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Abstract 

The process of collaborative elaboration of the Guide to the Software En-

gineering Body of Knowledge (SWEBOK) has produced a notable consen-

sus on the scope of this discipline, and the continuous review process pro-

vides a mechanism for its enhancement and extension. The SWEBOK has 

motivated several research initiatives that attempt to engineer an ontology 

of Software Engineering both as an artefact for applications and also as a 

vehicle for the review and evolution of the Guide. Existing approaches to 

develop an ontology of the SWEBOK provide different perspectives on the 

process, from the more conceptually oriented to the more logics-

operational. This chapter summarizes the different perspectives and pro-

vides an integrated synthesis of approaches in addition to a discussion of 

the main concepts that cross-cut the Knowledge Areas defined currently in 

the SWEBOK. 

 

1 Introduction 

Auyang (2004) described engineering as “the science of production”. This 

and many other definitions of engineering put an emphasis on disciplined 

artefact creation as the essence of any engineering discipline. However, the 

material object produced by every engineering discipline is not necessarily 

of a similar nature. The case of Software Engineering is particularly rele-

vant in the illustration of such differences, since software as an artefact is 

acknowledged as a very special piece of human work. The special nature 

of software was attributed by Brooks (1987) to “complexity” as an essen-

tial characteristic. The following quote from Brook’s paper illustrates the 

presupposed impact of complexity in the activities of engineering. 

 
Many of the classic problems of developing software products derive from this 

essential complexity and its nonlinear increases with size. From the complexity 

comes the difficulty of communication among team members, which leads to 

product flaws, cost overruns, and schedule delays. From the complexity comes the 

difficulty of enumerating, much less understanding, all the possible states of the 

program, and from that comes the unreliability. From complexity of function 

comes the difficulty of invoking function, which makes programs hard to use. 

From complexity of structure comes the difficulty of extending programs to new 

functions without creating side effects. From complexity of structure come the un-

visualized states that constitute security trapdoors. 

 



The term “essential” (as opposed to “accidental”) is a well-known tool for 

ontology engineers (Welty and Guarino 2001), which helps in determining 

the properties of concepts that objects possess “always and in every possi-

ble world”. The position of Brooks on the essentials of the object of the 

discipline leads to a particular conception of Software Engineering as a 

human endeavour that attempts to tackle an inherently complex problem, 

since it takes as a point of departure that complexity is a feature that can 

not be removed from the engineering process. Consequently, it is difficult 

to consider methods that are definitive for the production of software, and 

the field is expected to be changing as methodologies are introduced and 

applied in an attempt to manage to the extent possible the complexity of 

the activities. This has a consequence on research and inquiry, since the 

qualities of a tool or method to tackle with software complexity are diffi-

cult to assess, and this in turn leads to a plurality of approaches. Such di-

versity in many leads to difficulties in contrasting the appropriateness of 

techniques in terms of rational inquiry methods as those established by 

Popper (1959) in his method for scientific discovery.     

 

Empirical research on proposed software methods, processes, tools and 

techniques are of course fundamental to the discipline. In addition, ontol-

ogy engineering is from our viewpoint also important for the evolution of 

the science of Software Engineering, at least in two dimensions. On the 

one hand, ontology may help in the organization and meta-analysis of em-

pirical data and empirical approaches (Brooks, 1997), also facilitating the 

adequate comparison and evaluation of methods, techniques or tools. On 

the other hand, ontologies translated into machine-understandable repre-

sentations may help in the development of computerized tools that, to 

some extent, take into account the purpose and consequences of the di-

verse Software Engineering activities. Even though we de not believe that 

ontologies would become a “silver bullet” for every software production 

problem, they are promising tools to help in the work of researchers and 

practitioners, and they would also serve as an element of analysis and dis-

cussion for engineers and for learning about the discipline.   

