@5

A New Sequencing Method in Web-Based Education

Luis de-Marcos, José J. Martinez, José A. Gutiérrez, Roberto Barchino, José M. Gutiérrez

Abstract— The process of creating e-learning contents using
reusable learning objects (LOs) can be broken down in two
sub-processes: LOs finding and LO sequencing. Sequencing is
usually performed by instructors, who create courses targeting
generic profiles rather than personalized materials. This paper
proposes an evoluticnary approach to automate this latter
problem while, simultaneously, encourages reusability and
interoperability by promoting standards employment. A model
that enables automated curriculum sequencing is proposed. By
means of interoperable competency records and LO metadata,
the sequencing problem is turned into a constraint satisfaction
problem. Particle Swarm Optimization (PSO) and Genetic
Algorithm (GA) agents are designed, built and tested in real
and simulated scenarios. Results show both approaches succeed
in all test cases, and that they handle reasonably computational
complexity inherent to this problem, but PSO approach
outperforms GA.

I. INTRODUCTION

rusilovsky [1] envisaged Web-based adaptive courses

and systems as being able to achieve some important
features including the ability to substitute teachers and other
students support, and the ability to adapt (and so be used in)
to different environments by different users (learners). These
systems may use a wide variety of techniques and methods.
Among them, curriculum sequencing technology is “to
provide the student with the most suitable individually
planned sequence of knowledge units to learn and sequence
of learning tasks [...] to work with”. These methods derive
from adaptive hypermedia field [2] and rely on complex
conceptual models, usually driven by sequencing rules [3,
4]. E-learning traditional approaches and paradigms, that
promote reusability and interoperability, are generally
ignored, thus resulting in (adaptive) proprietary systems
(such as AHA! [5]) and non-portable courseware. But e-
learning approaches also expose its own problems. They
lack of flexibility, which is in increasing demand. “In
offering flexible [e-learning] programmes, providers
essentially rule out the possibility of having instructional

Manuscript received November 14, 2008. This work was supported in
part by: (1) the University of Alcala FPI research staff education program,
(2) the Spanish Ministry of Industry, Tourism and Commerce PROFIT
program (grants FIT-350200-2007-6, FIT-350101-2007-9, FIT-020100-
2008-23, TSI-020302-2008-11) and Plan Avanza program (grant PAV-
070000-2007-103), and (3) Castilla-La Mancha autonomous community
under the educational innovation cooperation program (grant EM2007-004).
Authors also want to acknowledge support from the TIFyC research group.

Luis de Marcos is with the Computer Science Department, University of
Alcald, Madrid, Spain (comresponding author to provide phone:
34918856651; e-mail: luis.demarcos@uah.es).

José J. Martinez, José A. Gutiérrez, Roberto Barchino, José M. Gutiérrez
are with the Computer Science Department, University of Alcala, Madrid,
Spain (e-mails:” josej.martinez@uah.es; jantonio.gutierrez@uah.es;
Roberto.barchino@uah.es; josem.gutierrez@uah.es).

designers set fixed paths through the curriculum” [6]. But
offering personalized paths to each learner will impose
prohibitive costs to these providers, because the sequencing
process is usually performed by instructors. So, “it is critical
to automate the instructor’s role in online training, in order
to reduce the cost of high quality learning” [7] and, among
these roles, sequencing seems to be a priority.

In this paper an innovative sequencing technique that
automates teacher’s role is proposed. E-Learning standards
and learning object paradigm are used in order to promote
and ensure interoperability. Learning units’ sequences are
defined in terms of competencies in such a way that
sequencing problem can be modeled like a classical
Constraint Satisfaction Problem (CSP) and Artificial
Intelligent (AI) approaches could be used to solve it. Genetic
Algorithms (GAs) and Particle Swarm Optimization (PSO)
are Al techniques that have shown a good performance for
solving a wide variety of problems. So, GAs and PSO are
used to find a suitable sequence within the solution space
respecting the constraints. In section 2, the conceptual model
for competency-based learning object sequencing is
presented. Section 3 describes both evolutionary approaches
(PSO and GA) for solving the problem. Section 4 presents
the results obtained when agents are tested in simulated
scenarios as well as in a real world situation (course
sequencing in an online Master in Engineering program).
And finally, in Section 5 conclusions are summarized and
future research lines are presented.

