

Abstract—Inspired by political parties’ behavior in
parliament’s elections of chairman, Parliameantary
Optimization Algorithm (POA) has emerged as a new
stochastic population-based optimizer. Current research has
proven POA efficiency in numerical optimization but it is
difficult to find a POA version that deals with combinatorial
optimization. In this paper we present a parliamentary
algorithm that can solve permutation constraint satisfaction
problems along with the results of its experimental testing and
comparison with other evolutionary methods. Results
demonstrate POA efficiency in this new landscape.

I. INTRODUCTION
ARLIAMENTARY optimization algorithm (POA) [1, 2]
is a novel stochastic meta-heuristic inspired in the

behavior observed in political parties when trying to gain
control over parliaments in head elections. A randomly
initialized set of individuals is partitioned in groups and the
most fitted individuals of each group are designated as
candidates. Then groups engage in an iterative process
involving intra-group and inter-group fitness-based
competitions. During the former, candidates bias regular
members, compelling them to evaluate (move to) new
positions closer to candidates’ current positions; and thus,
exploring the most promising areas of the search space. As
for the latter stage, groups stochastically form alliances to
merge, but they also compete; less powerful (fitted) groups
can be removed. Computation stops when a predefined
termination criterion is met, and the best candidate of all
groups (best solution) found is returned. POA is, then, a
population-based optimizer that evolves a solution over an
iterative process. And although, strictly speaking, POA
cannot be considered as an evolutionary method, it bears
resemblance to some of those methods; and that made, in our
opinion, comparisons with them seem quite natural.

POA has been, almost exclusively, used for numerical
optimization; where it has demonstrated to be competitive or
even outperform other, well known and well studied,
stochastic approaches like Genetic Algorithms (GA) [1] and
Particle Swarm Optimization (PSO) [2]. Performance
improvement over a set of standard test-bench functions can
be observed in terms of the quality of the final solution as

Manuscript received February 5, 2010.
Luis de-Marcos is with the Computer Science Department, University of

Alcalá, Spain (+34918856656; luis.demarcos@uah.es)
Antonio García, Eva García, José J. Martínez, José A. Gutiérrez, Roberto

Barchino, Jose M. Gutiérrez, José R. Hilera and Salvador Otón are with the
Computer Science Department, University of Alcalá. Spain.

well as in terms of the number of iterations (calls to the
fitness function) required to get such an accurate solution.
Although numerical optimization is an always interesting
and challenging field with many potential applications,
combinatorial optimization is another demanding area with
not less importance and possible applications that also
requires attention [3].

This paper introduces a POA version designed to deal
with permutations and constraint satisfaction problems.
Section II describes the algorithm adaptation to the new
search space. Section III presents the experiments that were
carried out to fine-tune the new optimizer and to test its
performance. Section IV presents a comparative analysis of
POA’s performance with two other evolutionary approaches
(PSO and GA). Section V offers further insight in the
epistemological foundations of POA and tries to frame it in
relation with the evolutionary computation paradigm. And
finally, section VI presents conclusions and future work.

II. A PARLIAMENTARY ALGORITHM FOR PERMUTATION
CONSTRAINT OPTIMIZATION

A. Permutation Constraint Satisfaction
Tsang [4] defines a permutation constraint satisfaction

problem (permutCSP) as a quadruple (X,D,C,P) where
� � ���� ��� 	 � �
��� is finite set of variables, D is a
function that maps each variable to its corresponding domain
D(X), �� � ��� �� ��� is a set of constraints for each pair of
values (i, j) with � � � � � � �, and P=<v0, v1, …, vn-1> is a
tuple of |X|=n values. A solution S of a permutCSP is a
complete permutation of P in which all variables ��� in X are
assigned a value from its domain D, in such a way that all
constraints are satisfied simultaneously. A constraint is
satisfied when����� ��� � ����, and ����� ��� it is said to be a
valid assignment. If ����� ��� � ���� then the assignment
����� ��� violates the constraint.

To provide an example, consider the problem of ordering
five tasks named 1,2,3,4 and 5; the permutCSP whose only
solution is the set � � ��� �!�"�#� (all tasks must be ordered)
can be defined as:
� $� � � �%�� %&� %'� %(� %)��
 �*��+ � ��� �!�"�#��,�� � �
 � -��.� / �� 0 � 1 � �� � �� � � ��� �!�"�2
 3 ��� �� �!�"�# 0
This is an extremely simple example but it should be

noted that many popular problems can be modeled according

An Adaptation of the Parliamentary Metaheuristic for Permutation
Constraint Satisfaction

Luis de-Marcos, Antonio García, Eva García, José J. Martínez, José A. Gutiérrez, Roberto Barchino,
Jose M. Gutiérrez, José R. Hilera, Salvador Otón

P

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain CEC IEEE

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 834

to this definition. Examples include the N-queens problem,
the graph coloring problem, the scene labeling problem,
temporal reasoning, planning and scheduling, and graph
matching. Some of them are known by their complexity,
being NP-complete problems, and all of them have
important practical applications.

