
Engineering the ontology for the Software
Engineering Body of Knowledge: Issues and
Techniques

Alain Abran

École de technologie supérieure, Université du Québec,
alain.abran@etsmtl.ca

Juan-José Cuadrado

Computer Science Department, University of Alcalá, jjcg@uah.es

Elena García

Computer Science Department, University of Alcalá,
elena.garciab@uah.es

Olavo Mendes

École de technologie supérieure, Université du Québec, olavomen-
des@gmail.com

Salvador Sánchez

Computer Science Department, University of Alcalá, Salva-
dor.sanchez@uah.es

Miguel-Angel Sicilia

Computer Science Department, University of Alcalá, msicilia@uah.es

(alphabetical order)

Abstract

The process of collaborative elaboration of the Guide to the Software En-

gineering Body of Knowledge (SWEBOK) has produced a notable consen-

sus on the scope of this discipline, and the continuous review process pro-

vides a mechanism for its enhancement and extension. The SWEBOK has

motivated several research initiatives that attempt to engineer an ontology

of Software Engineering both as an artefact for applications and also as a

vehicle for the review and evolution of the Guide. Existing approaches to

develop an ontology of the SWEBOK provide different perspectives on the

process, from the more conceptually oriented to the more logics-

operational. This chapter summarizes the different perspectives and pro-

vides an integrated synthesis of approaches in addition to a discussion of

the main concepts that cross-cut the Knowledge Areas defined currently in

the SWEBOK.

1 Introduction

Auyang (2004) described engineering as “the science of production”. This

and many other definitions of engineering put an emphasis on disciplined

artefact creation as the essence of any engineering discipline. However, the

material object produced by every engineering discipline is not necessarily

of a similar nature. The case of Software Engineering is particularly rele-

vant in the illustration of such differences, since software as an artefact is

acknowledged as a very special piece of human work. The special nature

of software was attributed by Brooks (1987) to “complexity” as an essen-

tial characteristic. The following quote from Brook’s paper illustrates the

presupposed impact of complexity in the activities of engineering.

Many of the classic problems of developing software products derive from this

essential complexity and its nonlinear increases with size. From the complexity

comes the difficulty of communication among team members, which leads to

product flaws, cost overruns, and schedule delays. From the complexity comes the

difficulty of enumerating, much less understanding, all the possible states of the

program, and from that comes the unreliability. From complexity of function

comes the difficulty of invoking function, which makes programs hard to use.

From complexity of structure comes the difficulty of extending programs to new

functions without creating side effects. From complexity of structure come the un-

visualized states that constitute security trapdoors.

The term “essential” (as opposed to “accidental”) is a well-known tool for

ontology engineers (Welty and Guarino 2001), which helps in determining

the properties of concepts that objects possess “always and in every possi-

ble world”. The position of Brooks on the essentials of the object of the

discipline leads to a particular conception of Software Engineering as a

human endeavour that attempts to tackle an inherently complex problem,

since it takes as a point of departure that complexity is a feature that can

not be removed from the engineering process. Consequently, it is difficult

to consider methods that are definitive for the production of software, and

the field is expected to be changing as methodologies are introduced and

applied in an attempt to manage to the extent possible the complexity of

the activities. This has a consequence on research and inquiry, since the

qualities of a tool or method to tackle with software complexity are diffi-

cult to assess, and this in turn leads to a plurality of approaches. Such di-

versity in many leads to difficulties in contrasting the appropriateness of

techniques in terms of rational inquiry methods as those established by

Popper (1959) in his method for scientific discovery.

Empirical research on proposed software methods, processes, tools and

techniques are of course fundamental to the discipline. In addition, ontol-

ogy engineering is from our viewpoint also important for the evolution of

the science of Software Engineering, at least in two dimensions. On the

one hand, ontology may help in the organization and meta-analysis of em-

pirical data and empirical approaches (Brooks, 1997), also facilitating the

adequate comparison and evaluation of methods, techniques or tools. On

the other hand, ontologies translated into machine-understandable repre-

sentations may help in the development of computerized tools that, to

some extent, take into account the purpose and consequences of the di-

verse Software Engineering activities. Even though we de not believe that

ontologies would become a “silver bullet” for every software production

problem, they are promising tools to help in the work of researchers and

practitioners, and they would also serve as an element of analysis and dis-

cussion for engineers and for learning about the discipline.