II. COMPETENCY-BASED SEQUENCING

Within e-learning, the learning object paradigm drives
almost all initiatives. This paradigm encourages the creation
of small reusable learning units called Learning Objects
(LOs). These LOs are then assembled and/or aggregated in
order to create greater units of instruction (lessons, courses,
etc) [8]. ,

LOs must be arranged in a suitable sequence previously to
its delivery to learners. Currently, sequencing is performed
by instructors who do not create a personalized sequence for
each learner, but instead they create generic courses, which
are targeted to generic learner profiles. Then, these
sequences are coded using a standard specification to ensure
interoperability. Most commonly used specification is
SCORM [9] (Shareable Content Object Reference Model).
Courseware that conforms SCORM's Content Aggregation
Model [10] is virtually portable among a wide variety of
Learning Management Systems (LMSs). Though, SCORM
usage hinders the automatic LO sequencing due to its
system-centered view. Other metadata-driven approaches

978-1-4244-2959-2/09/$25.00 © 2009 IEEE 3219

[

offer better possibilities i.e. just LO metadata will enable
automatic sequencing process to be performed, and the
appropriate combination of metadata and competencies will
allow personalized and automatic content sequencing.

A. Competencies for Interoperable Learning Object

Sequencing

Competencies can be formally described as
“multidimensional, comprised of knowledge, skills and
psychological factors that are brought together in complex
behavioral responses to environmental cues” [11]. Some e-
learning trends are trying to standardize competency
definitions so that they could be interchanged and processed
by machines. It is worth quoting the following efforts:

e IMS "Reusable Definition of Competency or
Educational Objective” (RDCEO) specification [12],

e IEEE Leaming Technology Standards Committee
(LTSC) “Standard for Learning Technology - Data
Model for Reusable Competency Definitions”
specification (currently an approved standard) [13],

e and HR-XML Consortium "Competencies (Mecasurable
Characteristics) Recommendation" [14]

According to RDCEO and IEEE nomenclature, a
competency record is called ‘Reusable Competency
Definition’ (or RCD). RCDs can be attached to LOs in order
to define its prerequisites and its learning outcomes. We
have used this approach to model LO sequences. By
defining a competency (or a set of competencies) as a LO
outcome, and by identifying the same competency as the
prerequisite for another LO (figure 1), a constraint between
the two LOs is established so that the first LO must precede
the second one in a valid sequence.

Figure 1. LO sequencing through competencies

Meta-Data (MD) definitions are attached to LOs, and
within those definitions references to competencies
(prerequisites and learning outcomes) are included. LOM
[15] records have been used for specifying LO Meta-Data.
LOM element 9, ‘Classification’, is used to include
competency references as recommended in {16, 17]. So,
LOM element 9.1, ‘Purpose’, is set to ‘prerequisite’ or
‘educational objective’ from among the permitted
vocabulary for this element; and LOM element 9.2 ‘Taxon
Path’, including its sub-elements, is used to reference the
competency. Note that more than one Classification element
can be included in one single LO in order to specify more
than one prerequisite and/or learning outcome.

Simple metadata (i.e. LOM records) is enough to model
LOs’ sequences in a similar way. Then, why use
competencies? Competency usage is encouraged, besides its
usefulness for modeling prerequisites and learning
outcomes, because competencies are also useful for
modeling user current knowledge and learning initiatives’
expected outcomes (future learner knowledge). We are
proposing a wider framework (see last section) in which
learner (user) modeling is done in terms of competencies,
and these competencies are also used to define the expected
learning outcomes from a learning program.

m. COMPETENCY-BASED INTELLIGENT SEQUENCING

Given a random LOs’ sequence modelled as described
above (with competencies representing LOs prerequisites
and learning outcomes), the question of finding a correct
sequence can be envisaged as a classical artificial intelligent
Constraint Satisfaction Problem (CSP). In this way, the
solution space comprises all possible sequences (n! will be
its size, total number of states, for n LOs), and a (feasible)
solution is a sequence that satisfies all = established
constraints. LO permutations inside the sequence are the
operations that define transitions among states. GAs and
PSO are Al stochastic population-based computing that can
be used to solve CSP problems (among other kind of
problems). This section presents a mathematical
characterization of the learning object sequencing problem
so that the agents implementation can be formally specified.
Then this implementation is presented.