For heuristic and meta-heuristic methods it is a
requirement to have a fitness function that represents the
goodness of a solution [5]. When dealing with CSP
problems and when the problem domain does not provide
any predefined function, a common choice is a standard
penalty function [6]:

4*�+ � � 5 67�8�%7� %8�
�97:�:

 (1)

where 67�8; <7 � <8 = ����� is the violation function

67�8�%7� %8� � � >��?@����� ��� � ������ABCDEF?GD� (2)

This fitness function works well if the constraint set C for
the CSP has been accurately defined. In the previous
example, the restriction set was defined as
 � -��.� / �� 0 � 1 � �� � �� � � ��� �!�"�2. A more
accurate definition will be
 � -�� / �� 0 � 1 � �� � �� �� � ���� 	 � ����2. Considering
the sequence {2,3,4,5,1}, the standard penalty function will
return 1 if the first definition of C is used, while the returned
value will be 4 if it is used the second definition. The second
definition is more accurate because it returns a better
representation of the number of swaps required to turn the
sequence into the valid solution. Moreover, the first
definition of C has additional disadvantages because some
really different sequences (in terms of its distance to the
solution) return the same fitness value. For example,
sequences {2,3,4,5,1}, {1,3,4,5,2}, {1,2,4,5,3} and
{1,2,3,5,4} will return a fitness value of 1. Fortunately,
problem of finding the most accurate set of restrictions could
be solved programmatically. A function that recursively
process all restrictions and calculates the most precise set of
restrictions violated by a given sequence can be developed
and called over the input sequence. In that way, the user will
usually define the minimum necessary number of constraints
and an algorithm will compute the most accurate set in order
to facilitate heuristic’s convergence.

B. Parliamentary Optimization
POA’s original description is presented in code listing 1.

In what follows we describe the most important details
concerning its implementation.

1) Initialization
Initially, a N×L set of randomly initialized individuals is

partitioned in N groups of L members. Best � of each group
are designated as candidates. All other members are
considered regular members. N, L and � are input
parameters.

2) Intra-group competition
After initialization, groups engage in an inter-group

competition. Regular members are biased towards

candidates. Members’ new position in the search space is
calculated as in equation 3:

HI � H� J K*L *H� / H�+ M 4*H�+N�O�
L *H�+N�O�

+ (3)

In the above formula, p’ is the new position, p0 is the
current position, and � is a random number between 0.5 and
2 that gives a stochastic component to members’ movement.
Members update their position only if the new position has a
better fitness value. After that, candidates are reassigned
because regular members might have a better fitness. Please
note that candidates are not updated.

Finally, groups compute their power as in:

HPQRS� � T M UVW*X�+ J �� M UVW*Y�+
T J � (4)

where Qi and Ri are the vectors of fitness of candidates
and regular members of the group i respectively. And m and
n are weighting constants which are input parameters.

Initialize population
 Partition of the population in N groups of L
members
 Pick � most fitted individuals as candidates
for each group
repeat
 Intra-group competition
 Bias regular members towards candidates
 Reassign candidates
 Compute power for each group
 Inter-group competition
 Merge � strongest groups with probability pm
 Remove � weakest groups with probability pd
until(stopping condition met)
return the best candidate

Code. 1. Parliamentary Optimization Algorithm (from [2])

3) Inter-group competition
Inter-group competition starts just after intra-group

competition terminates. The idea is to model the
collaborative and competitive behavior in which political
parties engage to gain control over the parliament; for
example, to get its best candidate elected as chairman. In
real parliaments this usually comprises to create alliances to
form more powerful groups. Groups estimate their power
based on the quality of their candidates, but the number of
members is also an important factor. When they have
estimated their power, groups start communication processes
in order to collaborate and to achieve common goals. This
usually means to gain more power in relation to opposing
groups. It is an evolutive process in which more fitted
groups gain more and more control and less powerful groups
can also eventually collapse and disappear. The real
operation of a parliament is extremely complex to describe
so it is difficult to model it accurately.

Original POA employs a simple but practical approach to
simulate inter-group parliamentary processes. � more
powerful groups can merge into a single group with
probability pm, and � less powerful groups can disappear
with probability pd. �, �, pm and pd are input parameters.
Candidates must be reassigned before merging.

835

C. POA for permutation constraint satisfaction
Original POA is designed for numerical optimization and

thus works in a continuous space. In order to apply POA to
solve permutCSPs some of their internal workings have to
be redefined so that it can operate in a discrete space in
which individuals are also permutation sets. In what follows
we describe POA adaptation to solve permutCSPs.

