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Abstract

Parametric software effort estimation models consisting on a single mathematical
relationship suffer from poor adjustment and predictive characteristics in cases in
which the historical database considered contains data coming from projects of a
heterogeneous nature. The segmentation of the input domain according to clusters
obtained from the database of historical projects serves as a tool for more realistic
models that use several local estimation relationships. Nonetheless, it may be hy-
pothesized that using clustering algorithms without previous consideration of the
influence of well–known project attributes misses the opportunity to obtain more re-
alistic segments. In this paper, we describe the results of an empirical study using the
ISBSG–8 database and the EM clustering algorithm that studies the influence of the
consideration of two process–related attributes as drivers of the clustering process:
the use of engineering methodologies and the use of CASE tools. The results provide
evidence that such consideration conditions significantly the final model obtained,
even though the resulting predictive quality is of a similar magnitude.
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1 Introduction

The Parametric Estimating Handbook (PEH) (PEI, 2000) defines parametric
estimation as “a technique employing one or more cost estimating relation-
ships (CERs) and associated mathematical relationships and logic”. These
techniques are nowadays widely used to measure and/or estimate the cost
associated with software development (Boehm et al., 2000). CERs are math-
ematical devices that obtain numerical estimates from main cost drivers that
are known to affect the effort or time spent in development. According to
the PEH, these drivers are the controllable system design or planning char-
acteristics that have a predominant effect on system cost. Parametrics uses
the few important parameters that have the most significant cost impact on
the software being estimated. Nonetheless, even though the final CERs should
use only the most significant parameters, it is often also useful to consider
other parameters as a foundation for the logics of deriving the mathematical
relationships from empirical data. The notion of “cost realism” as described
in the PEH clearly points out to this dimension of reasonable and justified
usage of data.

One important aspect of the process of deriving models from databases is
that of the heterogeneity of data. Heteroscedasticity (non–uniform variance)
is known to be a problem affecting data sets that combine data from heteroge-
neous sources (Stensrud et al., 2002). When using such databases, traditional
application of curve regression algorithms to derive a single mathematical
model results in poor adjustment to data and subsequent potential high devi-
ations. This is due to the fact that a single model can not capture the diversity
of distribution of different segments of the database points. As an illustrative
example, the straightforward application of a standard least squares regression
algorithm to the points used in the Reality tool of the ISBSG 8 database 1

distribution results in measures of MMRE=2.8 and PRED(.3)=23% (MMRE
and PRED measures are discussed later in this paper), which are poor figures
of quality of adjustment.

The use of clustering techniques has been described as a solution to provide
more realism to parametric models by decomposing the model in a number
of sub–models, one per segment, that are used to estimate points that are
near them (Garre et al., 2004). Related work includes the use of different
clustering approaches to several aspects of software management, including
software estimation, software quality and software metrics. Concretely, Xu and
Khoshgoftaar (Xu and Khoshgoftaar, 2004) use the fuzzy c-means algorithm
for variable, the partitioning of the data into a number of clusters based on
experiences. Pedrycz and Succi (Pedrycz and Succi, 2005) also use fuzzy c-

1 http://www.isbsg.org/



means as a tool to derive prototypes related to software code measurements.
Dick et al. (Dick et al., 2004) use the same algorithm for a similar setting
in a knowledge discovery study. Nonetheless, these approaches do not deal
with the heterogeneity of the project databases they use. Lung, Zaman, and
Nandi (Lung et al., 2004) have used the numerical taxonomy method for the
clustering of software components at several development phases, but these
analysis are driven by the structure of the code, which is rarely available
in public historical software project databases. Oligny et al (Oligny, 2000)
approach estimation studies by the partitioning of the project database into
“more homogeneous subsets”. This study can be considered as supporting
evidence for the segmentation approach described in this paper, even though
the partitioning of the data is carried out without using a clustering algorithm.
Preliminary data for the use of clustering following the same considerations is
described in (Garre et al., 2004).