 

Consensus-reaching approaches to ontology engineering are deemed as 

appropriate for the crafting of representations of the concepts of some con-

crete domain. Nonetheless, in some domains the engineer can find pre-

existing processes of consensus-reaching on conceptual frameworks. This 

is the case of Software Engineering, in which the SWEBOK project is the 

result of a considerable effort on the collaborative production of a subset 

of the knowledge of the discipline that is as of today subject to little con-

troversy in the community of researchers. In addition to the collaborative 



effort, that will be briefly described next, the project adopts a literature-

based approach (Sicilia, García-Barriocanal, Díaz and Aedo, 2003) in se-

lecting some relevant articles. Thus, the SWEBOK guide provides a 

ground of rationality and consensus that constitutes a valuable input for 

ontology engineering.    

 

The chapter of Ruiz and Hilera in this volume has provided an overview 

of current approaches to the ontology of Software Engineering, some of 

them based on the SWEBOK. This chapter concentrates now on the specif-

ics of two approaches to SWEBOK-based ontological inquiry that are 

complementary in their objectives and methods.   

 

The rest of this chapter is structured as follows. Section 2 provides an ac-

count of the SWEBOK as a project, its main principles and its method 

from creation and revision. Then, Section 3 describes some results of a 

process of inquiry on SWEBOK-based ontology from the viewpoint of the 

experimental study of the process of rational argument and consensus-

reaching by software engineers. Then, Section 4 provides the complemen-

tary view of producing ontological representation linked to commonsense 

knowledge bases, which provide the benefits of reuse of existing ontologi-

cal engineering and of being prepared for the construction of ontology-

based tools. On the basis of the experiences described in Section 3 and 4, 

Section 5 sketches the main ontological elements distilled.     

2 History and principles of the SWEBOK project 

The Guide to SWEBOK should not be confused with the Body of Knowl-

edge itself, which already exists in the published literature. The purpose of 

the Guide is to describe what portion of the Body of Knowledge is gener-

ally accepted, to organize that portion, and to provide a topical access to it. 

The Guide to the Software Engineering Body of Knowledge (SWEBOK) 

was established with the following five objectives: 

1. To promote a consistent view of software engineering worldwide 

2. To clarify the place–and set the boundary–of software engineering 

with respect to other disciplines such as computer science, project 

management, computer engineering, and mathematics 

3. To characterize the contents of the software engineering discipline 

4. To provide a topical access to the Software Engineering Body of 

Knowledge 



5. To provide a foundation for curriculum development and for indi-

vidual certification and licensing material. 

 

The first of these objectives, a consistent worldwide view of software en-

gineering, was supported by a development process which engaged ap-

proximately 500 reviewers from 42 countries in the Stoneman phase 

(1998-2001) leading to the Trial version, and over 120 reviewers from 21 

countries in the Ironman phase (2003) leading to the 2004 version. More 

information regarding the development process can be found in the Preface 

and on the Web site (www.swebok.org). Professional and learned societies 

and public agencies involved in software engineering were officially con-

tacted, made aware of this project, and invited to participate in the review 

process. Associate editors were recruited from North America, the Pacific 

Rim, and Europe. Presentations on the project were made at various inter-

national venues and more are scheduled for the upcoming year. 

The second of the objectives, the desire to set a boundary for software en-

gineering, motivates the fundamental organization of the Guide. The mate-

rial that is recognized as being within this discipline is organized into the 

first ten Knowledge Areas (KAs) listed in Table 1. Each of these KAs is 

treated as a chapter in this Guide.  

Table 1 The SWEBOK Knowledge Areas (KAs). 

 Software requirements 

 Software design 

 Software construction 

 Software testing 

 Software maintenance 

 Software configuration management 

 Software engineering management 

 Software engineering process 

 Software engineering tools and methods 

 Software quality  

 

In establishing a boundary, it is also important to identify what disciplines 

share that boundary, and often a common intersection, with software engi-

neering. To this end, the Guide also recognizes eight related disciplines, 

listed in Table 2. Software engineers should, of course, have knowledge of 

material from these fields (and the KA descriptions may make reference to 

them). It is not, however, an objective of the SWEBOK Guide to charac-

terize the knowledge of the related disciplines, but rather what knowledge 

is viewed as specific to software engineering. 