1) Redefining biasing
It can be easily inferred that initialization and inter-group

competition do not require any special modification to work
in this new landscape. Problems arise in intra-group
competition and they are related with regular members
biasing towards candidates. A linear fitness-proportional
weighting towards all candidates, as in equation 3, is no
longer possible to move regular members. We propose to
use a fitness proportional selection to stochastically permute
each position in the tuple towards one candidate or,
alternately, keep its current value. Fitness proportional
selection was originally introduced for genetic algorithms
[7] and can be employed in the different selection processes:
parent selection and survivor selection. Several important
drawbacks have been explained for this method, including
premature convergence in unbalanced population
distributions [8]; so alternative methods like ranking
selection and stochastic universal sampling (SUS) [9] have
been introduced. Quick convergence can be a more desirable
feature in this new definition of POA because selection will
be performed for each dimension of the solution, as it is
going to be explained in what follows.

Let T be a candidate solution tuple, the probability for
each position, tj T, to move towards a candidate c � can
be calculated according to equation 5. All candidates and
also the current individual form the pool of elements which
are considered for the selection. Probabilities are computed
once and then random numbers are generated for each
dimension to determine the bias. If the movement of any
position is finally required, the position will be set to the
value of the same position in the candidate selected by
swapping values. A similar approach has been described and
successfully employed for PSO [10].

Z�[\]^=_ � 4*`+
L 4*H�+a�O� J �4*b+ (5)

Considering that a permutCSP with the fitness function
previously introduced is a minimization problem, it is
necessary to use an inverse weighting function in order to
assign larger probabilities to individuals with lower (better)
fitness. This inverse fitness function was calculated as in
equation 6. Then equation 5 will return a fitness proportional
probability if every call to f is substituted for a call to f -1.

4��*�+ � L 4*H�+a�O� J �4*�+
4*�+ (6)

To facilitate implementation, probabilities were stored in
an intermediate vector (Vp) and another vector with
aggregated probabilities (Vap) was also created to evaluate
random numbers. The whole process is exemplified in figure
1 which presents a part of the biasing process in a

hypothetical job scheduling problem. Two candidates (�1
and �2) are considered and the current individual T is also
displayed. The numbers on every individual represent the
name of the task. Sample fitness values are considered to
calculate inverse fitness values and both probability vectors.
The final biasing is exemplified in the table showed in the
lower part of the figure. Three random numbers are drawn to
decide the swap for three positions, the candidate selected
and the resulting state of the individual T are displayed.

Fig. 1. An example of member biasing for permutation problems.

Please note that in this discrete version regular members

always update their position. In original POA, positions are
only updated if a better fitness is found. Our aim was to
improve individuals’ mobility in the new landscape. It shall
be noted that many discrete spaces may contain plateaus:
large areas in which all solutions contain values with similar
fitness values. If regular members are compelled to move in
any case then wider search areas will be explored at no
especial higher expense (new positions are always
evaluated). It shall be also noted that the random bias
parameter (�) is not longer required. The stochastic
component that this parameter originally added is replaced
in our bias redefinition by the probabilistic fitness-based
selection.

2) Considering mutation
Mutation was introduced in evolutionary algorithms since

its very beginning [11, 12] as a way to model a similar
process that occurs in nature. The underlying idea is to
introduce a mechanism to increase population diversity by
randomly altering an individual gene feature that can make it
uniquely different from each of its antecessors. Mutation has
proven to be so important that a set of evolutionary
algorithms rely heavily or almost exclusively in mutation
procedures to evolve solutions. Evolution strategies [13] are
the most known example.

A simple mutation mechanism was introduced in our
version of POA as a mean to increase population diversity.
Just before regular members, biasing swap mutation is
implemented. Mutation rate for each individual is

836

implemented as an input parameter (p). Individual-level
mutation (and not gene-level mutation) is used.

3) Duplication elimination policy
To avoid genetic drift (quick convergence to the same or

very similar individual for all the population), which was
observed in the initial stages of development, a duplicate
elimination policy was introduced. Just after biasing and
mutating, each individual is compared with the previous
elements in its group. If it is equal to any of these them, a
swap mutation is enforced until it differs. That
implementation can have huge computational costs when
POA faces huge populated groups and it will also hinder any
future distributed POA approach because full information
about the group is required to implement it. Thus, a new
boolean parameter was introduced to enable or disable it.

Code fragment 2 presents the final version of POA to deal
with permutation problems. Differences with the original
implementation are showed in bold.