A. Mathematical Characterization

According to Tsang [18] a CSP is triple (X,D,C) where
X = {X0, %1, s, Xn-q} is finite set of variables, D is a
function that maps each variable to its corresponding domain
D(X), and C;; € D; X Dj is a set of constraints for each pair
of values (i, j) with 0 < i < j < n. To solve the CSP is to
assign all variables x; in X a value from its domain D, in
such a way that all constraints are satisfied. A constraint is
satisfied when (x;, %) € C;;, and (x;,%;) it is said to be a
valid assignment. If (x;,x;) & C;; then the assignment

(11 x;) violates the constraint.

If all solutions from a CSP are permutations of a given
tuple then it is said that the problem is a permutation CSP or
PermutCSP. A PermutCSP is defined by a quadruple
(X,D,C,P) where (X,D,C) is a CSP and P=<vy, v,, ..., Vu)>
is a tuple of |[X]=n values. A solution S of a PermutCSP must
be a solution of (X,D,C) and a complete permutation of P.

The learning object sequencing problem could be modeled
as a PermutCSP. For example, considering five learning
objects titled 1,2,3,4 and 5, the PermutCSP which only
solution is the set S = {1,2,3,4,5} (all learning objects must
be ordered) can be defined as:

X = {X1,%X2,X3,Xs, X5}

D(Xl) = {1,2,3,4,5} in exX
C={xus—%>0: x; €X,i€ {1234}

3220 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

5 &7

P=<12345>
As it will be demonstrated later a good definition of the
constraint set C critically affects the solving algorithm
performance and even its completeness.

B. GAs for Learning Object Sequencing

Genetic algorithms are an evolutionary computation
technique that mimics gene’s evolution to solve problems. A
random initialized population of individuals is created. Each
individual contains a coded state or solution (gene) to the
problem; and an iterative process of recombination, mutation
and selection is used to evolve population and,
simultaneously, the solution. GAs that use specific
representation and operators for handling permutations are
called permutation GAs or permut-GAs and can be
employed to solve constraint satisfaction problems [19].

Permut GA with order recombination, swap mutation and
generational replacement with elitism was implemented in
order to test its performance for solving the LO sequencing
problem. Table 1 shows the basic procedure for LO
sequencing pseudo code. Several other issues concerning
design and implementation have to be decided. In the rest of
this section each of these issues is discussed and the
selection criteria are explained.

Table 1. GA sequencing agent pseudo-code

SEQUENCING_AG(input_sequence, s, m, k, p, n)
BEGIN
SET population[0] = input_sequence
Randomly INITIALIZE the rest of the population p
EVALUATE each individual
SET bests = n individuals with best fitness
SET n_generations = 0
REPEAT UNTIL (termination criterion satisfied
or n_generations=m)
SELECT u/2 couples using k size tournaments
Perform an ORDERED RECOMBINATION of the w/2
couples
Offspring SWAP MUTATION with probability p
ELIMINATE DUPLICATES
survivors SELECTION for the next generation
PERFORM a generational replacement
FOR-EACH i in bests
IF fitness(i) > fitness(best offspring)
REPLACE a random offspring with i
END FOR-EACH
END REPEAT
END

Fitness Function. It is critical to choose a function that
accurately represents the goodness of a solution [20]. For
evolutionary techniques algorithms and meta-heuristics
search procedures, there is usually no objective function to
be maximized. A common used fitness function when
dealing with CSP problems is a standard penalty function
[21):

2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Fx) = Vi (%0 %;) (1)
osi<j<n
where V;;: D; x D;j = {0,1} is the violation function
0if (x;, %) € Cy;
Vii(x, %) = { i 4 i 2)
" (4]) 1 otherwise ¢

The standard penalty function returns the number of
constraints violated, so GA objective is to minimize that
function. When an individual returns a fitness value of 0, a
sequence that satisfies all constraints has been found and the
algorithm processing is finished.