In spite of the scattered available evidence regarding the practical usefulness
of partitioning historical databases, the use of clustering techniques for the
problem described has to date the drawback of not being explicative of the
composition of the segments, i.e. the many concrete factors regarding char-
acteristics of the development process and context are not considered as de-
terminants of the resulting segments. On the contrary, these techniques apply
a “blind” approach to characteristics that may be considered as relevant a
priori.

In this paper, we explore an alternative technique in which some parameters
selected purposely are used a priori to drive the process of subsequent cluster-
ing. Concretely, a case study using the ISBSG 8 database is described, which
evaluates the influence of the pre–configuration of segments according to the
two process–related parameters of using methodologies (METHO) and using
support tools (CASET). These factors are considered in classical public mod-
els of parametric estimation to have an influence in the estimation process,
e.g. the COCOMO 81 model considers them under the “modern programming
practices” (MODP) and “use of software tools” (TOOLS) attributes Boehm
(1981). Its update version COCOMO–II (Boehm et al., 2000) also considers
software tools as a cost driver, even though the rating levels have changed due
to changes in development technology (Boehm, 1995). In contrast, the def-
inition of “modern programming practices” has even evolved into a broader
“mature software engineering practices” term exemplified by the Software En-
gineering Institute Capability maturity Model (Paulk, 1993) and comparable
models such as ISO 9000-3 and SPICE. The cost estimation effects of this
broader set of practices are addressed in COCOMO 2.0 2 via the “Process
Maturity” exponent driver.

2 COCOMO 2.0 was the name of the COCOMO-II model before its definitive re-
lease.



Existing proprietary parametric models also take into account these two fac-
tors. For example, SEER-SEM 3 describes a feature to optimize the estima-
tions called “development standard” which reflects the use a methodology in
module development, and it also uses a parameter that takes into account the
use of tools in the development. Other extended proprietary model, PRICE-
S 4 also consider these two factors in order to correct the initial estimations.
PRICE-S CPLX1 variable captures the CASET parameter together with other
factors as personnel skills or familiarity of the personnel with the product.
PRICE-S also considers the use of several process models as Waterfall, Spiral,
Incremental development and US DoD MIL-STD-2167a process, as an implicit
consideration of development methods.

The segmented parametric estimation model described in this paper demon-
strates that the partitioning of the project database before the calibration
process results in better predictive quality, in addition to constituting by itself
an important step into increased cost realism, since it considers the divergences
in variance as a characteristic of the model. In addition, the the consideration
of specific well–known software attributes enhances the explicative properties
of the segmented model. These two elements are relevant as a complement to
existing calibration techniques for large and heterogeneous project databases.

The rest of this paper is structured as follows. Section 2 describes conditional
parametric models for discrete values. Then, the concrete evaluation of the
technique is reported in Section 3. Finally, Section 4 provides conclusions and
further directions for research.

2 Segmented Cost–Estimation Relationships

A standard parametric model is obtained from the entire project database
using conventional curve regression techniques relating effort or schedule pre-
dictions to a number of cost drivers ci ∈ C. Expression (1) shows one the most
usual concrete models for the relationship between size (expressed in function
point estimates) and total effort measured for example in total hours or effort
spent.

e = a · fpb generally e = f(ci) C = {ci} (1)

Segmented models replace the single–equation approach with a collection of
mathematical models fj, each of them associated to the definition of a segment

3 http://www.galorath.com
4 http://www.pricesystems.com/



si ∈ S, as expressed in (2).

e = fj(ci) j = γ(ci) with segment(fj) = sj (2)

Segment definitions may be expressed in different ways, depending on the
clustering technique used with the project database. The mapping function
γ(ci) is responsible for selecting the function for each particular project being
estimated, and it proceeds by finding out the segment (cluster) that best char-
acterizes the project under consideration. The use of this model was demon-
strated in (Garre et al., 2004), using the EM clustering algorithm with the
ISBSG–8 database without any previous explicit breakdown of the data. Our
hypothesis in this paper is that this “blind” approach could be improved by a
prior decomposition of the historical database of projects according to a set of
parameters that are known or believed to affect the effort spent. This kind of
procedures (we well call them “tailored (conditional) segmented models” from
here on) serves the objective of assessing the actual influence of the selected
parameters in the model, and they may eventually lead to clusters that better
reflect the database characteristics, i.e. they are a tool to improve the “cost
realism” of the models.