Initialize population
 Partition of the population in N groups of L
members
 Pick � most fitted individuals as candidates
for each group
repeat
 Intra-group competition
 Bias regular members towards candidates
 Mutate members with probability p
 if de is true Eliminate duplicates
 Reassign candidates
 Compute power for each group
 Inter-group competition
 Merge � strongest groups with probability pm
 Remove � weakest groups with probability pd
until(stopping condition met)
return the best candidate

Code. 2. POA for combinatorial optimization (permut-POA)

III. EXPERIMENTATION & TESTS
The permut-POA was implemented using the object

oriented paradigm in C#. The next natural step comprised its
tuning and test. This section first presents the selection and
design of test cases that were used to experiment with
permut-POA and to fine tune permut-POA parameters. This
will lay the ground to present the results.

A. Test Cases
To test the performance of this novel POA version, a set

of 100 random test cases was used. Among the different
problems common in literature, we decided to choose a
generic task scheduling problem. Scheduling has many
important practical applications along with a large set of
backing literature [3]. There are also other problems, like the
n-Queens, travel-salesman and knapsack, which are not less
important. These are known and widely studied for their
complexity (all of them are NP-complete), but we wanted to
select a set of test cases that were not necessarily so difficult
to solve and that, then, could be found in most common
circumstances. A generic task scheduling problem simply
comprises: (1) a set of tasks which must be performed; and

(2), a set of constraints that state conditions in relation to
tasks arrangement in the form of: task X cannot be started if
task Y has not been completed previously. Each test case
comprised 25 tasks and 50 constraints. The number of tasks
was mainly an arbitrary choice based on experimental tests
that determined a problem size that can be solved fast
(usually less than 0.5 seconds) and thus susceptible to be
repeated a huge number of times to gain statistical
significance. As for the number of constraints our choice
was based on works related with phase transition, mainly
[14], which study the point in which randomly generated
binary constraint satisfaction problems turn from being
soluble to being insoluble. Constraints were randomly
generated ensuring that each test case has at least one
solution. To do that, the dependency graph of each test case
was generated to check for any possible cycle. Cyclic
dependencies meant that the problem had no solution. In that
case the problem was discarded generating a new one. 100
different test cases were randomly generated using that
method and stored in order to be used for experimental
testing.

Each test case may have many potential solutions and the
algorithm computation finished when one was found. It is
difficult to calculate the exact number of feasible solutions
for every problem but it is possible to make some
estimations of the relation among feasible solutions and total
solutions. We estimate that the order of this relation is in the
range of 1014 as a mean for all test cases. A random
generated constraint between tasks A and B in an initially
unconstrained task schedule problem will reduce the number
of feasible solutions by ½ because all the sequences in which
B precedes A will become non-feasible solutions. An initial
analysis of a small sample of the generated test cases
showed that a certain number constraints introduced such
reduction in the number of feasible solutions, while the rest
of constraints have no effect because they just introduce
redundancy. We noticed that approximately 35 constraints
reduce the solution space while the others have no effect;
then it is easy to deduce the aforementioned number
considering that the solution space size is approximately
1.5x1025. This is, in our opinion, a quite challenging problem
but we also took into consideration that few may argue that
it is not so, or even argue that it is a toy problem. To try to
mitigate these possible critics and to test permut-POA
scalability additional test cases with 40, 50, 60, 75 and 100
tasks with just one feasible solution were designed. These
problems were easy to solve using exact deterministic
methods but they can be quite challenging for permutation
stochastic population-based methods.

B. Parameter Tuning
POA has many parameters and there are no studies, as far

as authors are concerned, about them. Original work on POA
offers a set of values for parameters without any rationale
concerning their selection. This is, in our opinion, a serious
drawback for POA. Practitioners that have to select a
technique for a particular combinatorial problem will almost

837

surely choose one in which a substantial work about
parameter control (including recommended practices) exist.
To try to mitigate that problem, and always focusing on a
practitioner’s stance, we have conducted a preliminary study
to try to set best practices for parameter selection in permut-
POA.

Eiben & Smith [7] classification of parameter control
techniques (considering how parameters change during time)
comprises three categories: Deterministic parameter control,
adaptive parameter control and self-adaptive parameter
control. The deterministic approach is the easiest way and it
is based on a deterministic rule that sets parameters in a
fixed and predefined way. If parameters are set before
running the algorithm then the process is also known as
parameter tuning. Adaptive control techniques consider
feedback from the search. And the self-adaptive approach
also considers feedback but this time parameters are evolved
along with the solution. Parameter tuning may not be the
best approach in terms of the algorithm performance but it is
the preferred choice many times for two main reasons. The
first reason is that is the easiest and then the fastest solution
to the problem of setting parameters values (in terms of the
cost of development). Many times it is impossible to test all
possible cases for all parameters, but using approximation
techniques is easy to find a set of parameter values that
works well. And the second reason is closely related to that
fact: evolutionary algorithms are usually quite flexible and it
is easy to find a configuration of parameters that works; and
with a little bit of extra work it is even possible to find a
good configuration that performs well for a wide range of
problems. It is then not difficult, but costly, to find the best
configuration. So parameter tuning is always a reasonable
choice, in terms of effort, to find a good configuration of
parameters. All these arguments lead us to select parameter
tuning as the first option to set permut-POA parameters.

