Abstract

* The aim of this research paper is to present a review of
thee of the main software effort estimation methods, focused
n Parametric models, that have been developed and then
commercialized across the software engineering history.

These models, among others, have been considered as the
basis of the recent software project effort estimation and
lay conforms the nucleus of some of the most important
‘companies of software effort estimation.

For each model is shown its main features, publications
‘and equations that allow us 1o see as a whole the operation
implementation of each of these effort estimation

i __Introduction to Software Cost Estimation

The more software becomes important in almost every
rman activity, the more it becomes complex and difficult
mplement. Even if modern software technologies render
asier the development of certain types of software
ducts, increased user demands and new application
omains produce additional problems. It is not surprising
1at software project management activities are becoming
creasingly important.

- One of the most critical activities during the software
fé cyele is that of estimating the effort and time involved
1 the development of the software product under
onsideration. This task is known as Software Cost
stimation (see Figure I).

/ Estimations may be performed before, during and after
le development of software. The cost and time estimates
¢ necessary during the first phases of the software life
yele, in order to decide whether to proceed or not
feasibility study). Accurate estimates are obtained with
reat difficulty since, at this point, available data may not
€ precise, wrong assumptions may be made, etc. During
he development process, the cost and time estimates are

135

A Review of Parametric Effort Estimation Models for the Software
Project Planning Process

_Pablo Rodriguez-Soria®, J.J. Cuadrado-Gallego®®, J.A. Gutiérrez de Mesa®, Borja Martin-Herrera®

@ Universidad de Alcald, Departamento de Ciencias de la Computacion, 28805 Alcald de Henares, Madrid, Spain
b Ecole de Téchnologie Superieure (ETS) — Université du Québec a Montreal, Canada

{pablo.rsoria, jjeg, borja.martinh} @uah.es

useful for the initial rough validation and the monitoring of
the project’s progress. After completion, these estimates
may be useful for project productivity assessment.

Estimation methods fall in three main categories,
namely expert judgment, machine learning and algorithmic
cost estimation. Expert judgment [13] relies purely on the
experience of one or more experts. Machine Learning
estimation [19, 4], compares the software project under
consideration with few (e.g. two or three} similar historical
projects (i.e. projects with known characteristics, effort and
schedule) using different automated or iterative rules.
Algorithmic cost estimation involves the application of a
cost model, i.e. one or more mathematical formulas which,
typically, have been derived through statistical data
analysis.

N '
3. Maching Learning
models

-
1. Algorithwniz models 2. Expart udgment

rodels
COCOMO

SLIM - Neural Natworks

~ Fozzy Logis

- Casebase reasoning
- Aralogy

- Rule based

- Ragression trees

« Hybrid systems

- Rula Industion

Loc

A S

Figure 1. Software Cost Estimation Models

All of the three approaches have known advantages and
disadvantages. Expert judgment is easy to apply and
produces fast evaluation but suffers from the difficulty to
find real experts and is exposed to wrong subjective
agsessment. Machine Learning models concentrate on a
conerete, well-defined estimation framework provided that,
suitable projects of the past may be easily found and the
mechanism applied is correct. Parametric models are very
useful when they are used correctly after they have been
calibrated with historical data reflecting the characteristics
of the estimated project.

1t is important to remark that no single technique is best their inability to accurately predict the costs involved,
for all situations, and that a careful comparison of the Accurate software cost estimates are critical to both
results of several approaches is most likely to produce developers and customers. They can be used for generating
realistic estimates. In this survey, we are going to focus request for proposals, contract negotiations, scheduling,
onto Algorithmic Models, also known as Parametric monitoring and control. Underestimating the costs may
Models. result in management approving proposed systems that then

The rest of this paper is structured as follow: Section 2 exceed their budgets, with underdeveloped functions and
introduces the reader to Parametric Models and its features. poor quality, and failure to complete on time.
Section 3 presents three Parametric Commercial Models Overestimating may result in too many resources
that we have chosen due to their historical relevance. committed to the project, or, during contract bidding, result
Finally, Section 4 outlines the Conclusions and the main in not winning the contract, which can lead to loss of jobs.

objectives raised in this research. Accurate cost estimation is important because:
. . . * It can help to classify and prioritize development
2. Cost Estimation focused on Parametric projects with respect to an overall business plan,
Models * It can be used to determine what resources to
comumit to the project and how well these resources
Since the 1970s, a considerable amount of the software will be used.
cost estimation research has been focused on the »

It can be used to assess the impact of changes and
support re-planning.

* Projects can be easier to manage and control when
resources are better matched to real needs,

development of new and improved cost estimation models,
New models have been proposed and existing models have
been compared and validated.