A set P of parameters are selected as factors determining the derivation and
use of the parametric model. In this paper we only consider variables with
discrete, nominal values, but the approach could be extended to discretized
numerical attributes as well.

P = {p1 . . . pn} pi /∈ C type(pi) = (vi
1, . . . v

i
ki

) (3)

Then, the clustering process is applied to partitions of the original project
database obtained from the possible combination of discrete values for all the
elements in P , i.e. any of the elements in the cartesian product p1 × . . . pn.
Obviously, the number of parameters and labels considered should be kept
small to make the procedure viable. In practice, the parameters considered
would require a previous assessment of relevance and of their relevance to
produce significant partitionings.

3 Evaluation

The parameters selected for the case study are the utilization of CASE tools
(CASET) and the application of a methodology (METHO) in the project,
which are factors considered in existing estimation models (Boehm, 1981).



For example, Baik et al. (Baik et al., 2002) estimates the influence of CASE
tool usage in final effort of 1.5 in productivity.

The ISBSG–8 project database was used for the empirical study. A correla-
tion analysis of these two variables with regards to effort and size measured
in function points yield values below ±0.1, so that there is no evidence of
strong dependency. The correlation coefficient CASET-METHO is positive
0.12, which can not be interpreted as a strong dependency either.

It should be noted that the model used here could also be used with other
existing defined parametric models. For example, if the COCOMO-II model
was selected, the clustering phase should take place before the calibration
process is carried out. Moreover, the calibration should be carried out for each
of the clusters obtained, and the analysis of influence of cost drivers could be
used to discard or include some of them in the final model.

The study reported here attempts to gather evidence about the influence of
well–known process or project attributes in the creation of segmented software
estimation models. The empirical method proceeds by carrying out two vari-
ants of the clustering process. On the one hand, all the projects in the database
were used as input to a one–step “blind” clustering process corresponding to
expression (2), without considering any process or project attribute. On the
other hand, the same process was applied to selected subsets of data (“tai-
lored”) corresponding to the pairs of label values of variables METHO and
CASET, as expressed in (3). The rest of this section reports the results and
discussion.

3.1 Data preparation

The entire ISBSG-8 database 5 containing information about 2028 projects
was used as the project database. The database contained information about
size, effort and many other project characteristics. The first cleaning step
was that of removing the projects with null or invalid numerical values for
the fields effort (“Summary Work Effort” in ISBSG-8) and size (“Function
Points”). Then, the projects with “Recording method” for total effort other
than “Staff hours” were removed. The rationale for this is that the other meth-
ods for recording were considered to be subject to subjectivity. For example,
“productive time” is a rather difficult magnitude to assess in a organizational
context.

Since size measurements were considered the main driver of project effort, the
database was further cleaned for homogeneity in such aspect. Concretely, the

5 http://www.isbsg.org/



projects that used other size estimating method (“Derived count approach”)
than IFPUG, NESMA, Albretch or Dreger were removed, since they repre-
sented smaller portions of the database. The differences between IFPUG and
NESMA methods are considered to have a negligible impact on the results of
function point counts (NESMA, 1996). Counts based on Albretch techniques
were not removed since in fact IFPUG is a revision of these techniques, simi-
larly, the Dreger method refers to the book (Dreger, 1989), which is simply a
guide to IFPUG counts.

3.2 Procedure

The unsupervised EM clustering algorithm (Dempster et al., 1977) was se-
lected based on the evidence of its appropriateness for the task reported else-
where (Garre et al., 2004). Nonetheless, the standard EM implementation used
(the one included in the WEKA Java libraries 6 ) assumes independent input
variables, which seems not justified given the various interrelationships that
common project attributes hold with each other. To overcome this potential
problem, a variant of the EM algorithm was coded as a C program, introducing
correlation matrices in the process of clustering.