Table 2 Related disciplines. 

� Computer engineering � Project management 

� Computer science  � Quality management 

� Management  � Software ergonomics 

� Mathematics  � Systems engineering 

2.1. Hierarchical Organization 

The organization of the KA descriptions or chapters supports the third of 

the project’s objectives – a characterization of the contents of software en-

gineering. The Guide uses a hierarchical organization to decompose each 

KA into a set of topics with recognizable labels. A two- or three-level 

breakdown provides a reasonable way to find topics of interest. The Guide 

treats the selected topics in a manner compatible with major schools of 

thought and with breakdowns generally found in industry and in software 

engineering literature and standards. The breakdowns of topics do not pre-

sume particular application domains, business uses, management philoso-

phies, development methods, and so forth. The extent of each topic’s de-

scription is only that needed to understand the generally accepted nature of 

the topics and for the reader to successfully find reference material. After 

all, the Body of Knowledge is found in the reference material themselves, 

and not in the Guide. 

2.2. Reference material and Matrix 

To provide a topical access to the knowledge–the fourth of the project’s 

objectives–the Guide identifies reference material for each KA, including 

book chapters, refereed papers, or other recognized sources of authoritative 

information. Each KA description also includes a matrix relating the refer-

ence material to the listed topics. The total volume of cited literature is in-

tended to be suitable for mastery through the completion of an under-

graduate education plus four years of experience. 

In this edition of the Guide, all KAs were allocated around 500 pages of 

reference material, and this was the specification the associate editors were 

invited to apply. It may be argued that some KAs, such as software design 

for instance, deserve more pages of reference material than others. Such 

modulation may be applied in future editions of the Guide. 

It should be noted that the Guide does not attempt to be comprehensive in 

its citations. Much material that is both suitable and excellent is not refer-



enced. Material was selected in part because–taken as a collection–it pro-

vides coverage of the topics described. 

2.3. Depth of Treatment 

From the outset, the question arose as to the depth of treatment the Guide 

should provide. The project team adopted an approach which supports the 

fifth of the project’s objectives–providing a foundation for curriculum de-

velopment, certification, and licensing. The editorial team applied the cri-

terion of generally accepted knowledge, to be distinguished from ad-

vanced and research knowledge (on the grounds of maturity) and from 

specialized knowledge (on the grounds of generality of application). The 

definition comes from the Project Management Institute: “The generally 

accepted knowledge applies to most projects most of the time, and wide-

spread consensus validates its value and effectiveness”.1  

 

Generally Accepted 

Established traditional practices recommended 

by many organizations 
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Advanced and Research 

Innovative practices tested and used only by 

some organizations and concepts still being 

developed and tested in research organizations 

Figure 1 Categories of knowledge 

However, the term “generally accepted” does not imply that the designated 

knowledge should be uniformly applied to all software engineering en-

deavors–each project’s needs determine that–but it does imply that compe-

tent, capable software engineers should be equipped with this knowledge 

for potential application. More precisely, generally accepted knowledge 

should be included in the study material for the software engineering li-

censing examination that graduates would take after gaining four years of 

work experience. Although this criterion is specific to the U.S. style of 

education and does not necessarily apply to other countries, we deem it 

useful. However, the two definitions of generally accepted knowledge 

should be seen as complementary. 

 

                                                      
1  A Guide to the Project Management Body of Knowledge, 2000 Edition, Project 

Management Institute, Newport Square, PA. www.pmi.org.  



 

3 The ontology of the SWEBOK from a conceptual and 
consensus-reaching perspective 

This Body of Knowledge is currently organized as a taxonomy subdivided 

into ten Knowledge Areas designed to discriminate among the various im-

portant concepts only at the top level. Of course, the software engineering 

knowledge is much richer that this high level taxonomy and currently re-

sides in the textual descriptions of each knowledge areas. Such textual de-

scriptions widely vary in style and content. The conceptual ontology ap-

proach is therefore used to analyze the richness of this body of knowledge, 

to improve its structuring, and develop consensus on its detailed terminol-

ogy.  

