
 
 

 

  

Abstract—Inspired by political parties’ behavior in 
parliament’s elections of chairman, Parliameantary 
Optimization Algorithm (POA) has emerged as a new 
stochastic population-based optimizer. Current research has 
proven POA efficiency in numerical optimization but it is 
difficult to find a POA version that deals with combinatorial 
optimization. In this paper we present a parliamentary 
algorithm that can solve permutation constraint satisfaction 
problems along with the results of its experimental testing and 
comparison with other evolutionary methods. Results 
demonstrate POA efficiency in this new landscape. 

I. INTRODUCTION 
ARLIAMENTARY optimization algorithm (POA) [1, 2] 
is a novel stochastic meta-heuristic inspired in the 

behavior observed in political parties when trying to gain 
control over parliaments in head elections. A randomly 
initialized set of individuals is partitioned in groups and the 
most fitted individuals of each group are designated as 
candidates. Then groups engage in an iterative process 
involving intra-group and inter-group fitness-based 
competitions. During the former, candidates bias regular 
members, compelling them to evaluate (move to) new 
positions closer to candidates’ current positions; and thus, 
exploring the most promising areas of the search space. As 
for the latter stage, groups stochastically form alliances to 
merge, but they also compete; less powerful (fitted) groups 
can be removed. Computation stops when a predefined 
termination criterion is met, and the best candidate of all 
groups (best solution) found is returned. POA is, then, a 
population-based optimizer that evolves a solution over an 
iterative process. And although, strictly speaking, POA 
cannot be considered as an evolutionary method, it bears 
resemblance to some of those methods; and that made, in our 
opinion, comparisons with them seem quite natural. 

POA has been, almost exclusively, used for numerical 
optimization; where it has demonstrated to be competitive or 
even outperform other, well known and well studied, 
stochastic approaches like Genetic Algorithms (GA) [1] and 
Particle Swarm Optimization (PSO) [2]. Performance 
improvement over a set of standard test-bench functions can 
be observed in terms of the quality of the final solution as 
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well as in terms of the number of iterations (calls to the 
fitness function) required to get such an accurate solution. 
Although numerical optimization is an always interesting 
and challenging field with many potential applications, 
combinatorial optimization is another demanding area with 
not less importance and possible applications that also 
requires attention [3].  

This paper introduces a POA version designed to deal 
with permutations and constraint satisfaction problems. 
Section II describes the algorithm adaptation to the new 
search space. Section III presents the experiments that were 
carried out to fine-tune the new optimizer and to test its 
performance. Section IV presents a comparative analysis of 
POA’s performance with two other evolutionary approaches 
(PSO and GA). Section V offers further insight in the 
epistemological foundations of POA and tries to frame it in 
relation with the evolutionary computation paradigm. And 
finally, section VI presents conclusions and future work. 

II. A PARLIAMENTARY ALGORITHM FOR PERMUTATION 
CONSTRAINT OPTIMIZATION 

A. Permutation Constraint Satisfaction 
Tsang [4] defines a permutation constraint satisfaction 

problem (permutCSP) as a quadruple (X,D,C,P) where 
� � ���� ��� 	 � �
��� is finite set of variables, D is a 
function that maps each variable to its corresponding domain 
D(X), �� � ��� �� ���  is a set of constraints for each pair of 
values (i, j) with � � � � � � �, and P=<v0, v1, …, vn-1> is a 
tuple of |X|=n values. A solution S of a permutCSP is a 
complete permutation of P in which all variables ���  in X are 
assigned a value from its domain D, in such a way that all 
constraints are satisfied simultaneously. A constraint is 
satisfied when����� ��� � ����, and ����� ��� it is said to be a 
valid assignment. If ����� ��� � ���� then the assignment 
����� ��� violates the constraint. 

To provide an example, consider the problem of ordering 
five tasks named 1,2,3,4 and 5; the permutCSP whose only 
solution is the set � � ��� �!�"�#� (all tasks must be ordered) 
can be defined as: 
� $� � � �%�� %&� %'� %(� %)��
 �*��+ � ��� �!�"�#��,�� � � 
  � -��.� / �� 0 � 1 � �� � �� � � ��� �!�"�2 
 3 ��� �� �!�"�# 0 
This is an extremely simple example but it should be 

noted that many popular problems can be modeled according 
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to this definition. Examples include the N-queens problem, 
the graph coloring problem, the scene labeling problem, 
temporal reasoning, planning and scheduling, and graph 
matching. Some of them are known by their complexity, 
being NP-complete problems, and all of them have 
important practical applications. 