Consensus-reaching approaches to ontology engineering are deemed as

appropriate for the crafting of representations of the concepts of some con-

crete domain. Nonetheless, in some domains the engineer can find pre-

existing processes of consensus-reaching on conceptual frameworks. This

is the case of Software Engineering, in which the SWEBOK project is the

result of a considerable effort on the collaborative production of a subset

of the knowledge of the discipline that is as of today subject to little con-

troversy in the community of researchers. In addition to the collaborative

effort, that will be briefly described next, the project adopts a literature-

based approach (Sicilia, García-Barriocanal, Díaz and Aedo, 2003) in se-

lecting some relevant articles. Thus, the SWEBOK guide provides a

ground of rationality and consensus that constitutes a valuable input for

ontology engineering.

The chapter of Ruiz and Hilera in this volume has provided an overview

of current approaches to the ontology of Software Engineering, some of

them based on the SWEBOK. This chapter concentrates now on the specif-

ics of two approaches to SWEBOK-based ontological inquiry that are

complementary in their objectives and methods.

The rest of this chapter is structured as follows. Section 2 provides an ac-

count of the SWEBOK as a project, its main principles and its method

from creation and revision. Then, Section 3 describes some results of a

process of inquiry on SWEBOK-based ontology from the viewpoint of the

experimental study of the process of rational argument and consensus-

reaching by software engineers. Then, Section 4 provides the complemen-

tary view of producing ontological representation linked to commonsense

knowledge bases, which provide the benefits of reuse of existing ontologi-

cal engineering and of being prepared for the construction of ontology-

based tools. On the basis of the experiences described in Section 3 and 4,

Section 5 sketches the main ontological elements distilled.

2 History and principles of the SWEBOK project

The Guide to SWEBOK should not be confused with the Body of Knowl-

edge itself, which already exists in the published literature. The purpose of

the Guide is to describe what portion of the Body of Knowledge is gener-

ally accepted, to organize that portion, and to provide a topical access to it.

The Guide to the Software Engineering Body of Knowledge (SWEBOK)

was established with the following five objectives:

1. To promote a consistent view of software engineering worldwide

2. To clarify the place–and set the boundary–of software engineering

with respect to other disciplines such as computer science, project

management, computer engineering, and mathematics

3. To characterize the contents of the software engineering discipline

4. To provide a topical access to the Software Engineering Body of

Knowledge

5. To provide a foundation for curriculum development and for indi-

vidual certification and licensing material.

The first of these objectives, a consistent worldwide view of software en-

gineering, was supported by a development process which engaged ap-

proximately 500 reviewers from 42 countries in the Stoneman phase

(1998-2001) leading to the Trial version, and over 120 reviewers from 21

countries in the Ironman phase (2003) leading to the 2004 version. More

information regarding the development process can be found in the Preface

and on the Web site (www.swebok.org). Professional and learned societies

and public agencies involved in software engineering were officially con-

tacted, made aware of this project, and invited to participate in the review

process. Associate editors were recruited from North America, the Pacific

Rim, and Europe. Presentations on the project were made at various inter-

national venues and more are scheduled for the upcoming year.

The second of the objectives, the desire to set a boundary for software en-

gineering, motivates the fundamental organization of the Guide. The mate-

rial that is recognized as being within this discipline is organized into the

first ten Knowledge Areas (KAs) listed in Table 1. Each of these KAs is

treated as a chapter in this Guide.

Table 1 The SWEBOK Knowledge Areas (KAs).

 Software requirements

 Software design

 Software construction

 Software testing

 Software maintenance

 Software configuration management

 Software engineering management

 Software engineering process

 Software engineering tools and methods

 Software quality

In establishing a boundary, it is also important to identify what disciplines

share that boundary, and often a common intersection, with software engi-

neering. To this end, the Guide also recognizes eight related disciplines,

listed in Table 2. Software engineers should, of course, have knowledge of

material from these fields (and the KA descriptions may make reference to

them). It is not, however, an objective of the SWEBOK Guide to charac-

terize the knowledge of the related disciplines, but rather what knowledge

is viewed as specific to software engineering.