This fitness function works well if the constraint set C for

the PermutCSP has been accurately defined. In the example

presented in section 3.1 that represents a 5 LO sequence with
only one feasible solution, the restriction set was defined as
C={xy1~6>0: x;€X,i€{1,234}}. A more
accurate definition will be C = [xi —x>0: 5, €X, 5 €
1.2} . If we consider the sequence {2,3,4,5,1} the
standard penalty function will return 1 if the first definition
of C is used, while the returned value will be 4 if it is used
the second definition. The second definition is more accurate
because it returns a better representation of the number of
swaps required to turn the permutation into the valid
solution. Moreover, first definition of C has additional
disadvantages because some really different sequences (in
terms of its distance to the solution) return the same fitness
value. For example sequences {2,3,4,5,1}, {1,3,4,5,2},
{1,2,4,5,3} and {1,2,3,5,4} will return a fitness value of 1.
Fortunately, the accurate constraint definition problem could
be solved programmatically. A function that recursively
process all restrictions and calculates the most precise set of
restrictions violated by a given sequence was developed and
called over the input GA sequence. The user (instructor,
content provider,...) will usually define the minimum
necessary number of constraints and the system will
compute ‘real’ constraints in order to ensure algorithm
convergence (user obligations are lightened)

Recombination. Parent selection and recombination is
implemented in a single step. 4/2 couples (or pairs) are
selected using u# tournaments. u is the population’s size and
it is an input parameter. k-size tournament with replacement
is used (k is an input parameter). The two members of each
couple must be different to ensure genetic variation in the
offspring. Finally each pair is recombined using order
crossover producing u new individuals.

Mutation. Mutation rate for each individual is
implemented as an input parameter (p). Mutation probability
is computed just afier recombination for each newly
individual. Swap mutation is finally performed if probability
computing requires it. Note that individual-level mutation
(and not gene-level) mutation is used.

Survivor selection. A generational model with elitism is
used. The current generation is replaced by its offspring.
Elitism is implemented to keep track of the best individuals
found so far and to use its genetic material for the next
generation. Best » individuals found so far are always kept

3221

in the population. Offspring individuals’ that are replaced in
order to make room to accommodate ‘bests’ are randomly
selected. The elitism’s size » is an input parameter that can
range from 0 to u-1. Elitism implemented in this way
requires full population’s information. This will make
difficult (multiple-agent) distributed processing, in case this
will be considered for the future.

Initialization and Termination criteria. The algorithm
receives an initial sequence 7 as an input. This input is used
to initialize the first individual. All other individuals are
initialized randomly by permuting /. Agent processing stops
when a fitness evaluation of an individual returns 0 or when
a fixed maximum number of iterations is reached. So the
number of iterations was also defined as an input parameter
(m). It was used as a measurement of the number of calis to
the fitness function that were allowed to find a solution. It
should be noted that some problems may not have a solution,
so number of iterations setting can avoid infinite computing.

Duplicate elimination. To avoid genetic drift (quick
convergence to the same or very similar individual for all the
population), observed in the initial stages of development, a
duplicate elimination policy was introduced. Just after
recombination and mutation processes each individual is
compared with the previous elements in the population. If
the genotype is the equal to any of these predecessors a swap
mutation“is enforced until it differs. Duplicate elimination
also requires full knowledge about the population.

C. PSO for Learning Object Sequencing

Particle Swarm Optimization is an evolutionary
computing optimization algorithm. PSO mimics the
behaviour of social insects like bees. A random initialized
particles population (states) flies through the solution space
sharing the information they gather. Particles use this
information to adjust dynamically their velocity and
cooperate towards finding a solution. There are three levels
of best solutions: (1) by a particle is called pbest, (2) within
a set of neighbour particles is called nbest, (3) and within the
whole swarm is called gbest. Goodness of each solution is
calculated using a function called fitness function. Original
PSO [22, 23] is intended to work on continuous spaces. A
version that deals with permutation problems was introduced
in [24]. This discrete approach was employed and a full-
informed version of the PSO was implemented (table 2) in
order to test its performance for solving the LO sequencing
problem.