Parametric Models were the most used techniques in the

beginning of Software Cost Estimation. These models " Customers expect actual development costs to be in
correspond to the box 1 in Figure 1. Then we are going to line with estimated costs.

describe some issues about how these models work in Software cost estimation involves the determination of
Section 2.1; and how these models have been one or more of the following estimates:

comunercialized in section 2.2, * effort (usually in man-months)

* project duration (in calendar time)
" cost {in dollars)

The parametric, or statistical, method uses regression MOSt,COSt estilmation models attempt t‘o generate' an
analysis of a database of two or more similar systems to effort estimate, which can then be converted into the project

develop cost estimating relationships (CERs) which duration and cost. Although effort and cost are cl_osely
estimate cost based on one or more system performance or elated, they are not necessarily related by a Simple
design characteristics (e.g,, speed, range, weight, thrust). transformation function. Effort is often measured in

The parametric method is most commonly performed in the ~ Ma/months (MM) Oof the programmers, analysts and
initial phases of product des cription and development, Project managers. This effort estimate can be converted into

Although during this phase an acquisition program is a_doIlar cost ﬁgur_e by calculating an average _salar}t per unit

unable to provide detailed information (like drawings and time of the staff mvolved, and then multiplying this by the

standards), the program can specify top-level system ©stimated effort required. .

requirements and design characteristics. In other words, . Most cost models are based on the S1z& measure, such as

estimating by parametric is a method to show how Lines of Code (LOC) 2] and Function Points (FP) i,

parameters influence cost. ob{ainefl ﬁ'gm size estimation. The accuracy' of size
Parametric estimating is used Wi dely in government and ~ ©Stimation directly impacts the accuracy of cost estimation.

industry because it can vield a2 multitude of guantifiable .

measures of merit and quality (i.e., probability of success, 2+2. Commercial Tools

levels of risk, etc.). Additionally, CERs developed using the

2.1. Parametric Models

parametric method can easily be used to evaluate the cost Since the mid 1990%s there have been about 50
effects of changes in design, performance, and program commercial software cost estimation tools marketed in the
characteristics, United States and another 25 in Europe, although not all at

The fast changing nature of software development has the same time. Many of these tools are “black boxes” and
made it very difficult to develop parametric models that their methods of opt?ration are proprietary and reg.arded as
vield high accuracy for software development in all trade secrets by their owners [12]. However, while these
domains. Software development costs continue to increase Sstimating tools were developed by different companies and
and practitioners continually express their concems over

136

are pot identical, they do tend to provide a nucleus of
common functions and public equations.

The software cost estimation market was created by
researchers who were employed by large enterprises that
built large and complex software systems: 1BM, RCA,
TRW, and the U.S. Air Force were the organizations whose
research which led to the development of commercial cost
estimating tools.

Commercially available cost estimation tools try to offer
the user greater utility by packaging the parametric model
with a user interface, database of completed projects, sotne
way of estimating the size of the project, and/or context-
sensitive help.

Whatever features any tool may have, most parametric
models are likely to employ one or more of three
methodologies; Putnam methodology [15] is based on the
insight that efficiently run software projects follow well-
defined patterns that can be modeled with a set of
exponential equations. COCOMO II [5] is a continuation of
work begun by Dr. Barry Boehm at USC. Monte Carlo
simulation models complex interactions in the face of
uncertain estimating assumptions.

As of 2009, some of these estimating tools include
CcOCOM(O I, CoStar, CostModeler, . CostXpett,
KnowledgePlan, PRICE S, SEER, SLIM, and SoftCost.
Some older automated cost estimating are no longer being
actively marketed but are still in use, such as CheckPoint,
COCOMO, ESTIMACS, REVIC, and SPQR/20. Since
these tools are not supported by vendors, usage is in
decline. The major features of commercial software
estimation tools include these attributes:

Sizing logic for specifications, source code, and test
cases
Phase-level, activity level, and task-level estimation

Adjustments for specific work periods, holidays,
vacations, and overtime

Adjustments for local salaries and burden rates

Adjustments for various software projects such as
military, systems, commercial, etc.

Support for function point metrics, lines of code
metrics, or both.

Support for “backfiring” or conversion between
lines of code and function points

Support for both new projects and maintenance and
enhancement projects

Some estimating tools also include more advanced
functions such as:
Quality and reliability estimation
Risk and value analysis
Return on investment (ROI)
Sharing of data with project management tools
Measurement modes for collecting historical data

137

Cost and time to complete estimates mixing
historical data with projected data

Support for software process assessments

Statistical analysis of multiple projects and portfolio
analysis

Currency conversion for dealing with overseas
projects

3. Review of 3 Parametric Commercial
Models

In this section, three of the most relevant models in
software cost estimation history will be freated. We have
reviewed these tools trying to show their main features,
publication dates and central equations. The models in
review are: SLIM, SEER-SEM and SPR-Knowledge Plan.

