSP which
only solution is the set S={1,2,3,4,5} (all learning objects must be ordered) can be
defined as:
 X = {x1,x2,x3,x4,x5}
 D(Xi) = {1,2,3,4,5} xi X
 C = { x(i+1)-xi>0 : xi X, i {1,2,3,4} }
 P = <1,2,3,4,5>

3.2 Particle Swarm Optimization for Learning Object Sequencing

Particle Swarm Optimization (PSO) is an evolutionary computing optimization
algorithm. PSO mimics the behavior of social insects like bees. A random initialized
particles’ population (states) flies through the solution space sharing the information
they gather. Particles use this information to dynamically adjust their velocity and
cooperate towards finding a solution. Best solution found: (1) by a particle is called
pbest, (2) within a set of neighbor particles is called nbest, (3) and within the whole
swarm is called gbest. PSO have been used to solve a wide variety of problems [17].

Original PSO [18, 19] is intended to work on continuous spaces. A discrete binary
version was presented in [20]. This version uses the concept of velocity as a
probability of changing a bit state from zero to one or vice versa. A version that deals
with permutation problems was introduced in [21]. In this latter version, velocity is
computed for each element in the sequence, and this velocity is also used as a
probability of changing the element, but in this case, the element is swapped
establishing its value to the value in the same position in nbest. The mutation concept
was also introduced in the permutPSO version; after updating each particle´s velocity,
if the current particle is equal to nbest then two randomly selected positions from the
particle sequence are swapped. In [21] is demonstrated that permutation PSO
outperforms genetic algorithms for the N-Queens problem. So we decided to try PSO,
before any other technique, for LO sequencing problem. Discrete full-informed
version [22] of the PSO was implemented in order to test its performance for solving
the LO sequencing problem. But several other issues concerning design and
implementation of the PSO were decided. In the rest of this section each of these
issues is discussed and the selection criteria are explained.

Fitness Function. It is critical to choose a function that accurately represents the
goodness of a solution [23]. A standard penalty function is a common choice for
CSPs. We propose the following formula:

(1)

where s is the LO sequence, n is the number of LOs in s, s[i] is the i-th LO in the
sequence, and prn is the number of prerequisites in a LO not delivered by their

predecessors in the sequence. prn is computed using a function that recursively
process all outcomes delivered by previous LOs in the sequence, checking for each
prerequisite accomplishment.

The fitness value of a feasible solution should be zero, so PSO tries to minimize
this function. When a solution fitness function call returns 0, the operation of the
algorithm is stopped returning the current state (solution).

PSO Parameters. One important advantage of PSO is that it uses a relative small
number of parameters compared with other techniques like genetic algorithms.
However, much literature on PSO parameter subject has been written. Among it, Hu
et. al. [21] established the set of parameters so that PSO works properly for solving
permutation problems. We decided to take their recommendations, and parameters
were set as follows: Learning rates (c1, c2) are set to 1.49445 and the inertial weight
(w) is computed according to the following equation:

w = 0.5 + (rnd() / 2) (2)

Population size was set to 20 particles and the fully informed version of PSO was
used. The number of iterations was also defined as an input parameter. It was used as
a measurement of the number of calls to the fitness function that were allowed to find
a solution. It should be noted that some problems may not have a solution, so number
of iterations setting can avoid infinite computing

Proposed improvements. During the initial agent development we found that in
some situations the algorithm got stuck in a local minimum, and it was not able to
find a feasible solution. For that reason, two enhancements were envisaged in order to
improve algorithm performance for LO sequencing. First improvement is to change
pbest and gbest values when an equal or best fitness value is found by a particle. In
other words all particle`s comparisons concerning pbest and gbest against the actual
state were set to less or equal (<=). Original algorithm determines that pbest and gbest
only change if a better state is found (comparisons <). Second improvement is to
randomly decide whether the permutation of a particle’s position was performed from
gbest or from pbest (p=0.5). In the original version all permutations are done
regarding gbest. These changes resemble to be quite logical ways for increasing
particles’ mobility and for avoiding quick convergence to local minimums.