The process to tune the parameters can be summarized in
what follows. For each parameter a set of representative
values was selected for testing (table I). We tried to cover
the wider range of (sensible and sense) possibilities. Then,
every test value of each parameter was tested keeping all
others parameters constant in a kind of pivoting rule. The
central value of each parameter was initially selected for the
pivot set. The selection was arbitrary between the two

central values in the cases in which the number of values
was even. Selected pivoting values are highlighted in bold in
table I.

26 experiments were then run to solve each of the 100
random test cases of 25 tasks. The number of calls to the
fitness function was recorded. Then a General Linear Model
(GLM) was used to determine what parameters had a
relevant influence in the algorithm performance. Results are
summarized in table II.

Results suggest that the values set for 6 (out of 11)
parameters (N, L, pm ,pd, p and de) have a relevant influence
in permut-POA performance. All other parameters (�, m, n, �
and �) seem to not be so relevant. It should be noted that
relevant parameters refer to the population size (N, L) and its
evolution (pm, pd) along with the last modifications
introduced: mutation probability and the population
elimination policy.

Finally, for each parameter that was found to be relevant,
a one way analysis of variance (ANOVA) was carried out to
determine the optimal values among the candidate values.
Figure 2 shows, as an example, the results obtained for the
de parameter, which enables the duplication elimination
policy. It can be observed that a value of 0 (the policy is
disabled) clearly improves performance. Duplication
elimination policies are usually enabled to avoid quick
convergence to local minima because they ensure diversity
in the population. Test cases were randomly generated and
we conjecture that an average solution space will have many
solutions with little, if any, local minima and thus duplicates
existence improves convergence ratios.

After completing ANOVA tests, it is possible to set the
optimal value for each relevant parameter. For each
parameter that was found to be not relevant its initial value
was kept. The final optimal values (for our test cases) were
N=2, L=10, �=2, m=1, n=0.1, pm = pd = 0.1, �=2, �=1 and
p=0.1. With these settings the algorithm succeeded in all test
cases.

IV. COMPARATIVE STUDY
After finding that permut-POA dealt successfully with all

test cases, the next step was to perform a comparative

TABLE I
VALUES SELECTED FOR EACH PARAMETER

Parameter Symbol Values
Number of groups N 2, 3, 5, 10

Group size L 5, 10, 20
Candidates per group � 1, 2, 3, 5

Member weighting constant m 0.5, 1, 1.5, 2
Candidate weighting constant n 0.01, 0.1, 0.5, 1

Merge probability pm 0, 0.01, 0.1
Deletion probability pd 0, 0.01, 0.1
Groups to be merged � 2, 3
Groups to be deleted � 1, 2
Mutation probability p 0, 0.01, 0.1, 0.5, 1

Duplicate elimination policy de 0, 1

TABLE II
RESULTS OF THE GENERAL LINEAR MODEL ANALYSIS

Parameter Symbol F p-value
Number of groups N 292,22 0,000

Group size L 14,81 0,000
Candidates per group � 1,39 0,243

Member weighting constant m 2,00 0,112
Candidate weighting constant n 0,36 0,785

Merge probability pm 18,91 0,000
Deletion probability pd 17,64 0,000
Groups to be merged � 3,10 0,078
Groups to be deleted � 0,86 0,355
Mutation probability p 3,23 0,012

Duplicates elimination policy de 9,43 0,002

Summary of results returned for each parameter. R2 = 37,18%. p-
values bellow 0,05 (CI=95%) suggest that the parameter setting is
relevant for the permut-POA performance.

838

analysis with other standard evolutionary methods. Genetic
algorithms (GA) are a vastly studied subfield in evolutionary
computation and it was our first choice. And particle swarm
optimization (PSO) is a more recent optimizer, but it has
proven its flexibility and efficiency to solve many problems
in a wide range of domains [15]. PSO was our second
choice. We may say that permut-POA is in its initial and,
thus, standard version, so to try to make a fairer
comparative, standard versions of GA and PSO were also
implemented.

Fig. 2. Interval plot (95% confidence interval for the mean) resulting
from running a one way ANOVA for the de parameter.