3.1. SLIM — Putnam — 1979

SLIM; Software Lifecycle Management.

First Publication: Putnarn, 1978 {15]

Patent: Quantitative Software Management (QSM;.
Tools:

1.

2.

SLIM-Estimate. It is a project planning tool.

SLIM Control. It is a project tracking and control
tool,

3. SLIM Metrics. It is a software benchmarking tool.

Larry Putnam and Ann Fitzsimmons founded
Quantitative Software Management (QSM) and build the
first version of SLIM in 1979. It became the second
commercial software cost estimation tool on the market.

This model is based on the software lifecycle analysis of
Putnam in terms of the size distribution of the development
team of a software product against the time that follows a
distribution of Rayleigh and it is based on the work of
Norden [14] and Aron [3]. Norden observed through the
graphical representation of the personnel distribution
frequencies during the development and maintenance
phases of many projects implemented in IBM, that the
curves resembled quite to the distribution curves of
Rayleigh since 90% of the project was completed in two-
thirds of the total time, while the remaining 10% needed a
third of the total time remaining to be completed. Although
this distribution was purely empirical, Norden found no
theoretical basis for it.

SLIM supports the widespread methods of size
estimating, including the source lines of code and function
points. It can predict the size of the project, the effort, the
development time and the proportion of defects.

Equations: The equations of the model have not been
edited for the public domain, although the central
algorithms of the model were published by Putnam [16].
These are the ones collected here:

1. Size: e=c (Ep"”. (i)™

Where ¢ is the size in SLOC, E, is the total effort
needed to complete the project, selected form a
database of previous projects, ¢ is a constant of the
project called by Putnam Technological Factor, this
factor reflects the effect of munerous costs drivers as
the constraints of hardware, the complexity of the
program, the personnel levels of experience and the

programming environment. f; is the total
development time of the project.
2. Effort: E(t) = Ed(l -2~} a= —
’ 2rdy*

Where Eft) is the effort that has been consumed in
MM in order to develop the project during # months,
a is a constant of the project that determines the
curve, it is also obtained form previous projects.

3.2. SEER-SEM - 1989

SEER-SEM; System Evaluation and Estimation
Resources - Software Estimation Model.

First Publication: Jensen, 1983 [10]

Patent: Galorath Associates Inc.

Tools:

SEER-SEM.

It is based on the Model of Jensen of 1979 [9], which is
based on the Model of Putnam of 1977 [15].

The scope of the model is broad and covers all phases of
the lifecycle, from the first specifications, until design,
development, delivery and maintenance. It manages a wide
variety of development environment configurations and
types of applications, such as client — server, distributed,
graphics, etc. It manages the development methods and
languages more used. The development methods include
objects oriented, reuse, development in spiral, cascade, of
prototypes and incremental. Languages include both the
3rd and 4th generation (C++, FORTRAN, COBOL, Ada,
etc.) as well as application generators. It allows taking as
constraints the capacity of the development team, the
design standards and process required, and the levels of an
acceptable development risk. Among the characteristics of
the model, the following are included:

It allows that the level of the estimation
probabilities, the development team and the
development time are inputs as independent
variables.

It allows an extended sensitive analysis and a
monitoring of the input parameters of the model.

It shows the project cost drivers,

It allows and interactive adjustment of the schedule
of the project elements through Diagrams of Gantt.
It builds the estimates by a knowledge base of
existing projects.

138

The model specifications include:

1. Parameter: Size, personnel, complexity,
development environment, method of development
and acquisition, applicable standards.

. Predictions: Effort, development time, development
team, defects, costs. The estimates may be based in
development time or effort. The constraints can be
specified at the development time or development
team.

Risk Analysis

4. Methods for Size Estimating: Function Points,
approved by IFPUG (International Function Points
User Group) [7] in addition to an increased set and
lines of code, both new and existing ones.