The development of the software engineering domain ontology requires 

three phases: 1) Proto-ontology construction; 2) Internal validations cycle; 

3) External validation (and possibly extension) cycle. 

 

Proto-ontology construction: analysis and extraction (one SWEBOK KA 

at a time) of the concepts, relations between concepts and axioms (asserted 

necessary or necessary and sufficient conditions), terms and definitions ex-

isting in the SWEBOK Guide and related IEEE and ISO standards.  Auto-

matic term extraction tools having as input a corpus of text in natural lan-

guage have been used to complete the list of concepts and relationships, 

identified through the analysis of the documents already mentioned. 

 

Internal validation cycle:  a series of validation (and possibly extension) 

cycles, at various instances levels (internal: ETS – UQAM – SPIN, etc.), 

aiming to build a progressively larger consensus, concerning the elements 

in the software engineering proto-ontology  

 

External validation cycle: a series of external validation cycles will be 

required, aided by internationally reputed software engineering domain 

experts, to build progressively a consensus concerning the concepts, attrib-

utes and relations between class/concepts that should be present in the final 

ontology.   

 



 
 

Figure 1 The SWEBOK ontology project phases 

The proto-ontology development phase has identified in the SWEBOK 

Guide over 4,000 concepts, 400 relationships, 1,200 facts as well as 15 

principles. Table 1 presents a breakdown by knowledge areas.   

The testing maintenance and process knowledge areas include the largest 

number of concepts and relationships, while the testing and quality include 

most of the principles identified.  
 Relationships Concepts Facts Principles 

     

SWEBOK main structure  4 48 55 0  

KA 1 Introduction 0* 0* 0* 0* 

KA 02 Software Requirements 24 240 72 0  

KA 03 Software Design 44 307 211 2 

KA 04 Software Construction 21 214 63 0 

KA 05 Software Testing 96 1001 165 7 

KA 06 Software Maintenance 44 706 140 0 

KA 07 Software Configuration 

Management 

31* 85* 46* 0* 

KA 08 Software Engineering 

Management 

33* 72* 46* 0* 

KA 09 Software Engineering 

Process 

45 587 134 1 

KA 10 Software Engineering 

Tools and Methods 

19 263 62 0 

KA 11Software Quality 34 447 61 5 

CH 12 Related Disciplines of 12 171 32 0 



Software Engineering 

 TOTAL 407 4141 1087 15 

 
* : partial counting (to be finalized) 

 

Table 1 – Overview of quantity of elements currently in the SWEBOK proto-

ontology 

The major contributions expected from this approach are: 1) Identification 

of main inputs, outputs and activities to be performed in order to develop 

the aimed ontology; 2) Identification of the main software engineering 

concepts, terms, definitions, relations between classes/concepts (IsA, Part-

Whole, and other specifics relationships) and axioms describing the con-

cepts; 3) validation (and possibly extension) of the software engineering 

ontology; 4), progressive building of a consensus concerning the concepts 

in the ontology aided by international software engineering domain ex-

perts.   

 Besides the benefits already mentioned in section 1, the use of the “soft-

ware engineering ontology” which is a result of this project may also con-

tribute to the development of additional content validation by automatic 
cross-correlation validation (besides that which is already done already 

done continuously by the SWEBOK review team) across the ten areas of 

knowledge integrated in the SWEBOK Guide.  This would ensure that all 

concepts and definitions are used in a consistent fashion throughout all the 

SWEBOK’s areas of knowledge.   