The procedure for two parts of the study consisted in the following steps:

• In the “blind” clustering process, the entire database was given to the mod-
ified version of the EM algorithm.

• In the “tailored” clustering process, four partitions were prepared from the
database, corresponding to each of the possible boolean value combination
of the parameters considered. Projects with missing values in any or both
of these parameters were not considered, which resulted in a significantly
smaller databases. In the case of CASET, only the “Upper CASE” attribute
was used. The reason for this was twofold. First, the other CASE categories
resulted in small sized categories. And second, the CASE categories were
not considered similar enough to consider them together, since “Analysis
and Design” tools provide a very different kind of automated support than,
for example, coding support tools.

In both parts of the study, the models obtained from regression techniques were
subject to cross–validation following standard practices. The data assigned to
each cluster was randomly split into two sets called training (t) and validation
(v), respectively containing a 70% and a 30% of the data. Then, the measures
for each clusters are computed on both sets, as a standard means to validate
the goodness of adjustment. The measures of prediction accuracy used were
standard MMRE and PRED(.3) which are commonly accepted measures that

6 http://www.cs.waikato.ac.nz/ ml/weka/



MMRE PRED(.3) a b

with c.v. 2.81 0.23 7.6 1.07

without c.v. 0.88 0.027 14.5 0.4615
Table 1
Characteristics of the model for the entire database (without clustering)

reflect different aspects of the models (Dolado, 2001). Mean magnitude of
relative error (MMRE) is defined as (Conte et al. , 1996):

MMRE =
1

n

n∑

i=1

|ei − êi

ei

| (4)

where ei is the actual value of the variable and êi its corresponding estimate,
and n is the number of observations. Thus if MMRE is small, then the pre-
dictions can be considered as good.

Prediction at Level p where p is a percentage, is defined as the quotient of
number of cases in which the estimates are within the p absolute limit of the
actual values, divided by the total number of cases. For example, PRED(0.2)=
70 means that 70% of the cases have estimates within the 20% range of their
actual values.

Additionally, a small number of outliers have been removed after checking of
the distance from the mean of the clusters, as it is also common practice.

For comparison purposes, an overall model (1) was obtained from the en-
tire ISBSG–8 database. The measures of adjustment for this model with and
without cross–validation are showed in Table 6.

As it can be appreciated in the numbers in Table 6, the predictive properties
of a single-relationship model justifies the search for alternative parametric
approaches. Discussions on heterodestacity (Stensrud et al., 2002) point out
that clustering algorithms that deal with measures related to variance could
be candidates to break down the problem according to data characteristics.

3.3 Results and Discussion

Figure 1 depicts in loglinear scale the clusters obtained with the “blind” pro-
cedure, along with the overall non–cross-validated curve which parameters are
provided in Table 6. Table 2 provides partial and average measures for each
of the eight clusters. Globally, it can be appreciated that it provides much
better adjustment than overall models. However, it should be noted that the



clustering process could be applied recursively in several steps to improve ad-
justment, as described in (Garre et al., 2004), but this is not relevant for our
present comparative study.
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Fig. 1. Clusters obtained through the “blind” procedure

Figure 3–4 depicts in loglinear scale the clusters obtained with the “tailored”
procedure, and Table 3 provides the adjustment measures for the “tailored”
procedure, organized according to (METHO, CASET) pairs. Comparing the
results by cluster in both cases, it can be appreciated that the tailored tech-
nique results in clusters with a size below or equal 10. These are precisely
the clusters that have the worst adjustment properties. In the case of the
clusters for the set (nm, c), the two clusters can be merged, resulting in
curve parameters a = 54.49 and b = 0.6765, with MMRE[t/v]=0.66/0.53
and PRED(.3)[t/v]=0.27/0.66. In the case of the (m,c) number 3 cluster, the
cluster can be simply discarded, since the other two clusters in the set still
provide two divergent characterizations. The resulting overall measure after
these two changes is showed in Table 3.3 with the label Overall(∗). In addition,
it should be noted that the average predictive quality for the (nm, nc) set is
significantly better.