Finally, when the implementation was finished and test suites were being launched
a deeper knowledge of the solution space was acquired by the authors and an
additional improvement was introduced due to the following fact: It could be
observed that in huge solution spaces some velocity values tend to grow indefinably
and fast in one direction. So that these ‘great’ values reduce the probability assigned
to other values from moving towards gbest when normalized velocity is computed.
This problem was avoided introducing a special function that limits the velocity of
each value to a maximum value. It seems evident that this value must not be a fixed
parameter and that it must depend on the number of learning objects that comprise the
sequence. Initially, it was decided to set the velocity limit equal to the number of LOs
in the sequence. Therefore, each velocity value of the normalized velocity vector
(Vnorm) is not allowed to grow beyond a maximum value equal to the number of
learning objects in the sequence. This improvement also intends to introduce a

massive movement towards gbest when the number of iterations increase and all the
velocity values reach that limit, so that the region close to gbest is explored. It should
be noted that mutation ensures that these particles are close to but not equal to gbest
in order to not lose computational resources exploring the same solution repeatedly.

The following code presents the final algorithm code with all these improvements.

initialize the population
do {
 for each particle {
 calculate fitness value
 if (new fitness <= gBest)
 set gbest = currentValue
 if (new fitness <= pBest)
 set pbest = currentValue
 Calculate new velocity as
 Vnew = w × Vold+ (c1×rnd()×(pbest-currentValue))
 + (c2×rnd()×(gbest-currentValue))
 Normalize Velocity as
 Vnorm = Vnew/max(Vnew)
 Check Vnorm limit
 for each v[i] in Vnorm {
 if(v[i] > length(X))
 v[i] = length(X)
 }
 Update particle value
 for each v[i] in Vnorm {
 if(rand() < 0.5)
 swap currentValue[i] for
 currentValue[indexOf(pBest, currentValue[i]
 else
 swap currentValue[i] for
 currentValue[indexOf(gBest, currentValue[i]
 }
 Check Mutation
 if (currentValue = gBest) swap two
 random positions from currentValue
 }
} until termination criterion is met

where currentValue is a vector of n learning objects representing the current

position of the particle (state or solution being computed), and, Vnew, Vold and Vnorm are
vectors of n positions representing different velocities required by the algorithm.

4 Results

The PSO algorithm for LOs sequencing described above was implemented using
Microsoft Visual Studio C#. We wanted to test its performance in a real scenario so a
problem concerning course sequencing for a Master in Engineering (M.Eng.) program
in our institution was chosen for testing. The (web engineering) M.Eng, program
comprises 23 courses (subjects) grouped in:
• Basic courses (7). All of them must be completed before taking any other kind

of course. There may be restrictions between two basic courses, for example
‘HTML’ course must precede ‘Javascript’ course,

• ‘Itinerary’ courses (5) that must be taken in a fixed ordered sequence.

• Compulsory courses (5). There may be restrictions between two compulsory
courses.

• Elective courses (6). Additional constraints regarding any other course may be
set.

All courses have a (expected) learning time that range from 30 to 50 hours. They
are delivered online using a LMS [24] and they have their metadata records.
Competency records were created to specify LOs’ restrictions, and LOs’ metadata
records were updated to reflect prerequisite and learning outcome competencies as
detailed in section 2. A feasible sequence must have 23 LOs satisfying all constraints.
The graph showing all LOs and constraints is very complex, and so it is to calculate
the exact number of feasible solutions. Just estimations have been used. We have
estimated that the relation between feasible solutions and total solutions order is
8,9x1012. This number reflects the number of states (non-feasible solutions) for each
feasible solution.

Once the problem was established, PSO agent parameters were set to test four
different configurations that reflect all possibilities concerning the first two proposed
improvements introduced in Section 3. These configurations are:
• Configuration 1. Comparisons for changing particle pbest and gbest values are

set to strictly less (<). Permutation of the particle position is performed
regarding gbest. These are the original settings.