Table 2. PSO sequencing agent psendo-code

SEQUENCING_PSO(input_sequence, w, cl, ¢2) {
initialize the swarm
DO {
FOR EACH particle {
CALCULATE fitness value
IF (new fitness < gBest)
SET gbest = currentValue
IF (new fitness < pBest)
SET pbest = currentValue

3222

CALCULATE new velocity as

Vaew = W % Vgt (c1xrnd()x(pbest-currentValue)) +

(c2xrd()x(gbest-currentValue))

NORMALIZE Velocity as

Vncnn = vnew/ max(vnew)
CHECK Vo, limit

FOREACHVin Vyom {

IF(v > length(X))
v = length(X)

}
UPDATE particle value
FOR i =1 to length(Vyem){
IF(rand() < VaemliD)
SWAP currentValuel[i] for
currentValue[indexOf(currentValue,gBest[i]])

}
CHECK Mutation
IF (currentValue = gBest) swap two
random positions from currentValue

}

} UNTIL termination criterion is met

}

where currentValue is a vector of n learning objects
representing the current position of the particle (state or
solution being computed), and, Vyew, Vo and Vi, are
vectors of n positions representing different velocities
required by the algorithm. Several issues concerning design
and implementation were also decided. In the rest of this
section each of these issues is discussed and the selection
criteria are explained.

The first issue will be the fitness function. A standard
penalty function will be used. All aspects referred in section
II1.B are applicable here.

PSO Parameters. One important PSO advantage is that it
uses a relative small number of parameters compared with
other techniques like genetic algorithms. However, much
literature on PSO parameter subject has been written.
Among it, Xiaohui et. al in [25] established the set of
parameters in such a way that PSO works properly for
solving permutation problems. So we decided to follow their
recommendations, and parameters were set as follows:
Learning rates (cl, ¢2) are set to 1.49445 and the inertial
weight (w) is computed according to the following equation:

w=0.5 + (rand()/2) 3)

where rand() represents a call to a function that returns a
random number between 0 and 1. Population size was set to
20 particles. As the fully informed was used, it was not
necessary to make any consideration concerning the
neighborhood size.

Initialization. The algorithm receives an initial sequence
I as an input. This input is used to initialize the first particle.
All other particles are initialized randomly by permuting /.
Initial velocity for each particle is also randomly initialized
as follows: Each v;€V is randomly assigned a value from the
range {0,1}}, where [I] is the total number of learning objects
in the sequence.

2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Termination criteria. Agent processing stops when a
fitness evaluation of a particle returns 0 or when a fixed
maximum number of iterations is reached. So the number of
iterations was also defined as an input parameter. It was used
as a measurement of the number of calls to the fitness
function that were allowed to find a solution. It should be
noted that some problems may not have a solution, so
number of iterations setting can avoid infinite computing.

Finally, although several tuning mechanisms have been
envisaged and tested but only a velocity check policy
improves performance [26]. So it was decided to implement
this check.

IV. EXPERIMENTAL RESULTS

Both algorithms for LOs sequencing described above
were designed and implemented using the object oriented
paradigm. We wanted to test their performance in real and
simulated scenarios. As a real-world problem, we choose a
problem concerning course sequencing for a Master in
Engineering (M.Eng.) program in our institution. The (web
engineering) M.Eng, program comprises 23 courses
(subjects) grouped in:

e Basic courses (7) that must be taken before any other
(kind of course). There may be restrictions between
two basic courses, for example ‘HTML’ course must
precede Javascript course,

e ‘Itinerary’ courses (5) that must be taken in a fixed
ordered sequence.

¢ Compulsory courses (5). There may be restrictions
between two compulsory courses. '

e Elective courses (6). Additional constraints with
respect to any other course may be set.

All courses have an expected learning time that ranges
from 30 to 50 hours. They are delivered online using a LMS,
namely EDVI LMS [27], and every course has its metadata
record. Competency records were created to specify LOs’
restrictions, and LOM metadata records were updated to
reflect prerequisite and learning outcome competencies as
detailed in section 2. A feasible sequence must have 23 LOs
satisfying all constraints. The graph showing all LOs and
constraints is very complex, and so it is to calculate the exact
number of feasible solutions. Some estimation have been
used, we have estimated that the relation among feasible
solutions and total solutions order is 8,9x10'%. This number
reflects the number of states (non-feasible solutions) for
each feasible solution.