Table 2 Related disciplines.

� Computer engineering � Project management

� Computer science � Quality management

� Management � Software ergonomics

� Mathematics � Systems engineering

2.1. Hierarchical Organization

The organization of the KA descriptions or chapters supports the third of

the project’s objectives – a characterization of the contents of software en-

gineering. The Guide uses a hierarchical organization to decompose each

KA into a set of topics with recognizable labels. A two- or three-level

breakdown provides a reasonable way to find topics of interest. The Guide

treats the selected topics in a manner compatible with major schools of

thought and with breakdowns generally found in industry and in software

engineering literature and standards. The breakdowns of topics do not pre-

sume particular application domains, business uses, management philoso-

phies, development methods, and so forth. The extent of each topic’s de-

scription is only that needed to understand the generally accepted nature of

the topics and for the reader to successfully find reference material. After

all, the Body of Knowledge is found in the reference material themselves,

and not in the Guide.

2.2. Reference material and Matrix

To provide a topical access to the knowledge–the fourth of the project’s

objectives–the Guide identifies reference material for each KA, including

book chapters, refereed papers, or other recognized sources of authoritative

information. Each KA description also includes a matrix relating the refer-

ence material to the listed topics. The total volume of cited literature is in-

tended to be suitable for mastery through the completion of an under-

graduate education plus four years of experience.

In this edition of the Guide, all KAs were allocated around 500 pages of

reference material, and this was the specification the associate editors were

invited to apply. It may be argued that some KAs, such as software design

for instance, deserve more pages of reference material than others. Such

modulation may be applied in future editions of the Guide.

It should be noted that the Guide does not attempt to be comprehensive in

its citations. Much material that is both suitable and excellent is not refer-

enced. Material was selected in part because–taken as a collection–it pro-

vides coverage of the topics described.

2.3. Depth of Treatment

From the outset, the question arose as to the depth of treatment the Guide

should provide. The project team adopted an approach which supports the

fifth of the project’s objectives–providing a foundation for curriculum de-

velopment, certification, and licensing. The editorial team applied the cri-

terion of generally accepted knowledge, to be distinguished from ad-

vanced and research knowledge (on the grounds of maturity) and from

specialized knowledge (on the grounds of generality of application). The

definition comes from the Project Management Institute: “The generally

accepted knowledge applies to most projects most of the time, and wide-

spread consensus validates its value and effectiveness”.1

Generally Accepted

Established traditional practices recommended

by many organizations

S
p
ec
ia
li
ze
d

P
ra

ct
ic

es
 u

se
d
 o

n
ly

 f
o
r

ce
r-

ta
in

 t
y
p
es

o
f

so
ft

w
ar

e

Advanced and Research

Innovative practices tested and used only by

some organizations and concepts still being

developed and tested in research organizations

Figure 1 Categories of knowledge

However, the term “generally accepted” does not imply that the designated

knowledge should be uniformly applied to all software engineering en-

deavors–each project’s needs determine that–but it does imply that compe-

tent, capable software engineers should be equipped with this knowledge

for potential application. More precisely, generally accepted knowledge

should be included in the study material for the software engineering li-

censing examination that graduates would take after gaining four years of

work experience. Although this criterion is specific to the U.S. style of

education and does not necessarily apply to other countries, we deem it

useful. However, the two definitions of generally accepted knowledge

should be seen as complementary.

1 A Guide to the Project Management Body of Knowledge, 2000 Edition, Project

Management Institute, Newport Square, PA. www.pmi.org.

3 The ontology of the SWEBOK from a conceptual and
consensus-reaching perspective

This Body of Knowledge is currently organized as a taxonomy subdivided

into ten Knowledge Areas designed to discriminate among the various im-

portant concepts only at the top level. Of course, the software engineering

knowledge is much richer that this high level taxonomy and currently re-

sides in the textual descriptions of each knowledge areas. Such textual de-

scriptions widely vary in style and content. The conceptual ontology ap-

proach is therefore used to analyze the richness of this body of knowledge,

to improve its structuring, and develop consensus on its detailed terminol-

ogy.

The development of the software engineering domain ontology requires

three phases: 1) Proto-ontology construction; 2) Internal validations cycle;

3) External validation (and possibly extension) cycle.