A. Permut-GA
Different approaches to GA can be taken to deal with

permutation problems. Standard typologies use to
distinguish between order problems (e.g. job scheduling
problem) and adjacency problems (e.g. travel sales person
problem) [7]. A specific set of recombination and mutation
operators already exists for each of these two kinds of
problems. Most common mutation operators are swap
mutation, insert mutation and scramble mutation [16].
Additionally, inversion mutation [17] was introduced to
handle adjacency problems. Usual choices for recombination
operators include partially mapped crossover [18] and edge
crossover [19] for adjacency problems; and order crossover
[20] and cycle crossover [21] for order based problems. GAs
that use specific representation and operators for handling
permutations can be called permutation GAs or permut-GAs.

We developed a permut-GA for order problems because
all our test cases were instances of this type of problems.
Order recombination and swap mutation were chosen.
Tournament selection was our strategy for parent selection,
and a generational model with elitism was our preferred
choice for the replacement strategy. Elitism was introduced
to keep track of the best individuals in the population in
order to mitigate the possible destructive effect that
generational replacement introduces. Our decisions were
based mainly on the ease of implementation of each strategy.

The permut-GA was tested and tuned using the approach
described in section III for the permut-POA. Our permut-GA
has four parameters that require tuning: population size (�),

tournament size (k), mutation rate (p) and elitism’s size (n).
Their final values were �=20, k=�/3=7, p=0.5 and n=
�/2=10. After running all tests, we found that permut-GA
also succeeded in all test.

B. Permut-PSO
Original PSO [22, 23] is intended to work on continuous

spaces. A discrete binary version of the PSO was presented
in [24]. This version uses the concept of velocity as a
probability of changing a bit state from zero to one or vice
versa. A version that deals with permutation problems was
introduced in [10]. In this latter version (permut-PSO
hereafter), velocity is computed for each element in the
sequence, and this velocity is also used as a probability of
changing the element, but in this case, the element is
swapped establishing its value to the value in the same
position in nbest (the best position found so far by the
current particle and its neighbors). Mutation is also
introduced in permut-PSO to avoid stagnation; just after
updating each particle´s velocity, if the current particle is
equal to nbest then two randomly selected positions from the
particle sequence are swapped. In [10] is also demonstrated
that permutation PSO outperforms genetic algorithms for the
N-Queens problem. So we decided to try this version with
all its settings.

Each particle shares its information with a, usually fixed,
number of neighbor particles to determine nbest.
Determining the number of neighbor particles (neighbor
size) and how neighborhood is implemented has been a
subject of deep research in an area that has been called
sociometry. Topologies define structures that determine
neighborhood relations, and several of them (ring, four
cluster, pyramid, square and all topologies) have been
studied. It has been proved that fully informed approaches
outperform all other methods [25]1. The fully informed
approach prompts using ‘all’ topology and a neighborhood
size equal to the total number of particles in the swarm (i.e.
every particle is connected with all other particles).

One important PSO advantage is that it uses a relatively
small number of parameters compared with other techniques
like genetic algorithms. However, much literature on PSO
parameter subject has been written. Among it, [10] presents
a configuration setting that works properly for solving
permutation problems. So we decided to follow these
recommendations, and parameters were set as follows:
Learning rates (c1, c2) are set to 1.49445 and the inertial
weight (w) is computed as Q � �c# J *Sd�e*+f +. Permut-
PSO was tested and it succeeded in all test cases.

C. Experimental Comparison
In order to carry out a comparative analysis each agent

was executed to solve each of the 100 random test cases.
The best parameter configuration for each agent was set. The

1 What this work really concludes is that an all topology is the best
option for the canonical PSO, in terms of succeed rate, for a set of standard
test functions. This study stresses the importance that the tuple
topology/PSO version conforms.

839

same population size (20) was used in all ca
comparison. Fitness evolution over time
Time was measured as the number of ca
function. Figure 3 summarizes mean re
observed that permut-POA clearly outperf
and is competitive with permut-PSO. In or
statistical relevance to gathered data, we
analysis of variance over the 100 results (
fitness function) of each agent. p-values re
way ANOVA were 0.000 when permut-PO
with permut-GA, and 0.022 when pe
compared with permut-PSO. Results conf
hypothesis but also concluded that there is
that permut-POA performs also better th
(97.8% CI). Performance improvement is
mean.

Fig. 3. Experimental results of POA, PSO and GA
generated task scheduling problems (mean values)

To test the scalability of the differ

additional test cases (40 to 100 tasks with
solution) were used. Mean values for
computed. Results are presented in figure
confirm many previous supposals. Permut-P
PSO clearly perform better than permut-GA
a surprisingly similar performance. As an
tasks POA required 33,427 fitness calls, wh
34,260 and GA 47,891.