For heuristic and meta-heuristic methods it is a 
requirement to have a fitness function that represents the 
goodness of a solution [5]. When dealing with CSP 
problems and when the problem domain does not provide 
any predefined function, a common choice is a standard 
penalty function [6]: 

4*�+ � � 5 67�8�%7� %8�
�97:�:


 (1) 

where 67�8; <7 � <8 = ����� is the violation function 

67�8�%7� %8� � � >��?@����� ��� � ������ABCDEF?GD�  (2) 

This fitness function works well if the constraint set C for 
the CSP has been accurately defined. In the previous 
example, the restriction set was defined as 
 � -��.� / �� 0 � 1 � �� � �� � � ��� �!�"�2. A more 
accurate definition will be  
 � -�� / �� 0 � 1 � �� � �� �� � ���� 	 � ����2. Considering 
the sequence {2,3,4,5,1}, the standard penalty function will 
return 1 if the first definition of C is used, while the returned 
value will be 4 if it is used the second definition. The second 
definition is more accurate because it returns a better 
representation of the number of swaps required to turn the 
sequence into the valid solution. Moreover, the first 
definition of C has additional disadvantages because some 
really different sequences (in terms of its distance to the 
solution) return the same fitness value. For example, 
sequences {2,3,4,5,1}, {1,3,4,5,2}, {1,2,4,5,3} and 
{1,2,3,5,4} will return a fitness value of 1. Fortunately, 
problem of finding the most accurate set of restrictions could 
be solved programmatically. A function that recursively 
process all restrictions and calculates the most precise set of 
restrictions violated by a given sequence can be developed 
and called over the input sequence. In that way, the user will 
usually define the minimum necessary number of constraints 
and an algorithm will compute the most accurate set in order 
to facilitate heuristic’s convergence. 

B. Parliamentary Optimization 
POA’s original description is presented in code listing 1. 

In what follows we describe the most important details 
concerning its implementation. 

1) Initialization 
Initially, a N×L set of randomly initialized individuals is 

partitioned in N groups of L members. Best � of each group 
are designated as candidates. All other members are 
considered regular members. N, L and � are input 
parameters. 

2) Intra-group competition 
After initialization, groups engage in an inter-group 

competition. Regular members are biased towards 

candidates. Members’ new position in the search space is 
calculated as in equation 3: 

HI � H� J K*L *H� / H�+ M 4*H�+N�O�
L *H�+N�O�

+ (3) 

In the above formula, p’ is the new position, p0 is the 
current position, and � is a random number between 0.5 and 
2 that gives a stochastic component to members’ movement. 
Members update their position only if the new position has a 
better fitness value. After that, candidates are reassigned 
because regular members might have a better fitness. Please 
note that candidates are not updated. 

Finally, groups compute their power as in: 

HPQRS� � T M UVW*X�+ J �� M UVW*Y�+
T J �  (4) 

where Qi and Ri are the vectors of fitness of candidates 
and regular members of the group i respectively. And m and 
n are weighting constants which are input parameters. 

 
Initialize population 
  Partition of the population in N groups of L 
members 
  Pick � most fitted individuals as candidates 
for each group 
repeat 
  Intra-group competition 
    Bias regular members towards candidates 
    Reassign candidates 
    Compute power for each group 
  Inter-group competition 
    Merge � strongest groups with probability pm 
    Remove � weakest groups with probability pd 
until(stopping condition met) 
return the best candidate 

Code. 1.  Parliamentary Optimization Algorithm (from [2]) 
 

3) Inter-group competition 
Inter-group competition starts just after intra-group 

competition terminates. The idea is to model the 
collaborative and competitive behavior in which political 
parties engage to gain control over the parliament; for 
example, to get its best candidate elected as chairman. In 
real parliaments this usually comprises to create alliances to 
form more powerful groups. Groups estimate their power 
based on the quality of their candidates, but the number of 
members is also an important factor. When they have 
estimated their power, groups start communication processes 
in order to collaborate and to achieve common goals. This 
usually means to gain more power in relation to opposing 
groups. It is an evolutive process in which more fitted 
groups gain more and more control and less powerful groups 
can also eventually collapse and disappear. The real 
operation of a parliament is extremely complex to describe 
so it is difficult to model it accurately.  