Proto-ontology construction: analysis and extraction (one SWEBOK KA

at a time) of the concepts, relations between concepts and axioms (asserted

necessary or necessary and sufficient conditions), terms and definitions ex-

isting in the SWEBOK Guide and related IEEE and ISO standards. Auto-

matic term extraction tools having as input a corpus of text in natural lan-

guage have been used to complete the list of concepts and relationships,

identified through the analysis of the documents already mentioned.

Internal validation cycle: a series of validation (and possibly extension)

cycles, at various instances levels (internal: ETS – UQAM – SPIN, etc.),

aiming to build a progressively larger consensus, concerning the elements

in the software engineering proto-ontology

External validation cycle: a series of external validation cycles will be

required, aided by internationally reputed software engineering domain

experts, to build progressively a consensus concerning the concepts, attrib-

utes and relations between class/concepts that should be present in the final

ontology.

Figure 1 The SWEBOK ontology project phases

The proto-ontology development phase has identified in the SWEBOK

Guide over 4,000 concepts, 400 relationships, 1,200 facts as well as 15

principles. Table 1 presents a breakdown by knowledge areas.

The testing maintenance and process knowledge areas include the largest

number of concepts and relationships, while the testing and quality include

most of the principles identified.
 Relationships Concepts Facts Principles

SWEBOK main structure 4 48 55 0

KA 1 Introduction 0* 0* 0* 0*

KA 02 Software Requirements 24 240 72 0

KA 03 Software Design 44 307 211 2

KA 04 Software Construction 21 214 63 0

KA 05 Software Testing 96 1001 165 7

KA 06 Software Maintenance 44 706 140 0

KA 07 Software Configuration

Management

31* 85* 46* 0*

KA 08 Software Engineering

Management

33* 72* 46* 0*

KA 09 Software Engineering

Process

45 587 134 1

KA 10 Software Engineering

Tools and Methods

19 263 62 0

KA 11Software Quality 34 447 61 5

CH 12 Related Disciplines of 12 171 32 0

Software Engineering

 TOTAL 407 4141 1087 15

* : partial counting (to be finalized)

Table 1 – Overview of quantity of elements currently in the SWEBOK proto-

ontology

The major contributions expected from this approach are: 1) Identification

of main inputs, outputs and activities to be performed in order to develop

the aimed ontology; 2) Identification of the main software engineering

concepts, terms, definitions, relations between classes/concepts (IsA, Part-

Whole, and other specifics relationships) and axioms describing the con-

cepts; 3) validation (and possibly extension) of the software engineering

ontology; 4), progressive building of a consensus concerning the concepts

in the ontology aided by international software engineering domain ex-

perts.

 Besides the benefits already mentioned in section 1, the use of the “soft-

ware engineering ontology” which is a result of this project may also con-

tribute to the development of additional content validation by automatic
cross-correlation validation (besides that which is already done already

done continuously by the SWEBOK review team) across the ten areas of

knowledge integrated in the SWEBOK Guide. This would ensure that all

concepts and definitions are used in a consistent fashion throughout all the

SWEBOK’s areas of knowledge.

4 The ontology of the SWEBOK as a formal artefact

As it has been said before, the SWEBOK guide provides a foundation for

the development of an ontology for Software Engineering, since it is the

result of a process of domain expert review and validation, and provides

references to other relevant sources. Nonetheless, the process of analysis

of the guide to come up with a logical coherent ontology is by no means a

simple process. Many of the entities described in the guide to the

SWEBOK are complex activities that produce interrelated artifacts. These

entities have temporal, material and conceptual facets that should be

clearly defined, and which are well-known in existing upper ontologies

and large commonsense bases. If the emphasis of ontology is in providing

computational semantics to the representation, formal approaches are re-

quired beyond the elaboration of consensual meanings as described above.

This change in focus can be considered as operational, in the sense that it

is a medium towards the end of providing automation or delegating tasks

to agents or software modules. This leads to a very different notion of the

ontology development process in which the criteria for inclusion is useful-

ness for computer-based applications. Such notion is aligned with the cur-

rent view of the Semantic Web (Berners-Lee, Hendler and Lassila, 2001),

which emphasizes the development of a technology based on formal de-

scription logics (Baader et al., 2003).