An important qualitative issue that should also be considered is that the cat-
egory (nm, c) represents projects in which an upper-CASE tool was used,
but no methodology was followed (including methods developed “in–house”).
This seems an uncommon configuration for projects, and in fact, the number
of projects registered is small, and their high dispersion results in poor adjust-
ment. This has lead us to discard this category from the analysis. The (m, c)
category has also a small number of points which also result in small clusters
and worse adjustment measures. Nonetheless, the parametric models obtained
are fairly different to those of the other clusters.
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Fig. 2. Clusters obtained through the “tailored” procedure with (nm, nc)

Cluster # # points MMRE [t/v] PRED(.3) [t/v] a b

1 152 .5/.51 .49/0.55 88.37 0.2883

2 183 .38/.45 .6/.67 1058 -0.1557

3 343 .3/.33 .6/.52 601.5 0.1825

4 226 .36/.48 .5/.56 7.552e4 -0.7427

5 115 .87/.89 .43/.32 3.451e6 -1.09

6 365 .26/.67 .75/.73 12440 -0.2624

7 209 .23/.21 .67/.71 9213 -0.03311

8 228 .97/.96 .35/.36 4.443e6 -0.8956

9 96 .66/.59 .26/.37 2.528e8 -1.218

10 29 .76/.68 .1/.28 3.210e10 -1.539

Overall .53/.58 .48/.51
Table 2
Blind clustering results and adjustment coefficients

The average measures of adjustment for the two studies can be considered as
of a comparable magnitude. In consequence, a first quantitative conclusion is
that the introduction of a priori knowledge result in similar overall predictive
characteristics, in the case of METHO and CASET (even though the size
of the database used in the second study is significantly). Nonetheless, an
analysis of the form of the clusters obtained leads to a different view on the
data.

The first important finding of the comparison is that the clusters from dif-



METHO, CASET Cluster # # points MMRE [t/v] PRED(.3) [t/v] a b

nm, nc 1 33 .39/.3 .375/0.55 229.7 0.2009

nm, nc 2 39 .26/.3 .71/.45 873.9 0.2014

nm, nc 3 28 .42/.31 .45/.625 87640 -0.4326

nm, nc 4 19 .57/.7 .23/.33 3.423e6 -0.7347

nm, c 1 10 .31/.4 0/.33 142.7 0.3985

nm, c 2 9 .42/1.2 .5/0 100.7 0.7064

m, nc 1 61 .76/.46 .35/.3 178.4 0.1841

m, nc 2 47 .66/.74 .41/.46 3497 0.09716

m, nc 3 116 .26/.23 .6/.49 699.9 0.202

m, nc 4 78 .27/.19 .62/.6 1356 0.2508

m, nc 5 69 .46/.66 .43/.44 35120 -0.2503

m, nc 6 29 .37/.87 .4/.33 4.565e5 -0.4006

m, c 1 18 .51/.66 .33/.16 0.147 1.527

m, c 2 20 .54/.64 .47/.4 2297 0.05899

m, c 3 9 .26/1.71 .66/0 1.572 1.242

Overall .43/.56 .44/.36

Overall(∗) .49/.51 .44/.43
Table 3
Tailored clustering results and adjustment coefficients

ferent a priori partitions have a considerable amount of overlapping, which
is consistent with the hypothesis that there is not a correlation between size
and use of CASE tools or methodologies, i.e. they are revealing underlying
aspects of the process that are significant to the creation of realistic paramet-
ric models. This consideration raises the need for a systematic study of the
potential impact of other variables, since the cost realism of the models could
be improved through such studies.

