
Determining the Standard Deviation for COSMIC
Software Functional Size Measurement

Pablo Rodríguez-Soria1, Borja Martín-Herrera, Marian Fernández de Sevilla,
José J. Martínez-Herráiz, María J. Domínguez-Alda, Alberto Lucendo Patiño

CuBIT, Software Measurement Lab., Department of Computer Science, University of Alcalá, Madrid, Spain

1Contact Author: pablo.rsoria@uah.es / Conference: SERP’09

Abstract – Software Functional Size has become over
the years in the main variable to carry out the effort and
time needed to perform a software project. This growth
has led to the interest shown in the study and
development of these units of measurement as well as the
optimization of them. IFPUG Function Points has been
since its definition the more widely used model.
However, has recently emerged a new method called
COSMIC that has brought new features and benefits
being proposed as a second generation unit for
functional software measurement.

The aim of this research paper is the study of the
error introduced in the interpretation of the unit
application rules, focusing on COSMIC unit. This error
can lead to measurement dispersion due to the
subjectivity when the application is measured. Thus,
conclusions about the dispersion degree generated will
be drawn according to the software functional size data
statistical analysis of its main variables.

Keywords: Software Engineering, Software
Measurement, Functional Size Measurement, IFPUG,
COSMIC.

1 Introduction
In order to be able to correctly analyze the basis of

Software Measurement we have certainly to talk about
Software Functional Size, which has become a key aspect
in managing software projects by estimating the effort and
time required (amount of personnel, time and cost,
resources, etc.).

Following this line, the first method used in the
measurement of software functional size was the SLOC
(Source Lines of Code), which consists into calculate the
amount of source lines of code and then apply some
equation to consider the effort estimated. This unit was
showed efficient in the estimates of different aspect such as
error ratios or team productivity ratios but had the

inconvenient that you cannot measure the functional size
of the given software project until the application was
completely built.

Different lines of research were tried until Allan
Albrecht [1] proposed in 1979 a new and revolutionary
measurement unit called Function Points. He defined with
the collaboration of his colleague John Gaffney [2] this
new method based on the functional size of the different
applications. The main novelty of this method consists in
that you can apply it when the documentation is available
during early phases in the project and is not necessary to
wait until the application is built to measure the amount of
functionality of each application.

Then, in 1986 the International Function Points User
Group (IFPUG) was founded in order to solve software
project management issues and to standardize and to
properly define the operation of this unit and its project
application. Thus, this measurement unit changed its name
from Albrecht´s Function Points to IFPUG Function Points
Analysis (IFPUG FPA).

Several versions of IFPUG FPA have been developed
since then [9-15] (the actual version is v4.2), and
consequently several measurement methods or units have
been produced on the basis of Function Points [8]. These
methods present some advantages compared with their
predecessor. Next we are going to list the most relevant
and the ones that have been recognized as the
International Organization for Standardization (ISO) de
jure standards:

 IFPUG v.4.1, 1998. Standard ISO/IEC 20926 [17]

 NESMA v.2.1, Standard ISO/IEC 24570 [19]

 MK II v.1.3.1, Standard ISO/IEC 20968 [20]

 COSMIC v2.2. Standard ISO/IEC 19761 [18]

 FISMA FPA v1.1 Standard ISO/IEC 29881 [7]

After the analysis made along this article the
following key findings were obtained:

 The dispersion of the measurements using the unit of
measurement COSMIC conforms to a normal
disperse, in such a way that in an interval of 60%
around the average (AV) are located the 95% of the
measures taken.

And in an interval of 50% around the average (AV) are
located the 90 % of the measures taken.

In this case, for the 95% of the data for COSMIC, the
60% of the values around the average could be
considered that these would be the maximum limits of
the horizontal dispersion of measurements. The
intervals become narrower with values of 50% around
the average for the 90% of the data. Since they have
done with measurers with low experience it would be
logical to think that if the measures were undertaken
with measurers with more experience the margins of
error would be lower.

 The second conclusion would relate to the identification
of the main sources of error in the performance of the
measures. Thus, for COSMIC we have identified the
variable W as the main source of error or dispersal.

 In addition, as part of this research the problem of
the data collection has also been addressed for this kind of
studies and, in that sense, it has been proposed a repeatable
and contrasted procedure to the obtaining of reliable data
in an academic environment.

As future work in the scope of this research are
proposed the following:

 Implementation of new analysis on new sets of data
with the objective of verifying and scrub the results
obtained in this study, in particular those relating to the
sources of dispersion.

 Implementation of new analysis on a sample obtained
with expert measurers to experimentally test the
conclusion that the dispersion that is produced in such
sample is lower than that produced in a sample
obtained with low expert measurers.

Acknowledgement

We would like to thank the University of Alcalá for
supporting this research (Ph.DC researchers support
programme).

References

[1] Albrecht A. J., "Measuring application development
productivity," en Proc. Joint SHARE, GUIDE, and
IBM Application Development Symposium, IBM,
pp. 83-92.

[2] Albrecht A. J. & Gaffney J. E., "Software function,
source lines of code, and development effort
prediction: A software science validation," IEEE
Trans. Software Eng., vol. 9, no. 6, pp. 639-647.

[3] Common Software Measurement International
Consortium, “COSMIC-FFP Measurement Manual
2.0”

[4] Common Software Measurement International
Consortium, “COSMIC-FFP Measurement Manual
2.1”

[5] Common Software Measurement International
Consortium, “COSMIC-FFP Measurement Manual
2.2”

[6] Common Software Measurement International
Consortium, “COSMIC-FFP Measurement Manual
3.0”

[7] FISMA, “PAS Submission to ISO/IEC JTC1/SC7 –
Information Technology – Software and Systems
Engineering – FISMA v1.1 Functional Size
Measurement Method”, 2006, Finnish Software
Metrics Association, URL: www.fisma.fi/wp-
content/uploads/2007/02/fisma_fsmm_11_iso-final-
1.pdf

[8] Gencel C., Demirors, O,, “Functional Size
Measurement Revisited”, Scheduled for publication
in ACM Transactions on Software Engineering and
Methodology, July 2008, URL: http://tosem.acm.org/

[9] International function points users group, “Function
points counting practices manual 2.0”

[10] International function points users group, “Function
points counting practices manual 3.0”

[11] International function points users group, “Function
points counting practices manual 4.0”

[12] International function points users group, “Function
points counting practices manual 4.1”