4 The ontology of the SWEBOK as a formal artefact 

As it has been said before, the SWEBOK guide provides a foundation for 

the development of an ontology for Software Engineering, since it is the 

result of a process of domain expert review and validation, and provides 

references to other relevant sources. Nonetheless, the process of analysis 

of the guide to come up with a logical coherent ontology is by no means a 

simple process. Many of the entities described in the guide to the 

SWEBOK are complex activities that produce interrelated artifacts. These 

entities have temporal, material and conceptual facets that should be 

clearly defined, and which are well-known in existing upper ontologies 

and large commonsense bases. If the emphasis of ontology is in providing 

computational semantics to the representation, formal approaches are re-

quired beyond the elaboration of consensual meanings as described above. 

This change in focus can be considered as operational, in the sense that it 

is a medium towards the end of providing automation or delegating tasks 



to agents or software modules. This leads to a very different notion of the 

ontology development process in which the criteria for inclusion is useful-

ness for computer-based applications. Such notion is aligned with the cur-

rent view of the Semantic Web (Berners-Lee, Hendler and Lassila, 2001), 

which emphasizes the development of a technology based on formal de-

scription logics (Baader et al., 2003).  

 

In practice, the formal approach entails that many of the aspects and de-

scriptions in the SWEBOK that may be considered relevant in conceptual 

approaches are not appropriate for operational ones. For example, a para-

graph as the following “Numerous models have been created to develop 

software, some of which emphasize construction more than others.” (page 

4-3 of the SWEBOK guide) may be considered appropriate for the narra-

tive of the Guide, but need not a formal representation, since it is simply 

stating a vague counting about a vague aspect of models. Even in the case 

that vagueness would be handled somewhat, it is not clear that this pro-

vides significant knowledge but an anecdotal statement useful for human 

readers. In consequence, a formal approach for the ontology of the 

SWEBOK can not be expected to cover every paragraph, but to extract 

only relevant, well-defined or well-definable sentences.  

  

There exist proposals for the standardization of upper ontologies (Niles 

and Pease, 2001) that could be used as a basis for such formal semantics. 

In fact, the IEEE P1600.1 Standard Upper Ontology Working Group (SUO 

WG) is working towards that end. Given the past activity of the IEEE and 

other organizations in producing standards regarding the vocabulary and 

concepts of Software Engineering, there exists an opportunity to exercise 

and analyze the discipline from the perspective of upper ontology as a 

principal case study. 

A technique for validating the semantic precision of conceptual schemas is 

that of providing explicit links to concepts and relations that are already 

described in a large upper ontology. Concretely, we here consider the 

OpenCyc 0.9 knowledge base. This can be considered as an alternative or a 

complement to analysis techniques as the Bunge-Wand-Weber (Wand and 

Weber, 1995) that fosters the reuse of existing open knowledge engineer-

ing, and the mapping to modern Web-enabled ontology languages as OWL 

is a straightforward step.  

OpenCyc is the open source version of the Cyc Knowledge Base (Lenat, 

1994), which contains over one hundred thousands atomic terms, and is 

provided with an associated efficient inference engine. Cyc uses as its un-

derlying definition language a variant of predicate calculus called CycL, 

and it attempts to provide a comprehensive upper ontology of “common-



sense" knowledge. In what follows, some of the main issues in modelling 

the SWEBOK by linking definitions to OpenCyc are provided. The 

method used for such process can be roughly described in the following 

steps: 

1. Find one or several terms that subsume the category under con-

sideration. 

2. Check carefully that the mapping is consistent with the rest of 

the subsumers inside OpenCyc. 

3. Provide the appropriate predicates to characterize the new cate-

gory. 

4. Edit it in Protègè or other editor to come up with the final for-

mal version. 

This process has the advantage of being possible for individual work of 

an expert. The outcomes of the process can then be contrasted with the 

work of others. In any case, the process results in much more efficient and 

structured ontology engineering work, since the argumentation against or 

in favour of a given concept or predicate is put in the formal context of 

OpenCyc. This makes easier the process of decision making, and avoids 

the discussion on subjective or personal opinions that are not yet put in 

formal terms.   