• Configuration 2. Comparisons set to less or equal (<=). All permutations are
performed from gbest.

• Configuration 3. Comparison set to strictly less (<). Permutation of the particle
position is randomly selected from gbest or from pbest.

• Configuration 4. . Comparison set to less o equal (<=). Permutation of the
particle position is randomly selected from gbest or from pbest.

Figure 2 shows the results for the four configurations. Each configuration was run
100 times and the results represent the mean fitness value evolution. From the results,
it can be seen that all configurations converge to a feasible solution, but configuration
1 (original settings) outperform all others. Configurations 1 and 2 show similar
performance but configuration 1 reaches before any other a 100% success ratio in 100
runs.

All these tests were run checking the normalized velocity limit (third proposed
improvement in Section 3.2). In order to test the real performance of this
improvement, the four configuration sets where run without performing the velocity
check. Table 1 compares the results obtained in both cases by showing the mean
values required for 100 runs to reach a solution. As it can be shown velocity check
dramatically improves performance and original settings (concerning the other two
improvements) also displays better performance for both cases.

The tested scenario may seem to have many feasible solutions that would make
doubtful PSO performance in more ‘challenging’ scenarios, so PSO agent was tested
in ‘more difficult’ situations. Test sequences of 5, 10, 20, 30, 40, 50, 60, 75 and 100
LOs with only one feasible solution were designed. Each test suite was run 100 times
with and without the velocity check and mean values were computed. Figure 3 shows
the results and it supports the argument that velocity control improves agent
performance as the solution space size grows. It could also be inferred that the
proposed PSO agent handles reasonably combinatorial explosion for this particular

problem. It should be noted that while the number of learning objects grows linearly
the size of the solution space grows exponentially.

Fig 2. PSO Configurations performance comparison

Table 1. Mean number of fitness evaluations for each configuration with and without
normalized velocity check

Configuration μ Fitness Evaluations
without Velocity Check

μ Fitness Evaluations
with Velocity Check

Conf 1. comp <, permut gbest (original) 1158 641
Conf 2. comp <=, permut gbest 1237 645
Conf 3. comp <, permut gbest/pbest 1817 1008
Conf 4. comp <=, permut gbest/pbest 1412 975

5 Conclusions and Future Work

The purpose of the study was to design, develop and test a PSO agent that performs
automatic LO sequencing through competencies. The PSO for permutation problem
have been extended for the LO sequencing problem. Testing three envisaged
improvements was also performed. Results show that: (1) PSO succeeds in solving
the problem, (2) the original configuration is the best one, and (3) velocity check for
limiting the normalized velocity of each particle value improves performance in the
tested scenarios.

Fig 3. Number of fitness evaluations required for different number of LOs

Further implications arise from the model proposal (Section 2): (1) E-learning
standards are promoted. XML records and bindings are used, so elements will be
easily interchanged and processed by compliant systems. (2) Instructor’s role is
automated reducing costs. Sequencing process works even in complex scenarios were
humans face difficulties. And (3), the model can be extended to an automated
intelligent system for building personalized e-learning experiences. But this third
implication is more appertained to future work. Sequencing process can be
complemented with gap analysis process and competency learner modeling
techniques to build personalized courses. This courses could also be SCORM [7]
compliant, so they could be imported to current LMSs.

Acknowledgements. This research is co-funded by the University of Alcalá FPI

research staff education program and by the Spanish Ministry of Industry, Tourism
and Commerce Plan Avanza program (grant PAV-070000-2007-103)

References

1. Brusilovsky, P.: Adaptive and Intelligent Technologies for Web-based Education.
Künstliche Intelligenz, Special Issue on Intelligent Systems and Teleteaching 4 (1999) 19-25

2. Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Modeling and User-
Adapted Interaction 6 (1996) 87-129

3. De Bra, P., Houben, G.-J., Wu, H.: AHAM: a Dexter-based reference model for adaptive
hypermedia. Proceedings of the tenth ACM Conference on Hypertext and hypermedia.
ACM Press, Darmstadt, Germany (1999)