When the test case was established we face the problem of
parameter setting for each algorithm. PSO parameters and
tuning settings were described in the previous section. As for
the GA there were 5 parameters to be tuned. The best
configuration depends on each problem [19] so parameters
were tuned during this phase. We decided to try different
values (ranging from 4 to 6 values) for each parameter. A
thorough test of all possible cases would have required 400
executions. In order to reduce this, a ‘pivot rule’ method was
devised. A central configuration (pivot set) was established,

2009 IEEE Congress on Evolutionary Computation (CEC 2009)

and just one parameter (all its values) was tested per round.
Further refinement could be achieved if all observed
improvements over the initial pivot set are used to determine
a new pivot set and the process is repeated. Results from this
process return that the optimal set of values for each GA
parameter was: population size x=20, tournament size k=
43, mutation rate p=0.5 and elitism size n=u/2. k and n were
deliberately set to be population size () dependent.

When all parameters were set 100 tests were run
computing mean fitness values evolution using the best
configuration found for each agent (figure 2). Both agents
converge, but PSO approach outperforms GA. Mean fitness
values to reach a solution (table 1) also support this
argument.

10\'*.\

500 "'~..~‘- 1 1500
W
o1 3
“l
, -\—""\
0.01 2 .

Fitness Evaluations

2500

FitnessValue {log)

[TTTIRRE 1 Yo QR — 7Y
Figure 2. Agents performance in a real world problem.

Table 3. Mean number of fitness

Technique Mean fitness evaluations
GA 1002
PSO 641

The tested scenario may seem to have many feasible
solutions that would make doubtful PSO performance in
more ‘challenging’ scenarios, so additional test were
conducted. Test sequences of 5, 10, 20, 30, 40, 50, 60, 75
and 100 LOs with only one feasible solution were designed.
Each test suite was run 100 times for each agent and mean
values were computed. Figure 3 shows the results and it also
supports the argument that PSO outperforms GA. It could
also be inferred that both agents handle reasonably
combinatorial explosion for this particular problem. It
should be noted that while the number of learning objects
grows linearly the size of the solution space grows
exponentially.

3223

154
(=)

T4 /
o
§ 35 / .
£ 30
=25 7
= / -
£ 20 / s
® »
L PE -
2 49 o
o
il e 1]
0 Q’M ¥ ¥ S 1
0 20 40 60 80 100
Learning Objects
westiine PSO e G

Figure 3. Agents scalability in simulated scenarios

V. CONCLUSIONS

Automated LO sequencing is a recurring problem in the e-
learning field that could be approached employing models
that ensure interoperability along with artificial intelligent
techniques. The purpose of the study was to design, develop
and test two agents that perform automatic 1O sequencing
through competencies in order to study its completeness and
performance. A model that employs competencies as a mean
for defining constraints between learning object has been
presented, so that a sequence of LOs is represented by
relations among L.Os and competencies. New sequences can
be derived if permutation operations are allowed between
LOs in the sequence. Hence the sequencing problem is
turned into a permutation problem, and the aim is to find a
sequence that satisfies all restrictions expressed in the
original model. A GA that handles permutation problems has
been developed and the PSO for permutation problem has
been extended to LO sequencing problem. Results show that
both agents succeed in solving the problem and that PSO
implementation outperforms GA agent.

Further implications arise from the model proposal
(section 2): (1) E-learning standards are promoted. XML
records and bindings are used, so elements will be easily
interchanged and processed by compliant systems. (2)
Instructor’s role is automated reducing costs. Sequencing
process works even in complex scenarios were humans face
difficulties. Instructors could spend saved time performing
other activities within the learning action. And (3), the
model can be extended to an automated intelligent system
for building personalized e-learning experiences. But this
third implication is linked to future work. This model has
been envisaged and is depicted in figure 4. Sequencing
process can be complemented with gap analysis process and
competency learner modeling techniques to build
personalized courses. These courses could also be SCORM
[10] compliant, so they could be imported to current LMSs.