Original POA employs a simple but practical approach to 
simulate inter-group parliamentary processes. � more 
powerful groups can merge into a single group with 
probability pm, and � less powerful groups can disappear 
with probability pd. �, �, pm and pd are input parameters. 
Candidates must be reassigned before merging. 
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C. POA for permutation constraint satisfaction 
Original POA is designed for numerical optimization and 

thus works in a continuous space. In order to apply POA to 
solve permutCSPs some of their internal workings have to 
be redefined so that it can operate in a discrete space in 
which individuals are also permutation sets. In what follows 
we describe POA adaptation to solve permutCSPs. 

1) Redefining biasing 
It can be easily inferred that initialization and inter-group 

competition do not require any special modification to work 
in this new landscape. Problems arise in intra-group 
competition and they are related with regular members 
biasing towards candidates. A linear fitness-proportional 
weighting towards all candidates, as in equation 3, is no 
longer possible to move regular members. We propose to 
use a fitness proportional selection to stochastically permute 
each position in the tuple towards one candidate or, 
alternately, keep its current value. Fitness proportional 
selection was originally introduced for genetic algorithms 
[7] and can be employed in the different selection processes: 
parent selection and survivor selection. Several important 
drawbacks have been explained for this method, including 
premature convergence in unbalanced population 
distributions [8]; so alternative methods like ranking 
selection and stochastic universal sampling (SUS) [9] have 
been introduced. Quick convergence can be a more desirable 
feature in this new definition of POA because selection will 
be performed for each dimension of the solution, as it is 
going to be explained in what follows. 

Let T be a candidate solution tuple, the probability for 
each position, tj  T, to move towards a candidate c  � can 
be calculated according to equation 5. All candidates and 
also the current individual form the pool of elements which 
are considered for the selection. Probabilities are computed 
once and then random numbers are generated for each 
dimension to determine the bias. If the movement of any 
position is finally required, the position will be set to the 
value of the same position in the candidate selected by 
swapping values. A similar approach has been described and 
successfully employed for PSO [10]. 

Z�[\]^=_ � 4*`+
L 4*H�+a�O� J �4*b+ (5) 

Considering that a permutCSP with the fitness function 
previously introduced is a minimization problem, it is 
necessary to use an inverse weighting function in order to 
assign larger probabilities to individuals with lower (better) 
fitness. This inverse fitness function was calculated as in 
equation 6. Then equation 5 will return a fitness proportional 
probability if every call to f is substituted for a call to f -1. 

4��*�+ � L 4*H�+a�O� J �4*�+
4*�+  (6) 

To facilitate implementation, probabilities were stored in 
an intermediate vector (Vp) and another vector with 
aggregated probabilities (Vap) was also created to evaluate 
random numbers. The whole process is exemplified in figure 
1 which presents a part of the biasing process in a 

hypothetical job scheduling problem. Two candidates (�1 
and �2) are considered and the current individual T is also 
displayed. The numbers on every individual represent the 
name of the task. Sample fitness values are considered to 
calculate inverse fitness values and both probability vectors. 
The final biasing is exemplified in the table showed in the 
lower part of the figure. Three random numbers are drawn to 
decide the swap for three positions, the candidate selected 
and the resulting state of the individual T are displayed. 

 
Fig. 1.  An example of member biasing for permutation problems. 

 
Please note that in this discrete version regular members 

always update their position. In original POA, positions are 
only updated if a better fitness is found. Our aim was to 
improve individuals’ mobility in the new landscape. It shall 
be noted that many discrete spaces may contain plateaus: 
large areas in which all solutions contain values with similar 
fitness values. If regular members are compelled to move in 
any case then wider search areas will be explored at no 
especial higher expense (new positions are always 
evaluated). It shall be also noted that the random bias 
parameter (�) is not longer required. The stochastic 
component that this parameter originally added is replaced 
in our bias redefinition by the probabilistic fitness-based 
selection. 