Figure 2 is adapted from a Galorath illustration and
shows gross categories of model inputs and outputs, but
each of these represents dozens of specific input and output
possibilities and parameters. The reports available from the
model cover all aspects of input and output summaries and
analyses numbers in the hundreds.

npurs Lhgrpars
Ste Effort
5 4
) i Cast
Pepisiel] \\ / v o
. «* I
iy oo
e Bcliedudt
Envizonmen — g SEER-SEM
R
~
ettt A B
Coangiexsty f‘ e Y e
N,
< kY
A L]
Cumpozaing Relmbilaty

Figure 2. SEER-SEM Inputs and Outputs

As part of this effort, Galorath maintains a software
project repository of approximately 6,000 projects (and
growing). About 3,500 projects containing effort and
duration outcomes are stored in a unified repository that can
be readily accessed for studies. SEER is also available with
data repositories from The International Software
Benchmarking Standards Group (ISBSG) [8]. ISBSG
provides the largest open repository of software project
history and includes standardized, verifiable data from over
4,000 software projects.

These projects are from both defense and commercial
sources representing many development organizations,
permitting calibration of the model to a wide array of
potential projects. Additional project outcomes, in the
hundreds, are also available to the company, which has also
collected sizing and other information on thousands of
additional projects. Analysis involves running project data
through SEER-SEM using a special calibration mode. The

“model is essentially run backwards to find calibration
* factors.

Productivity factors are evaluated across different data
ttributes (e.g. platform, application, etc.) to detect trends.

* A variety of methods are used to mitigate outlier data points

nd control for variation. The variance in the data set is also

“used to establish default parameter ranges; nearly all
" settings accommodate risk. Model settings are updated as
- pew trends are established.

SEER technology provides project results by generating
a virtual project based on:

s The SEER Modeling Engine: SEER mathematical
modeis are derived from extensive software project
histories, behavioral models, and metrics. SEER for
Software (SEER-SEM) employs a multi-faceted
approach to project estimating, leveraging industry
and/or company project histories and proven
formulaic cost relationships.

» SEER Knowledge Bases: Serve as a virtual “in-
house expert,” providing default values, ranges, and
calibrations based on comparable software project
histories.

Together, these capabilities enable users to develop

first-look estimates when very little information is known,
.and to those estimates as details become available over
time.

Equations: The equations of the model have not been

> edited for the public domain, although a few of the central
- algorithms of the model were published by Jensen {9] and
- collected here:

1. Size: s=c (td) (Ed)1/2

Where s is the size in SLOC, E, is the total effort
needed to complete the project, sclected from a
database of previous projects, ¢ is a constant of the
of the project called Technological Factor of Jensen,
this factor reflecis the effect of numerous costs
drivers such as the hardware constraints, complexity
of the program, the ievels of the team experience
and the programming environment. #; is the total
development time of the project.

f2yd fan
2. Effort; e =04 lw,i l‘\;;)

1

Ly

Where e represents the Effort measured in MM and ¢
is the time consumed since it began development, K
is the total effort of the lifecycle.

3.3. SPR-Knowledge Plan - 1997

Patent: SPR — Software Productivity Research

SPR Knowledge PLAN is a commercial Windows-
based sofiware estimating tool from Software Productivity
Research (SPR).

Launched in 1997, SPR Knowledge FLAN was the first
powerful, knowledge-based software estimation tool to
combine project estimation and scheduling in a flexible
environment. This tool quickly creates and refines detailed
project plans for seamless export to Microsoft Project or
other. enterprise project management systems.

SPR Knowledge PLAN is a software tool designed to
help in planning software projects. With this tool, the user
can effectively size each project and then estimate work,
resources, schedule, and defects. User can even evaluate
project strengths and weaknesses to determine their impact
on quality and productivity.

Figure 3. Knowledge Plan LifeCycle

N [PA—
LT

M
g tnerd e = — T P
: LRI Data redvinny CBaedid T i
- KReosuts — I - Daboidal.
Anvaly s f i annwan (Ot
m i wting
s FPTXIE 1T po] Ravieny

SPR Knowledge PLAN provides a complete and
rational view of all tradeoffs among features, schedules,
quality and costs. User can explore the cost/value
implications of additional resources, more powerful
languages, development tools, improved methods and other
technical changes. User can also track milestones,
schedules, resources, actual work effort, and defects found.

139

This estimation tool provides a bi-directional interface
with project management applications to create an
imegrated, full life-cycle solution. For convenience, some
project management functions such as critical path
scheduling are offered.

Knowledge Plan collects information at the project
level, using a “representative sample approach.” The

sample projects selected reflect the work patterns of user’s
organization itself, e.g, a mix of new projects,
enhancements, and those with special factors such as high
usage of contractors or integration of packages. In the
analysis, the project data is summarized to create a
complete and accurate picture of the organizational.