V. FURTHER THOUGHTS
POA has not been already framed in

algorithms or optimizers. Evolutionar
traditionally focuses on those algorithm
techniques that are inspired by any asp
natural evolution. But additionally, some
which do not explicitly search for inspirat
but in other natural beings or processes, ha

ases to have a fair
e was computed.
alls to the fitness
esults. It can be
forms permut-GA
rder to give some
e carried out an
(total calls to the

eturned for a one-
OA was compared
ermut-POA was
firmed the initial
enough evidence
han permut-PSO
 14.3% over the

A over 100 randomly
).

rent agents, the
just one feasible
100 runs were

e 4. Results also
POA and permut-
A, and both show
example, for 100
hile PSO required

n any group of
ry computation

ms, methods and
pect related with
e other methods
tion in evolution,
ave been included

within the larger evolutionary
Examples are PSO [22, 23], which w
by fish schooling, and Ant Colony O
which is inspired by ant foraging beh

Fig. 4. Agents scalability in experimen
(100 runs, mean values).

Authors do not pretend to be tho

meta-heuristic under the auspices of
and colleagues can say (or try
Nonetheless, POAs political metap
from any natural or biological insp
social imitation context. What we th
working shows an obvious resem
internal functions of other evolution
just mentioned. In particular, PO
stochastic optimizer that tries to find
using a fitness-based evolving
emphasizes exclusively on the
communication that can be obse
particle swarms. Thus it seems sou
with these similar methods to t
problems.

POA advantages seem to emerge
parties and politicians optimizing b
easy-to-implement algorithm. POA
dynamically maintaining only m
individuals. Simultaneously, POA
among different groups in a kind o
fitted individuals, which are com
promising areas. It can be said that
avoid a waste of resources while
improve resources allocation. Focus
which is specially evolved in hum
other kind of interaction, seems
outcomes.

VI. CONCLUSIONS AND F
POA’s ability to grasp politicians

proven its efficiency as an optimizat

computation paradigm.
was originally influenced
Optimization (ACO) [26]
havior.

ntal task scheduling problems

ose that frame this novel
f any umbrella, only time

to agree) about that.
phor clearly distances it
piration, situating it in a
hink is that POAs internal
mblance with the same
nary methods, like those
A is also a population
d a solution to a problem

procedure. But POA
social dimension of

erved, for example, in
und to try to compare it
try to solve the same

e from its ability to grasp
behavior in a simple and
A adjusts the population
most fitted clusters of

encourages cooperation
of promotion of the most
mpelled to explore most

groups’ deletion tries to
groups’ merger tries to

s on the social dimension,
man beings, ignoring any

then to offer important

FUTURE WORK
s and parties behavior has
tion method in numerical

840

problems. In this paper, we have presented an adaptation of
this social metaphor designed to work with permutation sets.
Biasing of regular members is redefined as a probability to
perform a swap towards a candidate. Results demonstrate the
potential of this new method in relation to other well
established optimizers. It is also demonstrated that POA
outperforms standard versions of genetic algorithms and
particle swarms. Improvement is especially relevant when
POA is compared with a standard genetic algorithm. POA is,
furthermore, easy to develop and seems to scale well.
Pointing at its possible drawbacks, it shall be noticed that it
has too many parameters. This study just includes an initial
analysis concerning parameter tuning that tries to determine
which parameters are relevant along with convenient values
for them. Experiments suggest that parameters are easy to
tune, thus enabling flexible parameters’ settings. But, in our
opinion, further work is required on this topic to establish
possible dependencies between parameters that further
facilitate POA implementation and tuning. Results also
return a significant resemblance in terms of efficiency when
POA is compared with PSO. This may not be so surprising
when both metaphors are further inspected. PSO combines
local and social exploration, while POA reduces exploration
to the social component. POA capacity to dynamically adjust
population size is, in authors’ opinion, an important feature
that may explain POA’s observed efficiency when compared
with PSO. We think that further research may also be
conducted in order to determine possible equivalences
between both optimizers, along with hybrid methods devised
to exploit both methods strengths. Comparison with other
exact and stochastic methods also arises as natural research
course to further explore this parliamentary metaphor.

REFERENCES
[1] A. Borji, "A New Global Optimization Algorithm Inspired by

Parliamentary Political Competitions," in 6th Mexican International
Conference on Artificial Intelligence. LNAI 4827, A. Gelbukh and A.
F. Kuri-Morales, Eds.: Springer-Verlag, 2007, pp. 61-71.

[2] A. Borji and M. Hamidi, "A New Approach to Global Optimization
Motivated by Parliamentary Political Competitions," International
Journal of Innovative Computing, Information and Control, vol. 5, pp.
1643-1653, 2009.

[3] M. L. Pinedo, Scheduling: Theory, Algorithms and Systems. New
York: Springer, 2008.

[4] E. Tsang, Foundations of Constraint Satisfaction. London: Academic
Press, 1993.