In practice, the formal approach entails that many of the aspects and de-

scriptions in the SWEBOK that may be considered relevant in conceptual

approaches are not appropriate for operational ones. For example, a para-

graph as the following “Numerous models have been created to develop

software, some of which emphasize construction more than others.” (page

4-3 of the SWEBOK guide) may be considered appropriate for the narra-

tive of the Guide, but need not a formal representation, since it is simply

stating a vague counting about a vague aspect of models. Even in the case

that vagueness would be handled somewhat, it is not clear that this pro-

vides significant knowledge but an anecdotal statement useful for human

readers. In consequence, a formal approach for the ontology of the

SWEBOK can not be expected to cover every paragraph, but to extract

only relevant, well-defined or well-definable sentences.

There exist proposals for the standardization of upper ontologies (Niles

and Pease, 2001) that could be used as a basis for such formal semantics.

In fact, the IEEE P1600.1 Standard Upper Ontology Working Group (SUO

WG) is working towards that end. Given the past activity of the IEEE and

other organizations in producing standards regarding the vocabulary and

concepts of Software Engineering, there exists an opportunity to exercise

and analyze the discipline from the perspective of upper ontology as a

principal case study.

A technique for validating the semantic precision of conceptual schemas is

that of providing explicit links to concepts and relations that are already

described in a large upper ontology. Concretely, we here consider the

OpenCyc 0.9 knowledge base. This can be considered as an alternative or a

complement to analysis techniques as the Bunge-Wand-Weber (Wand and

Weber, 1995) that fosters the reuse of existing open knowledge engineer-

ing, and the mapping to modern Web-enabled ontology languages as OWL

is a straightforward step.

OpenCyc is the open source version of the Cyc Knowledge Base (Lenat,

1994), which contains over one hundred thousands atomic terms, and is

provided with an associated efficient inference engine. Cyc uses as its un-

derlying definition language a variant of predicate calculus called CycL,

and it attempts to provide a comprehensive upper ontology of “common-

sense" knowledge. In what follows, some of the main issues in modelling

the SWEBOK by linking definitions to OpenCyc are provided. The

method used for such process can be roughly described in the following

steps:

1. Find one or several terms that subsume the category under con-

sideration.

2. Check carefully that the mapping is consistent with the rest of

the subsumers inside OpenCyc.

3. Provide the appropriate predicates to characterize the new cate-

gory.

4. Edit it in Protègè or other editor to come up with the final for-

mal version.

This process has the advantage of being possible for individual work of

an expert. The outcomes of the process can then be contrasted with the

work of others. In any case, the process results in much more efficient and

structured ontology engineering work, since the argumentation against or

in favour of a given concept or predicate is put in the formal context of

OpenCyc. This makes easier the process of decision making, and avoids

the discussion on subjective or personal opinions that are not yet put in

formal terms.

5 Fundamental elements of the ontology of the SWEBOK

This section summarizes the main conceptual elements that have been

identified during the course of the research work of the authors of this

chapter. The elements covered are cross-cutting to many Knowledge Areas

of the Guide, and as such, they may be considered as a “high level” con-

ceptual subset that gives coherence to the specifics of each KA. Here only

the more pervasive and relevant will be discussed. The exposition goes

from the material elements of everyday engineering activities to the repre-

sentation of prescriptive knowledge, which is by its own nature much more

challenging to capture.

5.1. Activities, Artifacts and Agents

Engineering is basically an artefact-producing activity carried out by

engineers. At this level, engineering can be seen as a flow of activities, and

in an ideal world, every activity, its doer and the artefacts used, changed or

created may be represented. This consideration does not care of the ways

of doing the activities (the methods) but only of the representation of the

activities as actually enacted. In fact, this is the recording of the actual, real

empirical experience of engineering as a human activity. That objectivity

makes this a somewhat easier level to be represented. First, the engineers

that do the actual work can be characterized as a subset of the class

oc_IntelligentAgent, defined as “An agent is an IntelligentAgent

if and only if it is capable of knowing and acting, and capable of employ-

ing its knowledge in its actions”. From an ontological viewpoint, the term

SoftwareEngineer is not a rigid property (Welty and Guarino, 2001),

since being a software engineer is contingent to a work position, and it is

not an essential property of the individuals. This leads to the first proposi-

tion for the general mapping.