In second place, if the “blind” and “tailored” procedure would have resulted in
clusters with large degrees of overlapping, it may be argued that the differences
are not so relevant. Figure 5 provides an illustration that evidences that this is
not the case. In Figure 5, the clusters c1-c5 are the five first “direct” clusters,
and they are put into contrast with the three first clusters of the (m, nc)
“tailored” category. The rectangles are computed by obtaining the average
of each cluster, and adding and subtracting the standard deviation to that
“center value”, thus roughly characterizing the area of the points that would
be considered as part of the cluster. It can be appreciated that clusters c1



and c2 are to a great extent included in cluster 1 of (m, nc). This may be
interpreted as a similarity between the two procedures, since the mnc1 cluster
could be subject to an additional clustering, resulting in two partitions roughly
equivalent to c1 and c2. Nonetheless, the same pattern does not occur for the
rest of the clusters. It is particularly relevant the case of cluster c5, which
overlaps to some extent mnc2 but also mnc3 and others, and it does so with a
different configuration with respect to deviations on effort. An analysis of the
degree of overlapping of clusters using the respective γ(ci) procedures leads
to the conclusion that not in all the cases the segments can be considered as
similar or as decompositions of other.

Another interesting analysis in the same direction can be appreciated in Fig-
ure 3. The curve fitted to cluster (m, nc) number 4 is compared with the
overlapping “direct” cluster number 6 (both of them with reasonably good
adjustment measures as can be appreciated in the Tables above). The dif-
ferences between the two models are inverse in their growth, which indicates
divergent considerations on economies of scale (Dolado, 2001). This aspect
provides an stronger evidence that the use of a priori parameters bring up
aspects that are not considered in the blind approach.

In summary, the actual models that would be used in each of the approaches
differ significantly. This points out that the use of variables actually has a
significant influence in the resulting models.
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Fig. 3. Clusters obtained through the “tailored” procedure with (m, nc)
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Fig. 5. Overlapping of “direct” clusters 1-6 and “tailored” clusters (m, nc) 1-3

4 Conclusions and Future Work

The use of segmented models in parametric software cost estimation provides
an alternative to single–relation models for input domains that are large and
heterogenous. Segments can be obtained through clustering procedures that
consider project distributions and divergences in variance. Even though size
is considered to be the main driver of effort in software development, other
factors have also a significant influence. The comparative study described in
this paper has provided evidence about the influence of considering two well–
known process–related attributes as determinants of the clustering process.
Even though the measures of adjustment in the “direct” and “tailored” ap-



proaches do not differ significantly, the properties and form of the clusters
and models obtain are not assimilable to the same underlying characteris-
tics. This suggests that segmented models should first proceed by assessing
potential drivers of the clustering process to obtain more realistic estimation
frameworks.

From a pragmatic perspective, the approach described here provides two ad-
vantages over existing models. On the one hand, it provides a way to produce
parametric estimation models with improved predictive quality without ne-
glecting the consideration of specific relevant process attributes. And on the
other hand, the empirical analysis procedure followed can be used to study
and gain understanding on the influence of some project attributes for the
history of projects available.

There are two main directions for continuing the research presented here. On
the one hand, a comprehensive and detailed evaluation of the influence of
well–known cost drivers should be carried out to gather additional evidence
on the divergences between the two approaches. And on the other hand, other
clustering schemes or algorithms combining several of them should be experi-
mented with. The systematic study of cost drivers would provide insights on
the actual influence of them, serving as a means for assessing the appropri-
ateness of including them in parametric models. Furthermore, techniques to
compare the results of the clusters (e.g. their degree of overlapping) should be
applied in an attempt to gain insight on the actual similarities of clusters ob-
tained with and without consideration of pre-selected attributes. With regards
to continuing the work on the application of clustering techniques, in addition
to using other algorithms, a more thorough cross-validation procedure should
be used whenever enough volume of project data is available.

Further work is ongoing in experimenting other clustering algorithms for the
same problem. Concretely, algorithms that attempt to extract relationships
characterizing clusters like the M5’ could provide additional insight in obtain-
ing realistic and interpretable shapes for project clusters.
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