4. Karampiperis, P.: Automatic Learning Object Selection and Sequencing in Web-Based
Intelligent Learning Systems. In: Zongmin, M. (ed.): Web-Based Intelligent E-Learning
Systems: Technologies and Applications. Idea Group, London. UK. (2006)

5. De Bra, P., Aerts, A., Berden, B., Lange, B.d., Rousseau, B., Santic, T., Smits, D., Stash, N.:
AHA! The adaptive hypermedia architecture. Proceedings of the fourteenth ACM
conference on Hypertext and hypermedia. ACM Press, Nottingham, UK (2003)

6. Wiley, D.A.: Connecting learning objects to instructional design theory: A definition, a
metaphor, and a taxonomy. In: Wiley, D.A. (ed.): The Instructional Use of Learning Objects
(2000)

7. ADL: Shareable Content Object Reference Model (SCORM). The SCORM 2004 Overview.
Advanced Distributed Learning (ADL) Initiative (2004)

8. Wilkinson, J.: A matter of life or death: re-engineering competency-based education through
the use of a multimedia CD-ROM. IEEE International Conference on Advanced Learning
Technologies, 2001. Proceedings (2001) 205-208

9. IMS: Reusable Definition of Competency or Educational Objective - Information Model.
IMS Global Learning Consortium (2002)

10. IEEE: Learning Technology Standards Committee (LTSC). Draft Standard for
LearningTechnology - Data Model for Reusable Competency Definitions. IEEE (2007)

11. HR-XML: Competencies (Measurable Characteristics) Recommendation. HR-XML
Consortium (2006)

12. CEN/ISSS: European Model for Learner Competencies. Comité Européen de Normalisation
/ Information Society Standardization System (CEN/ISSS) (2006)

13. IEEE: Learning Technology Standards Committee (LTSC). Learning Object Metadata
(LOM). 1484.12.1. IEEE (2002)

14. IEEE: Learning Technology Standards Committee (LTSC). Standard for Learning
Technology—Extensible Markup Language (XML) Schema Definition Language Binding
for Learning Object Metadata. 1484.12.3. IEEE (2005)

15. IMS: Reusable Definition of Competency or Educational Objective - Best Practice and
Implementation Guide. IMS Global Learning Consortium (2002)

16. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London (1993)
17. Hinchey, M.G., Sterritt, R., Rouff, C.: Swarms and Swarm Intelligence. Computer 40 (2007)

111-113
18. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. Proceedings of the

Sixth International Symposium on Micro Machine and Human Science. MHS '95., Nagoya,
Japan (1995) 39-43

19. Kennedy, J., Eberhart, R.: Particle swarm optimization. Proceedings., IEEE International
Conference on Neural Networks., Vol. 4, Perth, WA, Australia (1995) 1942-1948 vol.1944

20. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. 1997
IEEE International Conference on Systems, Man, and Cybernetics. 'Computational
Cybernetics and Simulation'. Vol. 5 (1997) 4104-4108

21. Xiaohui, H., Eberhart, R.C., Yuhui, S.: Swarm intelligence for permutation optimization: a
case study of n-queens problem. Proceedings of the 2003 IEEE Swarm Intelligence
Symposium. IEEE Press, Indianapolis, USA (2003) 243-246

22. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe
better. Evolutionary Computation, IEEE Transactions on 8 (2004) 204-210

23. Robinson, J., Rahmat-Samii, Y.: Particle swarm optimization in electromagnetics. Antennas
and Propagation, IEEE Transactions on 52 (2004) 397-407

24. Barchino, R., Gutiérrez, J.M., Otón, S.: An Example of Learning Management System. In:
Isaías, P., Baptista, M., Palma, A. (eds.): IADIS Virtual Multi Conference on Computer
Science and Information Systems (MCCSIS 2005), Vol. 1. IADIS Press, Virtual (2005) 140-
141