Proposition #1 SoftwareEngineers are a class of

oc_IntelligentAgents (excluding collectives). Software engineering activi-

ties will require individuals of this class.

It is important to separate the individual workers from collectives (e.g.

organizations or teams). This entails that SoftwareEngineer is dis-

joint with oc_MultiIndividualAgent-Intelligent, which

concretely address collectives with capability of acting purposefully.

Teams of software engineers might be considered relevant since productiv-

ity is connected to team dynamics as recognized in software estimation

models (Boehm, 1981), but individuals are the unit of responsibility and

possess specific competencies or skills that provide them a unique mean-

ing.

Activities are the fabric of engineering work. Activities in OpenCyc can

be represented as oc_Action instances. These actions are defined as

“The collection of oc_Events that are carried out by some “doer” (see oc

doneBy). Instances of oc_Action include any event in which one or

more actors effect some change in the (tangible or intangible) state of the

world, typically by an expenditure of effort or energy.” An oc_Event is

in turn “a dynamic situation in which the state of the world changes; each

instance is something one would say ‘happens’.” Going a step further, en-

gineering activities are in fact oc_PurposefulActions, “Each in-

stance of PurposefulAction is an action consciously, volitionally, and pur-

posefully done by at least one actor”.

Proposition #2 Actual Software Engineering activities as enacted in software pro-

jects are a specific class of PurposefulActions, situated in the context of a

project that has as its final outcome the creation or modification of a software pro-

gram.

The term “software program” as a generic, intellectual product can be

mapped to oc_ComputerProgram-CW, that are “distinct from com-

puter code and from both running and installed programs.”. The

oc_purposeOfEvent predicate can be used to explicitly declare the

software-creating purpose. This provides a necessary and sufficient defini-

tion to classify SoftwareEngineeringActivity(es). From this

definition of activities, the wide array of activities that are commonly iden-

tified in software processes can be characterized. Nonetheless, the defini-

tion of each kind of activity requires the specification of different aspects,

including the kind of engineer, the outcomes and the usual sequence with

other kinds of activities. For example, “requirements elicitation” according

to the SWEBOK guide is the “first stage” and it is mainly concerned with

“getting human stakeholders to articulate their requirements.”

The third class of basic elements of actual engineering practice is the ar-

tifacts used, created or changed. An oc_Artifacts is “an at least par-

tially tangible thing which was intentionally created by an oc_Agent (or

a group of Agents working together) to serve some purpose or perform

some function.”

Proposition #3 The elements used, created and modified in Software Engineering

activities are specific kinds of Artifacts.

An important ontological differentiation for artefacts in Software Engi-

neering is that of Documents and its “propositional” content, i.e. the in-

formation they contain. This is clear in OpenCyc with the categories of

oc_InformationBearingThings and

oc_PropositionalInformationThings. This allows a clarifica-

tion of the difference of the propositional content and the thing that con-

veys it. For example, a requirements document can be broken in several

documents, but the propositional content is unique irrespective of its digi-

tal or hardcopy form. When speaking about the software process, the im-

portant part is the propositional content, while the concrete things have

some degree of arbitrariness in formatting, and they are only important for

cataloguing processes specific to each project.

The basic definitions so far provide room for the classification of most

of the elements that are present in the SWEBOK Guide in the form of de-

scription of activities. However, there are specific elements that should be

addressed since they have a special signification in engineering.

5.2. Models, Specifications and Methods

The word model amounts for 297 occurrences in the SWEBOK guide.

Model-Artifact provides the appropriate semantics for the concept: “a

collection of artifacts; a subset of VisualInformationBearingThing.

Each element of Model-Artifact is a tangible object designed to resemble

and/or represent some other object, which may or may not exist tangibly”.

The ModelFn function designates all the models of a given thing, e.g.