2) Considering mutation 
Mutation was introduced in evolutionary algorithms since 

its very beginning [11, 12] as a way to model a similar 
process that occurs in nature. The underlying idea is to 
introduce a mechanism to increase population diversity by 
randomly altering an individual gene feature that can make it 
uniquely different from each of its antecessors. Mutation has 
proven to be so important that a set of evolutionary 
algorithms rely heavily or almost exclusively in mutation 
procedures to evolve solutions. Evolution strategies [13] are  
the most known example. 

A simple mutation mechanism was introduced in our 
version of POA as a mean to increase population diversity. 
Just before regular members, biasing swap mutation is 
implemented. Mutation rate for each individual is 
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implemented as an input parameter (p). Individual-level 
mutation (and not gene-level mutation) is used. 

3) Duplication elimination policy 
To avoid genetic drift (quick convergence to the same or 

very similar individual for all the population), which was 
observed in the initial stages of development, a duplicate 
elimination policy was introduced. Just after biasing and 
mutating, each individual is compared with the previous 
elements in its group. If it is equal to any of these them, a 
swap mutation is enforced until it differs. That 
implementation can have huge computational costs when 
POA faces huge populated groups and it will also hinder any 
future distributed POA approach because full information 
about the group is required to implement it. Thus, a new 
boolean parameter was introduced to enable or disable it. 

Code fragment 2 presents the final version of POA to deal 
with permutation problems. Differences with the original 
implementation are showed in bold.  

 
Initialize population 
  Partition of the population in N groups of L 
members 
  Pick � most fitted individuals as candidates 
for each group 
repeat 
  Intra-group competition 
    Bias regular members towards candidates 
    Mutate members with probability p 
    if de is true Eliminate duplicates 
    Reassign candidates 
    Compute power for each group 
  Inter-group competition 
    Merge � strongest groups with probability pm 
    Remove � weakest groups with probability pd 
until(stopping condition met) 
return the best candidate 

Code. 2.  POA for combinatorial optimization (permut-POA) 

III. EXPERIMENTATION & TESTS 
The permut-POA was implemented using the object 

oriented paradigm in C#. The next natural step comprised its 
tuning and test. This section first presents the selection and 
design of test cases that were used to experiment with 
permut-POA and to fine tune permut-POA parameters. This 
will lay the ground to present the results. 

A. Test Cases 
To test the performance of this novel POA version, a set 

of 100 random test cases was used. Among the different 
problems common in literature, we decided to choose a 
generic task scheduling problem. Scheduling has many 
important practical applications along with a large set of 
backing literature [3]. There are also other problems, like the 
n-Queens, travel-salesman and knapsack, which are not less 
important. These are known and widely studied for their 
complexity (all of them are NP-complete), but we wanted to 
select a set of test cases that were not necessarily so difficult 
to solve and that, then, could be found in most common 
circumstances. A generic task scheduling problem simply 
comprises: (1) a set of tasks which must be performed; and 

(2), a set of constraints that state conditions in relation to 
tasks arrangement in the form of: task X cannot be started if 
task Y has not been completed previously. Each test case 
comprised 25 tasks and 50 constraints. The number of tasks 
was mainly an arbitrary choice based on experimental tests 
that determined a problem size that can be solved fast 
(usually less than 0.5 seconds) and thus susceptible to be 
repeated a huge number of times to gain statistical 
significance. As for the number of constraints our choice 
was based on works related with phase transition, mainly 
[14], which study the point in which randomly generated 
binary constraint satisfaction problems turn from being 
soluble to being insoluble. Constraints were randomly 
generated ensuring that each test case has at least one 
solution. To do that, the dependency graph of each test case 
was generated to check for any possible cycle. Cyclic 
dependencies meant that the problem had no solution. In that 
case the problem was discarded generating a new one. 100 
different test cases were randomly generated using that 
method and stored in order to be used for experimental 
testing.  