3224

asitory

samer Inf eaming Objectives

AR

e

\
Figure 4, Competency-driven content generation model

e

Finally, other Al techniques should be analyzed to test its
performance for solving the LO sequencing problem.
Particularly, Ant Colony Optimization (ACO) [28]. Exact
techniques may also be considered. We plan to design and
build intelligent sequencing agents using these techniques
and check its results against PSO and GA implementation
performance.

REFERENCES

[1] P. Brusilovsky, "Adaptive and Intelligent Technologies for Web-based
Education," Kinstliche Intelligenz, Special Issue on Intelligent
Systems and Teleteaching, vol. 4, pp. 19-25, 1999.

[2] P. Brusilovsky, "Methods and techniques of adaptive hypermedia,”
User Modeling and User-Adapted Interaction, vol. 6, pp. 87-129,
1996.

[3] P. De Bra, G.-J. Houben, and H. Wu, "AHAM: a Dexter-based
reference model for adaptive hypermedia," in Proceedings of the tenth
ACM Conference on Hypertext and hypermedia Darmstadt, Germany:
ACM Press, 1999,

[4] P. Karampiperis, "Automatic Leaming Object Selection and
Sequencing in Web-Based Intelligent Learning Systems," in Web-
Based Intelligent E-Learning Systems: Technologies and Applications,
M. Zongmin, Ed. London. UK. Idea Group, 2006.

[5] P. De Bra, A. Aerts, B. Berden, B. d. Lange, B. Rousseau, T. Santic,
D. Smits, and N. Stash, "AHA! The adaptive hypermedia
architecture," in Proceedings of the fourteenth ACM conference on
Hypertext and hypermedia Nottingham, UK: ACM Press, 2003.

[6] B. van den Berg, R. van Es, C, Tattersall, J. Janssen, J. Manderveld, F.
Brouns, H. Kurvers, and R. Koper, "Swarm-based sequencing
recommendations in e-leaming," in Proceedings 5th International
Conference on Intelligent Systems Design and Applications, 2005.
ISDA '05., Wroclaw, Poland, 2005, pp. 488-493.

[7] A. Barr, "Revisiting the -ilities: Adjusting the Distributed Learning
Marketplace, Again ?," Learning Technology Newsletter, vol. 8, pp. 3-
4, January/Aprl 2006.

[8] D. A Wiley, "Connecting learning objects to instructional design
theory: A definition, a metaphor, and a taxonomy," in The
Instructional Use of Learning Objects, D. A. Wiley, Ed., 2000.

2009 IEEE Congress on Evolutionary Computation (CEC 2009)

[9]
[10]

111]
[12]
[13]

[14]
[15]

*116]

[17]
[18]
[19]

[20]
[21]

[22]

ADL, "Shareable Content Object Reference Model (SCORM). The
SCORM 2004 Overview," Advanced Distributed Learning (ADL)
Initiative, 2004.

ADL, "Shareable Content Object Reference Model (SCORM). The
SCORM 2004 Content Aggregation Model," Advanced Distributed
Learning (ADL) Initiative, 2004.

J. Wilkinson, "A matter of life or death: re-engineering competency-
based education through the use of a multimedia CD-ROM,," in IEEE
International Conference on Advanced Learning Technologies, 2001.
Proceedings, 2001, pp. 205-208.

IMS, "Reusable Definition of Competency or Educational Objective -
Information Model," IMS Global Learning Consortium, 2002.

IEEE, "Learning Technology Standards Committee (LTSC). Draft
Standard for LearningTechnology - Data Model for Reusable
Competency Definitions," IEEE, 2007.

HR-XML, "Competencies (Measurable Characteristics)
Recommendation," HR-XML Consortium, 2006.

IEEE, "Learning Technology Standards Committee (LTSC). Learning
Object Metadata (LOM). 1484.12.1," IEEE, 2002.

IEEE, "Learning Technology Standards Committee (LTSC). Standard
for Learning Technology—Extensible Markup Language (XML)
Schema Definition Language Binding for Learning Object Metadata.
1484.12.3.," IEEE, 2005.

IMS, "Reusable Definition of Competency or Educational Objective -
XML Binding," IMS Global Learning Consortium, 2002.