ModelFn(SoftwareComponent). This is a concrete characterization of

models that seems to match all the uses of model in the SWEBOK. As in-

formation bearing objects, the models are IBTs also, so that their contents

can be represented in a propositional form, through the predicate con-
tainsInfoPropositional-IBT IBT PIT, that links to a proposi-

tional information thing. PITs are in themselves microtheories, thus allow-

ing the definition in logical terms of the actual contents of the model. This

could for example be applied to develop systems that represent UML dia-

grams through logics, which will enable a degree of increased automation.

The Guide to the SWEBOK somewhat differentiates models and arti-

facts, as in the Software Design KA “The output of this process is a set of

models and artifacts that record the major decisions that have been

taken”, but ontologically this distinction is irrelevant.

The word “Specification” appears 138 times in the GUIDE. For exam-

ple “Requirements specification typically refers to the production of a

document, or its electronic equivalent, that can be systematically reviewed,

evaluated, and approved.” The production of a document is an

oc_PurposefulAction. But the oc_Specification itself is a

oc_PropositionalConceptualWork, that enables a representation

of the contents of the specification in logics (different from the “specifica-

tion document” that is an oc_InformationBearingThing).

An ontologically different concept related to activities in SE is that of

“methods” for activities, i.e. the normative specification of “blueprints” for

potential courses of activity. These specifications have an intrinsic pre-

scriptive character, so that they should not be specified as actions, but

rather as specifications.

5.3. Theoretical standpoints and guidelines

There is not currently a uniform or standard form to represent theoreti-

cal positions or standpoints in ontology engineering. Further, the science

of Software Engineering has not produced a relevant body of theories or

laws that explain the discipline, and most of the knowledge is in the form

of guidelines or generic hypotheses. In fact, the SWEBOK Guide does not

provide a classification of theories and frameworks according to conven-

tional scientific terms, so that this is an area that is relevant for future revi-

sions. However, some elements backed on empirical evidence are yet ref-

erenced in the SWEBOK, and this calls for specific representation

techniques. For example, the well-known “laws of software evolution”

(Lehman, 1996) require a careful consideration. For the sake of illustra-

tion, we will take here the following statement from these laws “An E-type

program that is used must be continually adapted else it becomes progres-

sively less satisfactory”. This requires the following elements to be ad-

dressed:

• First, a characterization of E-TypeProgram is required. Com-

puter programs as conceptual works (different from their copies or

physical representation) are captured by the generic

oc_ComputerProgram-CW term. Consequently, types of pro-

grams could be defined from such abstraction. E-type programs as

“software that implements an application or addresses a problem in

the real world” could be characterized by linking them to represen-

tations of the problem addressed.

• The representation of the evolution of the program. For this,

OpenCyc provides the oc_programCode predicate connecting

the programs as conceptual entities to oc_ComputerCode in-

stances. In turn, these can be subject to a modelling of time-stamped

revisions or versions that could be used to assess if a program is be-

ing subject or evolution or not. This enables the quantification of the

adaptations (and even of its extent in terms of modifications) in the

time scale. But the term “continually adapted” is by its nature

vague, and some metric or statistical model would be required to as-

sess it from a computational viewpoint.

• The representation of the “use” of a program. This would require a

tracking of the lifecycle of the program that in some cases might be

difficult, but for reasons outside the representation itself.

• A representation of what “satisfactory” means. This is probably the

most controversial issue, since there is not a single universally ac-

cepted standard of “satisfactoriness”. Satisfaction is usually men-

tioned as one of the aspects of usability (Van Welie, van der Veer

and Eliëns, 1999), but other elements of the “software quality” con-

cepts could also be considered. In addition, satisfaction is often

measured through questionnaires or interviews with users, but there

is not a standard instrument for it.

If characterizations for the above could be clearly defined, a software

agent could be in a position to examine representations of actual software

projects and alert of when a program is surely requiring an evolution. An

inference rule for the state of “Software-RequiringAdaptation” could be

formulated. Further, the provision of ontology-based tools to represent ac-

tual software projects could automatically find evidence against the state-

ment.

However, as can be appreciated in the example, this requires the opera-
tionalization of a number of elements that are only vaguely defined in the

original statement. This constitutes a research direction in itself, and is out

of the scope of a simple representation of the SWEBOK Guide. An alter-

native may be that of codifying such kind of statements in a form that is

useful for cataloguing and human query, but that do not entail any kind of

delegation of tasks or decisions to software. This could be useful but it is

not a true representation of knowledge in the area in the sense of having

computational semantics. In consequence, this level of theory inside the

ontology could be seen as the ultimate goal, but requiring substantial work

beyond the formulation of the SWEBOK in ontology languages.