5 Fundamental elements of the ontology of the SWEBOK 

This section summarizes the main conceptual elements that have been 

identified during the course of the research work of the authors of this 

chapter. The elements covered are cross-cutting to many Knowledge Areas 

of the Guide, and as such, they may be considered as a “high level” con-

ceptual subset that gives coherence to the specifics of each KA. Here only 

the more pervasive and relevant will be discussed. The exposition goes 

from the material elements of everyday engineering activities to the repre-

sentation of prescriptive knowledge, which is by its own nature much more 

challenging to capture. 

5.1. Activities, Artifacts and Agents 

Engineering is basically an artefact-producing activity carried out by 

engineers. At this level, engineering can be seen as a flow of activities, and 

in an ideal world, every activity, its doer and the artefacts used, changed or 

created may be represented. This consideration does not care of the ways 

of doing the activities (the methods) but only of the representation of the 



activities as actually enacted. In fact, this is the recording of the actual, real 

empirical experience of engineering as a human activity. That objectivity 

makes this a somewhat easier level to be represented. First, the engineers 

that do the actual work can be characterized as a subset of the class 

oc_IntelligentAgent, defined as “An agent is an IntelligentAgent 

if and only if it is capable of knowing and acting, and capable of employ-

ing its knowledge in its actions”. From an ontological viewpoint, the term 

SoftwareEngineer is not a rigid property (Welty and Guarino, 2001), 

since being a software engineer is contingent to a work position, and it is 

not an essential property of the individuals. This leads to the first proposi-

tion for the general mapping. 

 

Proposition #1 SoftwareEngineers are a class of 

oc_IntelligentAgents (excluding collectives). Software engineering activi-

ties will require individuals of this class. 

It is important to separate the individual workers from collectives (e.g. 

organizations or teams). This entails that SoftwareEngineer is dis-

joint with oc_MultiIndividualAgent-Intelligent, which 

concretely address collectives with capability of acting purposefully. 

Teams of software engineers might be considered relevant since productiv-

ity is connected to team dynamics as recognized in software estimation 

models (Boehm, 1981), but individuals are the unit of responsibility and 

possess specific competencies or skills that provide them a unique mean-

ing.  

Activities are the fabric of engineering work. Activities in OpenCyc can 

be represented as oc_Action instances. These actions are defined as 

“The collection of oc_Events that are carried out by some “doer” (see oc 

doneBy). Instances of oc_Action include any event in which one or 

more actors effect some change in the (tangible or intangible) state of the 

world, typically by an expenditure of effort or energy.” An oc_Event is 

in turn “a dynamic situation in which the state of the world changes; each 

instance is something one would say ‘happens’.” Going a step further, en-

gineering activities are in fact oc_PurposefulActions, “Each in-

stance of PurposefulAction is an action consciously, volitionally, and pur-

posefully done by at least one actor”.  

 

Proposition #2 Actual Software Engineering activities as enacted in software pro-

jects are a specific class of PurposefulActions, situated in the context of a 

project that has as its final outcome the creation or modification of a software pro-

gram.  

 



The term “software program” as a generic, intellectual product can be 

mapped to oc_ComputerProgram-CW, that are “distinct from com-

puter code and from both running and installed programs.”. The 

oc_purposeOfEvent predicate can be used to explicitly declare the 

software-creating purpose. This provides a necessary and sufficient defini-

tion to classify SoftwareEngineeringActivity(es). From this 

definition of activities, the wide array of activities that are commonly iden-

tified in software processes can be characterized. Nonetheless, the defini-

tion of each kind of activity requires the specification of different aspects, 

including the kind of engineer, the outcomes and the usual sequence with 

other kinds of activities. For example, “requirements elicitation” according 

to the SWEBOK guide is the “first stage” and it is mainly concerned with 

“getting human stakeholders to articulate their requirements.” 

 

The third class of basic elements of actual engineering practice is the ar-

tifacts used, created or changed. An oc_Artifacts is “an at least par-

tially tangible thing which was intentionally created by an oc_Agent (or 

a group of Agents working together) to serve some purpose or perform 

some function.” 

 

Proposition #3 The elements used, created and modified in Software Engineering 

activities are specific kinds of Artifacts.  