Each test case may have many potential solutions and the 
algorithm computation finished when one was found. It is 
difficult to calculate the exact number of feasible solutions 
for every problem but it is possible to make some 
estimations of the relation among feasible solutions and total 
solutions. We estimate that the order of this relation is in the 
range of 1014 as a mean for all test cases. A random 
generated constraint between tasks A and B in an initially 
unconstrained task schedule problem will reduce the number 
of feasible solutions by ½ because all the sequences in which 
B precedes A will become non-feasible solutions. An initial 
analysis of a small sample of the generated test cases 
showed that a certain number constraints introduced such 
reduction in the number of feasible solutions, while the rest 
of constraints have no effect because they just introduce 
redundancy. We noticed that approximately 35 constraints 
reduce the solution space while the others have no effect; 
then it is easy to deduce the aforementioned number 
considering that the solution space size is approximately 
1.5x1025. This is, in our opinion, a quite challenging problem 
but we also took into consideration that few may argue that 
it is not so, or even argue that it is a toy problem. To try to 
mitigate these possible critics and to test permut-POA 
scalability additional test cases with 40, 50, 60, 75 and 100 
tasks with just one feasible solution were designed. These 
problems were easy to solve using exact deterministic 
methods but they can be quite challenging for permutation 
stochastic population-based methods. 

B. Parameter Tuning 
POA has many parameters and there are no studies, as far 

as authors are concerned, about them. Original work on POA 
offers a set of values for parameters without any rationale 
concerning their selection. This is, in our opinion, a serious 
drawback for POA. Practitioners that have to select a 
technique for a particular combinatorial problem will almost 
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surely choose one in which a substantial work about 
parameter control (including recommended practices) exist. 
To try to mitigate that problem, and always focusing on a 
practitioner’s stance, we have conducted a preliminary study 
to try to set best practices for parameter selection in permut-
POA. 

Eiben & Smith [7] classification of parameter control 
techniques (considering how parameters change during time) 
comprises three categories: Deterministic parameter control, 
adaptive parameter control and self-adaptive parameter 
control. The deterministic approach is the easiest way and it 
is based on a deterministic rule that sets parameters in a 
fixed and predefined way. If parameters are set before 
running the algorithm then the process is also known as 
parameter tuning. Adaptive control techniques consider 
feedback from the search. And the self-adaptive approach 
also considers feedback but this time parameters are evolved 
along with the solution. Parameter tuning may not be the 
best approach in terms of the algorithm performance but it is 
the preferred choice many times for two main reasons. The 
first reason is that is the easiest and then the fastest solution 
to the problem of setting parameters values (in terms of the 
cost of development). Many times it is impossible to test all 
possible cases for all parameters, but using approximation 
techniques is easy to find a set of parameter values that 
works well. And the second reason is closely related to that 
fact: evolutionary algorithms are usually quite flexible and it 
is easy to find a configuration of parameters that works; and 
with a little bit of extra work it is even possible to find a 
good configuration that performs well for a wide range of 
problems. It is then not difficult, but costly, to find the best 
configuration. So parameter tuning is always a reasonable 
choice, in terms of effort, to find a good configuration of 
parameters. All these arguments lead us to select parameter 
tuning as the first option to set permut-POA parameters. 

The process to tune the parameters can be summarized in 
what follows. For each parameter a set of representative 
values was selected for testing (table I). We tried to cover 
the wider range of (sensible and sense) possibilities. Then, 
every test value of each parameter was tested keeping all 
others parameters constant in a kind of pivoting rule. The 
central value of each parameter was initially selected for the 
pivot set. The selection was arbitrary between the two 

central values in the cases in which the number of values 
was even. Selected pivoting values are highlighted in bold in 
table I. 

26 experiments were then run to solve each of the 100 
random test cases of 25 tasks. The number of calls to the 
fitness function was recorded. Then a General Linear Model 
(GLM) was used to determine what parameters had a 
relevant influence in the algorithm performance. Results are 
summarized in table II. 

Results suggest that the values set for 6 (out of 11) 
parameters (N, L, pm ,pd, p and de) have a relevant influence 
in permut-POA performance. All other parameters (�, m, n, � 
and �) seem to not be so relevant. It should be noted that 
relevant parameters refer to the population size (N, L) and its 
evolution (pm, pd) along with the last modifications 
introduced: mutation probability and the population 
elimination policy.  