An important element introduced by the disparity of theoretical or

methodological standpoints in Software Engineering is that of conflicting

knowledge. This is prominent in the diversity of approaches to the soft-

ware process, but it may also arise in some more specific situations. Fol-

lowing the example above, it might be the case that different positions on

what “continuous adaptation” is in term of frequency (or on the definition

for “satisfactoriness”) lead to incompatible views. This would either re-

quire the provision of separate ontologies or the use of a representational

mechanism that allows such kind of potential inconsistency or divergence.

The concept of microtheory in OpenCyc provides such representational

mechanism, intended to organize assertions that depend on “shared set of

assumptions on which the truth of the assertions depends”. Definitions in-

side the same microtheory need to be consistent, but this is not required

across microtheories.

Summing up, the logical tools are prepared for the representation of the-

ory or assumptions, but these require more elaboration. Arguably, this

could be considered a future requirement for the revision and evolution of

the SWEBOK.

6 Conclusions

The SWEBOK represents the outcome of a significant collaborative effort

in shaping the scope of Software Engineering as a discipline. The elabora-

tion of knowledge representations about the contents and structure of the

guide represents a step further in the clarification of such knowledge, and

may also serve as a revision tool for the guide itself (Sicilia et al., 2005).

Nonetheless, there are different perspectives that can be taken when devel-

oping an ontology of the SWEBOK. These range for conceptual represen-

tations that attempt to unveil some conceptual links between parts of the

Guide to formal approaches oriented to develop software that automates

some task. While the former may take the form of topic maps and can be

used for example to provide more graphical parts of the Guide, the latter

are only oriented to machine-consumption. Both views and others inter-

mediate or similar serve different purposes, but all of them are important

tools for inquiry on the contents of the discipline.

References

Auyang S (2004) Engineering – an endless frontier. Harvard University Press.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.).

(2003). The Description Logic Handbook. Theory, Implementation and Ap-

plications, Cambridge.

Berners-Lee, T., Hendler, J., Lassila, O. (2001). The Semantic Web. Scientific

American, 284(5), 34-43.

Boehm, B. 1981, Software Engineering Economics, Prentice-Hall, 1981

Brooks F (1987) No silver bullet: Essence and accidents of software engineering.

IEEE Computer 20(4): 10-19

Brooks, A. (1997) Meta analysis - a silver bullet - for meta-analysts. Journal of
Empirical Software Engineering, 2:333-338.

Lehman, M. (1996) Laws of Software Evolution Revisited, pos. pap., EWSPT96,

Oct. 1996, LNCS 1149, Springer Verlag, pp. 108-124

Niles, I., and Pease, A. 2001. Towards a Standard Upper Ontology. In Proceed-
ings of the 2nd International Conference on Formal Ontology in Information
Systems (FOIS-2001), Chris Welty and Barry Smith, eds, Ogunquit, Maine,

October 17-19, 2001.

Popper K (1959) The Logic of Scientific Discovery. Routledge

Sicilia, M.A., García-Barriocanal, E., Díaz, P., Aedo, I. (2003) A Literature-Based

Approach to the Annotation and Browsing of Domain-Specific Web Re-

sources. Information Research 8(2)

Sicilia, M.A., Cuadrado, J.J., García, E. and Rodríguez, D. (2005) The Evaluation

of ontological representations of the SWEBOK as a revision tool. In Proceed-

ings of the First International Workshop on the Evolution of the Guide to the
Software Engineering Body of Knowledge in Conjunction with COMPSAC

2005

M. Van Welie, G.C. van der Veer and A. Eliëns (1999). Breaking down usability.

Proc. of Interact’99, pp 613–620.

Wand, Y.; Weber, R. (1995) On the deep structure of information systems. Infor-
mation Systems Journal (5), 1995, pp. 203-223.

Welty C and Guarino N (2001) Supporting ontological analysis of taxonomic rela-

tionships. Data and Knowledge Engineering 39(1): 51-74