[5] J. Robinson and Y. Rahmat-Samii, "Particle swarm optimization in
electromagnetics," Antennas and Propagation, IEEE Transactions on,
vol. 52, pp. 397-407, 2004.

[6] L. Schoofs and B. Naudts, "Ant colonies are good at solving constraint
satisfaction problems," in Proceedings of the 2000 Congress on
Evolutionary Computation., La Jolla, CA, 2000, pp. 1190-1195.

[7] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.
Berlin (Germany): Springer-Verlag, 2003.

[8] K. A. de Jong and J. Sarma, "On Decentralizing Selection
Algorithms," in Proceedings of the 6th international Conference on
Genetic Algorithms, L. J. Eshelman, Ed. San Francisco (USA):
Morgan Kaufmann Publishers, 1995, pp. 17 - 23.

[9] J. E. Baker, "Reducing Bias and Inefficiency in the Selection
Algorithm," in Proceedings of the Second International Conference
on Genetic Algorithms on Genetic Algorithms and their Application,
Cambridge, USA, 1987, pp. 14 - 21.

[10] X. Hu, R. C. Eberhart, and Y. Shi, "Swarm intelligence for
permutation optimization: a case study of n-queens problem," in
Proceedings of the 2003 IEEE Swarm Intelligence Symposium,
Indianapolis, USA, 2003, pp. 243-246.

[11] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence
through Simulated Evolution. Chichester (UK): Wiley, 1966.

[12] J. H. Holland, Adaptation In Natural and Artificial Systems. Michigan
(USA): The University of Michigan Press, 1975.

[13] I. Rechenberg, Evolution Strategy: Optimizing Technical System
based on Biological Evolution Principles. Stuttgart (Germany):
Fromman-Hozlboog Verlag, 1973.

[14] P. Prosser, "An empirical study of phase transitions in binary
constraint satisfaction problems," Artificial Intelligence, vol. 81, pp.
81-109, 1996.

[15] R. Poli, J. Kennedy, T. Blackwell, and A. Freitas, "Analysis of the
Publications on the Applications of Particle Swarm Optimisation,"
Journal of Artificial Evolution and Applications, vol. 2008, p. 3, 2008.

[16] G. Syswerda, "Schedule Optimisation Using Genetic Algorithms," in
Handbook of Genetic Algorithms, L. Davis, Ed. Washington (USA):
Thomson Publishing, 1991, pp. 332-349.

[17] S. Lin and B. Kernighan, "An Effective Heuristic Algorithm for the
Travel Salesman Problem," Operations Research, vol. 21, pp. 498-
516, 1973.

[18] D. E. Goldberg and R. Lingle, "Alleles, Loci and the Traveling
Salesman Problem," in Proceedings of the 1st International
Conference on Genetic Algorithms and their Application, Cambridge
(USA), 1985, pp. 154-159.

[19] L. D. Whitley, "Permutations," in Evolutionary Computation 1: Basic
Algorithms and Operators, T. Bäck, L. J. Fogel, and Z. Michalewicz,
Eds. Bristol (UK): Institute of Physics Publishing, 2000, pp. 274-284.

[20] L. Davis, Handbook of Genetic Algorithms. Washington (USA):
Thomson Publishing, 1991.

[21] I. M. Olivier, D. J. Smith, and J. H. Holland, "A Study of Permutation
Crossover Operators on the Traveling Salesman Problem," in
Proceedings of the 1st International Conference on Genetic
Algorithms and their Application, Cambridge (USA), 1985, pp. 154-
159.

[22] R. Eberhart and J. Kennedy, "A new optimizer using particle swarm
theory," in Proceedings of the Sixth International Symposium on
Micro Machine and Human Science. MHS '95., Nagoya, Japan, 1995,
pp. 39-43.

[23] J. Kennedy and R. Eberhart, "Particle swarm optimization," in
Proceedings., IEEE International Conference on Neural Networks.,
Perth, WA, Australia, 1995, pp. 1942-1948.

[24] J. Kennedy and R. C. Eberhart, "A discrete binary version of the
particle swarm algorithm," in 1997 IEEE International Conference on
Systems, Man, and Cybernetics. 'Computational Cybernetics and
Simulation'. 1997, pp. 4104-4108.

[25] R. Mendes, J. Kennedy, and J. Neves, "The fully informed particle
swarm: simpler, maybe better," Evolutionary Computation, IEEE
Transactions on, vol. 8, pp. 204-210, 2004.

[26] M. Dorigo and G. D. Caro, "The Ant Colony Optimization meta-
heuristic," in New Ideas in Optimization, D. Corne, M. Dorigo, and F.
Glover, Eds. London, UK: McGraw Hill, 1999, pp. 11-32.

841