Finally, for each parameter that was found to be relevant, 
a one way analysis of variance (ANOVA) was carried out to 
determine the optimal values among the candidate values. 
Figure 2 shows, as an example, the results obtained for the 
de parameter, which enables the duplication elimination 
policy. It can be observed that a value of 0 (the policy is 
disabled) clearly improves performance. Duplication 
elimination policies are usually enabled to avoid quick 
convergence to local minima because they ensure diversity 
in the population. Test cases were randomly generated and 
we conjecture that an average solution space will have many 
solutions with little, if any, local minima and thus duplicates 
existence improves convergence ratios. 

After completing ANOVA tests, it is possible to set the 
optimal value for each relevant parameter. For each 
parameter that was found to be not relevant its initial value 
was kept. The final optimal values (for our test cases) were 
N=2, L=10, �=2, m=1, n=0.1, pm = pd = 0.1, �=2, �=1 and 
p=0.1. With these settings the algorithm succeeded in all test 
cases. 

IV. COMPARATIVE STUDY 
After finding that permut-POA dealt successfully with all 

test cases, the next step was to perform a comparative 

TABLE I 
VALUES SELECTED FOR EACH PARAMETER  

Parameter Symbol Values 
Number of groups N 2, 3, 5, 10 

Group size L 5, 10, 20 
Candidates per group � 1, 2, 3, 5 

Member weighting constant m 0.5, 1, 1.5, 2 
Candidate weighting constant n 0.01, 0.1, 0.5, 1 

Merge probability pm 0, 0.01, 0.1 
Deletion probability pd 0, 0.01, 0.1 
Groups to be merged � 2, 3 
Groups to be deleted � 1, 2 
Mutation probability p 0, 0.01, 0.1, 0.5, 1 

Duplicate elimination policy de 0, 1 

 

TABLE II 
RESULTS OF THE GENERAL LINEAR MODEL ANALYSIS  

Parameter Symbol F p-value 
Number of groups N 292,22 0,000 

Group size L 14,81 0,000 
Candidates per group � 1,39 0,243 

Member weighting constant m 2,00 0,112 
Candidate weighting constant n 0,36 0,785 

Merge probability pm 18,91 0,000 
Deletion probability pd 17,64 0,000 
Groups to be merged � 3,10 0,078 
Groups to be deleted � 0,86 0,355 
Mutation probability p 3,23 0,012 

Duplicates elimination policy de 9,43 0,002 

Summary of results returned for each parameter. R2 = 37,18%. p-
values bellow 0,05 (CI=95%) suggest that the parameter setting is 
relevant for the permut-POA performance. 

838



 
 

 

analysis with other standard evolutionary methods. Genetic 
algorithms (GA) are a vastly studied subfield in evolutionary 
computation and it was our first choice. And particle swarm 
optimization (PSO) is a more recent optimizer, but it has 
proven its flexibility and efficiency to solve many problems 
in a wide range of domains [15]. PSO was our second 
choice. We may say that permut-POA is in its initial and, 
thus, standard version, so to try to make a fairer 
comparative, standard versions of GA and PSO were also 
implemented.  

 

 
Fig. 2.  Interval plot (95% confidence interval for the mean) resulting 
from running a one way ANOVA for the de parameter. 

 

A. Permut-GA 
Different approaches to GA can be taken to deal with 

permutation problems. Standard typologies use to 
distinguish between order problems (e.g. job scheduling 
problem) and adjacency problems (e.g. travel sales person 
problem) [7]. A specific set of recombination and mutation 
operators already exists for each of these two kinds of 
problems. Most common mutation operators are swap 
mutation, insert mutation and scramble mutation [16]. 
Additionally, inversion mutation [17] was introduced to 
handle adjacency problems. Usual choices for recombination 
operators include partially mapped crossover [18] and edge 
crossover [19] for adjacency problems; and order crossover 
[20] and cycle crossover [21] for order based problems. GAs 
that use specific representation and operators for handling 
permutations can be called permutation GAs or permut-GAs. 

We developed a permut-GA for order problems because 
all our test cases were instances of this type of problems. 
Order recombination and swap mutation were chosen. 
Tournament selection was our strategy for parent selection, 
and a generational model with elitism was our preferred 
choice for the replacement strategy. Elitism was introduced 
to keep track of the best individuals in the population in 
order to mitigate the possible destructive effect that 
generational replacement introduces. Our decisions were 
based mainly on the ease of implementation of each strategy. 