E. Tsang, Foundations of Constraint Satisfaction. London: Academic
Press, 1993. '

A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.
Berlin (Germany): Springer-Verlag, 2003.

J. Robinson and Y. Rahmat-Samii, "Particle swarm optimization in
electromagnetics," Antennas and Propagation, IEEE Transactions on,
vol. 52, pp. 397-407, 2004.

L. Schoofs and B. Naudts, "Ant colonies are good at solving constraint
satisfaction problems," in Proceedings of the 2000 Congress on
Evolutionary Computation., La Jolla, CA, 2000, pp. 1190-1195.

R. Eberhart?¥id=F “Resine @y KraewroptimiZzét’ using particle switin
theory," in Proceedings of the Sixth International Symposium on
Micro Machine and Human Science. MHS '95., Nagoya, Japan, 1995,

Restricted Folding Rule Problem Folding Rule Problem Legend

0%
n{1]|2|3 n|i1|2
ORIGINAL ORIGINAL 50% 1
RANDOM RANDOM
CONSISTENT CONSISTENT 100%
Fig. 5. Percentage of successful runs in our experiments
Restricted Folding Rule Problem Folding Rule Problem
n|1]12[(3]|4|516|7 ni1(2(3[(4|5(6]7
ORIGINAL ORIGINAL
RANDOM |} RANDOM
CONSISTENT | CONSISTENT |

Fig. 6. The Average number of Evaluations pr Success (AES) in our experiments.

Strategy | Success AES
ORIGINAL 12% 4,744 REFERENCES
RANDOMSIGN 12% 4,810 [1] K. Price and R. Storn, “Differential evolution-a simple and efficient
CONSISTENT 12% 5,176 adaptive scheme for global optimization over continuous spaces,” In-
ternational Computer Science Institute-Publications, Jan 1995.
TABLE I [2] ——, “Differential evolution a simple evolution strategy for fast
SUMMARY OF ALANINE DIPEPTIDE EXPERIMENTS. optimization,” Dr.Dobbs Journal, no. 22, pp. 18-24, 1997.
. [3] U. K. Chakraborty, Advances in Differential Evolution. Springer
Publishing Company, Incorporated, 2008.
{4] R. Storn, “Differential Evoultion Homepage,”
http://www.icsi.berkeley.edu/~storn/code.html.
X R . [51 K. Zielinski, X. Wang, and R, Laur, “Comparison of adaptive ap-
The alanine dipeptide experiments are summarized in proaches for differential evolution,” Parallel Problem Solving from
Table T and indicate that the altered recombination strategies Nature — PPSN X, pp. 641-650,2008. .
h less impact on problems from computational chemis [6] J. Handl, S. !..ovell, and J. Knowles, “Invcsn_gayons into the effect of g
¥ ave les p p P try. multiobjectivization in protein structure prediction,” Parallel Problem .
As can be seen from the table we actually perform more Solving from Nature - PPSN X, pp. 702-711, 2008. “

evaluations before reaching the desired goal when using [7] N. O’'Boyle, C. Morley, and G. Hutchison, “Pybel: a python wrapper

the two altered strategies and this experiment is therefore §°' ‘;g&pe"babel cheminformatics toalkit,” Chemistry Central Joumnal,
an N

contradictory to the previous, indicating that the original DE

strategy is more robust across problems with more complex

fitness landscapes.

VII. CONCLUSION

To sum up, our experiments indicate that the choice of
recombination strategy has a large effect on the percentage of
successful runs in simple cases, but that it has little effect on
the number of fitness evaluations in these. Our experiments
furthermore illustrate that the choice of optimization problem
can have a large impact on the observed difference between
the recombination strategies and in some cases it can lead to
contradictory conclusions. We cannot confirm nor refute our
hypothesis that angles should not be handled naivly.

Our studies poses two interesting questions: (1) is testing
new ideas on sandbox problems a valid evaluation method
and (2) is over engineering functions to specific optimization
scenarios a problem in the field. It is our hope that others in
the field will investigate these two interesting questions.

2009 IEEE Congress on Evolutionary Computation (CEC 2009)

T&LQQ Fof xmn%