 

An important ontological differentiation for artefacts in Software Engi-

neering is that of Documents and its “propositional” content, i.e. the in-

formation they contain. This is clear in OpenCyc with the categories of 

oc_InformationBearingThings and 

oc_PropositionalInformationThings. This allows a clarifica-

tion of the difference of the propositional content and the thing that con-

veys it. For example, a requirements document can be broken in several 

documents, but the propositional content is unique irrespective of its digi-

tal or hardcopy form. When speaking about the software process, the im-

portant part is the propositional content, while the concrete things have 

some degree of arbitrariness in formatting, and they are only important for 

cataloguing processes specific to each project. 

The basic definitions so far provide room for the classification of most 

of the elements that are present in the SWEBOK Guide in the form of de-

scription of activities. However, there are specific elements that should be 

addressed since they have a special signification in engineering.  



5.2. Models, Specifications and Methods 

The word model amounts for 297 occurrences in the SWEBOK guide. 

Model-Artifact provides the appropriate semantics for the concept: “a 

collection of artifacts; a subset of VisualInformationBearingThing. 

Each element of Model-Artifact is a tangible object designed to resemble 

and/or represent some other object, which may or may not exist tangibly”. 

The ModelFn function designates all the models of a given thing, e.g. 

ModelFn(SoftwareComponent). This is a concrete characterization of 

models that seems to match all the uses of model in the SWEBOK. As in-

formation bearing objects, the models are IBTs also, so that their contents 

can be represented in a propositional form, through the predicate con-
tainsInfoPropositional-IBT IBT PIT, that links to a proposi-

tional information thing. PITs are in themselves microtheories, thus allow-

ing the definition in logical terms of the actual contents of the model. This 

could for example be applied to develop systems that represent UML dia-

grams through logics, which will enable a degree of increased automation. 

The Guide to the SWEBOK somewhat differentiates models and arti-

facts, as in the Software Design KA “The output of this process is a set of 

models and artifacts that record the major decisions that have been 

taken”, but ontologically this distinction is irrelevant. 

The word “Specification” appears 138 times in the GUIDE. For exam-

ple “Requirements specification typically refers to the production of a 

document, or its electronic equivalent, that can be systematically reviewed, 

evaluated, and approved.” The production of a document is an 

oc_PurposefulAction. But the oc_Specification itself is a 

oc_PropositionalConceptualWork, that enables a representation 

of the contents of the specification in logics (different from the “specifica-

tion document” that is an oc_InformationBearingThing).  

An ontologically different concept related to activities in SE is that of 

“methods” for activities, i.e. the normative specification of “blueprints” for 

potential courses of activity. These specifications have an intrinsic pre-

scriptive character, so that they should not be specified as actions, but 

rather as specifications.  

5.3. Theoretical standpoints and guidelines 

There is not currently a uniform or standard form to represent theoreti-

cal positions or standpoints in ontology engineering. Further, the science 

of Software Engineering has not produced a relevant body of theories or 

laws that explain the discipline, and most of the knowledge is in the form 



of guidelines or generic hypotheses. In fact, the SWEBOK Guide does not 

provide a classification of theories and frameworks according to conven-

tional scientific terms, so that this is an area that is relevant for future revi-

sions. However, some elements backed on empirical evidence are yet ref-

erenced in the SWEBOK, and this calls for specific representation 

techniques. For example, the well-known “laws of software evolution” 

(Lehman, 1996) require a careful consideration. For the sake of illustra-

tion, we will take here the following statement from these laws “An E-type 

program that is used must be continually adapted else it becomes progres-

sively less satisfactory”. This requires the following elements to be ad-

dressed: 

• First, a characterization of E-TypeProgram is required. Com-

puter programs as conceptual works (different from their copies or 

physical representation) are captured by the generic 

oc_ComputerProgram-CW term. Consequently, types of pro-

grams could be defined from such abstraction. E-type programs as 

“software that implements an application or addresses a problem in 

the real world” could be characterized by linking them to represen-

tations of the problem addressed.  