The permut-GA was tested and tuned using the approach 
described in section III for the permut-POA. Our permut-GA 
has four parameters that require tuning: population size (�), 

tournament size (k), mutation rate (p) and elitism’s size (n). 
Their final values were �=20, k=�/3=7, p=0.5 and n= 
�/2=10. After running all tests, we found that permut-GA 
also succeeded in all test. 

B. Permut-PSO 
Original PSO [22, 23] is intended to work on continuous 

spaces. A discrete binary version of the PSO was presented 
in [24]. This version uses the concept of velocity as a 
probability of changing a bit state from zero to one or vice 
versa. A version that deals with permutation problems was 
introduced in [10]. In this latter version (permut-PSO 
hereafter), velocity is computed for each element in the 
sequence, and this velocity is also used as a probability of 
changing the element, but in this case, the element is 
swapped establishing its value to the value in the same 
position in nbest (the best position found so far by the 
current particle and its neighbors). Mutation is also 
introduced in permut-PSO to avoid stagnation; just after 
updating each particle´s velocity, if the current particle is 
equal to nbest then two randomly selected positions from the 
particle sequence are swapped. In [10] is also demonstrated 
that permutation PSO outperforms genetic algorithms for the 
N-Queens problem. So we decided to try this version with 
all its settings. 

Each particle shares its information with a, usually fixed, 
number of neighbor particles to determine nbest. 
Determining the number of neighbor particles (neighbor 
size) and how neighborhood is implemented has been a 
subject of deep research in an area that has been called 
sociometry. Topologies define structures that determine 
neighborhood relations, and several of them (ring, four 
cluster, pyramid, square and all topologies) have been 
studied. It has been proved that fully informed approaches 
outperform all other methods [25]1. The fully informed 
approach prompts using ‘all’ topology and a neighborhood 
size equal to the total number of particles in the swarm (i.e. 
every particle is connected with all other particles). 

One important PSO advantage is that it uses a relatively 
small number of parameters compared with other techniques 
like genetic algorithms. However, much literature on PSO 
parameter subject has been written. Among it, [10] presents 
a configuration setting that works properly for solving 
permutation problems. So we decided to follow these 
recommendations, and parameters were set as follows: 
Learning rates (c1, c2) are set to 1.49445 and the inertial 
weight (w) is computed as Q � �c# J *Sd�e*+f +. Permut-
PSO was tested and it succeeded in all test cases. 

C. Experimental Comparison 
In order to carry out a comparative analysis each agent 

was executed to solve each of the 100 random test cases. 
The best parameter configuration for each agent was set. The 
 

1 What this work really concludes is that an all topology is the best 
option for the canonical PSO, in terms of succeed rate, for a set of standard 
test functions. This study stresses the importance that the tuple 
topology/PSO version conforms. 
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problems. In this paper, we have presented an adaptation of 
this social metaphor designed to work with permutation sets. 
Biasing of regular members is redefined as a probability to 
perform a swap towards a candidate. Results demonstrate the 
potential of this new method in relation to other well 
established optimizers. It is also demonstrated that POA 
outperforms standard versions of genetic algorithms and 
particle swarms. Improvement is especially relevant when 
POA is compared with a standard genetic algorithm. POA is, 
furthermore, easy to develop and seems to scale well. 
Pointing at its possible drawbacks, it shall be noticed that it 
has too many parameters. This study just includes an initial 
analysis concerning parameter tuning that tries to determine 
which parameters are relevant along with convenient values 
for them. Experiments suggest that parameters are easy to 
tune, thus enabling flexible parameters’ settings. But, in our 
opinion, further work is required on this topic to establish 
possible dependencies between parameters that further 
facilitate POA implementation and tuning. Results also 
return a significant resemblance in terms of efficiency when 
POA is compared with PSO. This may not be so surprising 
when both metaphors are further inspected. PSO combines 
local and social exploration, while POA reduces exploration 
to the social component. POA capacity to dynamically adjust 
population size is, in authors’ opinion, an important feature 
that may explain POA’s observed efficiency when compared 
with PSO. We think that further research may also be 
conducted in order to determine possible equivalences 
between both optimizers, along with hybrid methods devised 
to exploit both methods strengths. Comparison with other 
exact and stochastic methods also arises as natural research 
course to further explore this parliamentary metaphor. 
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