SPR uses its expertise in measurement to assist clients
in establishing meaningful portfolio and project
baselines. Then, SPR draws on its extensive industry
knowledge base, derived from more than 14,531 completed
software projects of all types, as a reference point against
which to compare (benchmark against) client baseline data.
It is the actual organizational data that forms the baseline
and the comparative analysis against industry data that
constitutes the benchmark.

4. Conclusions

Software estimating is simple in concept, but difficult
and complex in reality. The difficulty and complexity
required for successful estimates exceeds the capabilities of
most software project managers to produce effective
manual estimates. The commercial software estimating
tools can often outperform human estimates in terms of
accuracy, and always in terms of speed and cost
effectiveness.

However, no method of estimation is totally error-free.
As mentioned before, the current “best practice” for
software cost estimation is to use a combination of software
cost estimating tools coupled with software project
management tools, under the careful guidance of
experienced software project managers and estimating
specialists.

The fundamental objective raised in this research was
the study and the analysis of three of the main software
effort estimation methods, focused on Parametric models,
that have been developed and then commercialized across
the software engineering history.

With this review, we have tried to show how these
estimation models work and which their main features are.
Taking a clear view of these estimation models as a whole,
we will be able then to understand how actual software
project estimation companies has gained an important
“piece” of the today software industry market.

Acknowledgement

We would like to thank the University of Alcald for
supporting this research (Ph.DC researchers support
programme).

References
[1] Albrech, A. “Measuring Application Development
Productivity”, Proceedings of the IBM Application

140

Development Symposium, GUIDE/SHARE, California,
USA, pp. 83-92, 1979,

Albrecht, A.J., and Gaffney, J.E. "Software function, source
lines of code, and development effort prediction: A software
science validation," IEEE Transactions on Software
Engineering (SE-9:6), pp 639-643, 1983.

Aron, J. “Estimating Resources for Large Systems”, In
NATO Conference Report on Software Engineering
Techniques, Eds. LN. Buxton y B.Randel, Rome (ltaly),
1969,

Bisio, R. and F. Malabocchia. 'Cost estimation of software
projects through case base reasoning, in Proc. lst Intl. Conf.
on Case-Based Reasoning Research & Development .
Springer-Verlag, 1995.

Boehm, B., Clark, B., Horowitz, E., Madachy, R., Selby, R,
and Westland, C. “Cost Model for Future Software Life
Cycle Processes: COCOMO 2.0”. Annals of Software
Engineering Special Volume on Software Process and

Product Measurement, Eds. 1.D. Arthur, S.M. Henry and
LC. Balizer, Ed. AG Science Publishers, Amsterdam
(Netherlands), Vol. 1, 1995,

Freiman, F.R., and Park, R.E. "The PRICE software cost
model,” Proceedings of the IEEE National Aerospace and
Electronics Conference NAECON, p. 500, New York, USA,
1979.

IFPUG, Interpational Function Points Users Group,
“Functien points counting practices manual 4.1.17. Ohio,
USA, 1999,

ISBSG, International Software Benchmarking Standards
Group repository, Release 10. http//www.isbsg.org

Jensen, RW. "A macro-level software development cost
estimation methodology”. Conference Record of the
Fourteenth Asilomar Conference on Circuits Systems &
Computers, p. viit+520, 1979,

Jensen R. “An improved Macrolevel Software Development
Resource Estimation Model”. Proceedings 5th ISPA
Conference, pp. 88-92, 1983,

Jones, C. “Programming Quality and Programmer
Productivity”, IBM Technical Report TR-02-764, pp. 39-63,
1977.

Jones, C. “How sofiware estimation tools work”. SPR
Technical Report, Version 5 ~ February 27, 2005,

Jorgensen, M. “A Review of Studies on Expert Estimation
of Sofiware Development Effort”. Journal of Systems and
Software 70 (1-2): pp. 37-60, 2004.

Norder, P.V. "Curve fitting for a model of applied research
and development scheduling,” A-IBM Systems Journal
(2:3), 1958,

Putnam, L.H. "A general empirical solution to the macro
software sizing and estimating problem,” IBEE Transactions
on Software Engineering (SE-4:4), pp 345-361, 1978,
Putnam, Lawrence H., and Ware Myers. “Measures for
Excellence: Reliable Software on Time” Within Budget,
Englewood CLiffs, NJ: Yourdon Press, 1992,

[17] Shepperd, M.J., C. Schofield, and B.A. Kitchenham. 'Effort
estimation using analogy', in Proc. 18th Intl. Conf. on Softw.
Eng. Berlin: IEEE Computer Press, 1996.

(2

13

(4]

[5]

61

(7

(8]

9]

[10]

(11]

{12

[13]

[14]

{15]

[16]