• The representation of the evolution of the program. For this, 

OpenCyc provides the oc_programCode predicate connecting 

the programs as conceptual entities to oc_ComputerCode in-

stances. In turn, these can be subject to a modelling of time-stamped 

revisions or versions that could be used to assess if a program is be-

ing subject or evolution or not. This enables the quantification of the 

adaptations (and even of its extent in terms of modifications) in the 

time scale. But the term “continually adapted” is by its nature 

vague, and some metric or statistical model would be required to as-

sess it from a computational viewpoint. 

• The representation of the “use” of a program. This would require a 

tracking of the lifecycle of the program that in some cases might be 

difficult, but for reasons outside the representation itself.  

• A representation of what “satisfactory” means. This is probably the 

most controversial issue, since there is not a single universally ac-

cepted standard of “satisfactoriness”. Satisfaction is usually men-

tioned as one of the aspects of usability (Van Welie, van der Veer 

and Eliëns, 1999), but other elements of the “software quality” con-

cepts could also be considered. In addition, satisfaction is often 

measured through questionnaires or interviews with users, but there 

is not a standard instrument for it. 

 



If characterizations for the above could be clearly defined, a software 

agent could be in a position to examine representations of actual software 

projects and alert of when a program is surely requiring an evolution. An 

inference rule for the state of “Software-RequiringAdaptation” could be 

formulated. Further, the provision of ontology-based tools to represent ac-

tual software projects could automatically find evidence against the state-

ment.  

However, as can be appreciated in the example, this requires the opera-
tionalization of a number of elements that are only vaguely defined in the 

original statement. This constitutes a research direction in itself, and is out 

of the scope of a simple representation of the SWEBOK Guide. An alter-

native may be that of codifying such kind of statements in a form that is 

useful for cataloguing and human query, but that do not entail any kind of 

delegation of tasks or decisions to software. This could be useful but it is 

not a true representation of knowledge in the area in the sense of having 

computational semantics. In consequence, this level of theory inside the 

ontology could be seen as the ultimate goal, but requiring substantial work 

beyond the formulation of the SWEBOK in ontology languages. 

An important element introduced by the disparity of theoretical or 

methodological standpoints in Software Engineering is that of conflicting 

knowledge. This is prominent in the diversity of approaches to the soft-

ware process, but it may also arise in some more specific situations. Fol-

lowing the example above, it might be the case that different positions on 

what “continuous adaptation” is in term of frequency (or on the definition 

for “satisfactoriness”) lead to incompatible views. This would either re-

quire the provision of separate ontologies or the use of a representational 

mechanism that allows such kind of potential inconsistency or divergence. 

The concept of microtheory in OpenCyc provides such representational 

mechanism, intended to organize assertions that depend on “shared set of 

assumptions on which the truth of the assertions depends”.  Definitions in-

side the same microtheory need to be consistent, but this is not required 

across microtheories. 

Summing up, the logical tools are prepared for the representation of the-

ory or assumptions, but these require more elaboration. Arguably, this 

could be considered a future requirement for the revision and evolution of 

the SWEBOK. 



6 Conclusions 

The SWEBOK represents the outcome of a significant collaborative effort 

in shaping the scope of Software Engineering as a discipline. The elabora-

tion of knowledge representations about the contents and structure of the 

guide represents a step further in the clarification of such knowledge, and 

may also serve as a revision tool for the guide itself (Sicilia et al., 2005). 

Nonetheless, there are different perspectives that can be taken when devel-

oping an ontology of the SWEBOK. These range for conceptual represen-

tations that attempt to unveil some conceptual links between parts of the 

Guide to formal approaches oriented to develop software that automates 

some task. While the former may take the form of topic maps and can be 

used for example to provide more graphical parts of the Guide, the latter 

are only oriented to machine-consumption. Both views and others inter-

mediate or similar serve different purposes, but all of them are important 

tools for inquiry on the contents of the discipline.  
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