
1/3

Towards a Unified Query-By-Example (UQBE): UML as a basis
for a generic graphical query language.

Miguel Angel Sicilia Urbán
Dpto. Informática
Univ. Carlos III (Madrid)
msicilia@inf.uc3m.es

Elena García Barriocanal
Dpto. CC. Computación.
Univ. Alcalá (Madrid)
elena.garciab@uah.es

Juan Manuel Dodero Beardo
Dpto. Informática
Univ. Carlos III (Madrid)
dodero@inf.uc3m.es

Abstract. A generic graphical query language for ODMG-compliant object databases is proposed, based
on the ideas of Query-By-Example, and using UML-like diagrams as schema notation. Ease of learning
for users coming from the relational world and support for non object-oriented data sources are also
considered as design goals. The overall layout of the query language is described, illustrating its potential
expressive power via ODMG OQL comparisons.
Keywords. QBE, graphical query language, ODMG OQL, object database queries, UML.

1. UQBE: a simple graphical query language
for object databases.

Query-By-Example (QBE) is a graphical query language
for relational databases developed decades ago at IBM by
Moshe Zloof [1][2]. QBE is a complete domain calculus
language [3] and its expressive power is proved to be
equivalent to that of SQL [4]. Although it has been
included in a variety of commercial products, ranging from
mainframe character-terminal programs (like IBM OS/390
Query Management Facility [5]) to personal database
engines (like Borland’s Paradox [6]), it was originally
designed to be used “sitting at a terminal”. Modern Visual
Query Languages (like Inprise Visual Query Builder,
included in Borland Delphi) can also be considered as
descendants of the QBE philosophy, but they’re adapted to
modern workstation user interfaces. In this position paper
we present our initial results in the effort of designing a
graphical query language for object databases, called
Unified Query By Example (UQBE), based on the
underlying ideas of QBE, but designed for a modern
graphical user interface (GUI). Unlike other QBE-inspired
languages for the object world, like OOQBE [7], we have
designed a generic language, capable of supporting non
object-oriented data sources as well (we do not cover this
point here). UQBE design goals are the following: (a)
standards-based, (b) simple and intuitive (the way QBE is),
(c) strongly GUI-based and (d) easy to learn for users
coming from the relational world and capable of
supporting relational sources.

1.1. Related standards.
QBE queries are constructed by filling table skeletons
extracted from a relational database schema. We have
selected a similar approach by showing a class diagram,
extracted from the object database schema, and letting the
user fill some information to build his/her query. Given
that the Unified Modelling Language (UML) is becoming
mainstream in the software industry, we have selected
UML-like diagram elements as the UQBE notation, trying
to respect UML notation [8] as much as possible, but
adding the needed user interface elements. Other hand,

ODMG 2 Object Query Language (OQL), a textual
language based on SQL92 among other influences [9], is
the only non-vendor-specific query language for object
databases. The work presented here only deals with UQBE
definition, ignoring implementation issues and therefore,
we have only aimed to translate UQBE queries to OQL
text that can be used with commercial object databases1.
From here, we assume that we are making queries on a
database that supports ODMG 2.0 (or any equivalent
model), so we’ll use ODMG Object Model concepts (refer
to chapter 2 of [9]).

1.2. UQBE graphical interface
User interface design for UQBE is a mixture of QBE and
existing modelling tools like Rational Rose. In fact, UQBE
would ideally be packaged with a modelling tool capable
of importing object database schema. Figure 1 sketches
UQBE overall screen layout.

Figure 1. UQBE interface layout

A tree view on the left side shows the available database-
scope navigation entries for the database, namely, extents
and object names. The user opens the schema and can

1 Due to the generic nature of UQBE, we also support other kinds of data
sources through the use of Microsoft’s ActiveX Data Objects (ADO)
interfaces.

Database
entry points

UQBE
diagram

Conditions on
UQBE attribute
variables

2/3

drag-and-drop some of them from the tree-view to the
right pane, originating UML-like class boxes to be
displayed, along with its associations.
Object names can refer to any single object, literal, or
collection of any of them contained in the database. We
indicate the kind (single element or collection) of each
entry point with two UML stereotypes: <<collection>> or
<<singleton>>, since queries are different for any of them
(of course, extents are always collections). Class boxes
represent the class of the single object or the base class of
the collection (collection type is irrelevant in declarative
languages). Attributes of object type are showed via UML
associations with the corresponding type, and attributes of
literal type are showed as UML attributes, in order to draw
a clear distinction between querying elements inside an
object or elements reachable by link traversal. The user
can type expressions on the “conditions” window
regarding schema elements. Finally, the result of a query
can be an object or literal2, or a collection of them, which
are showed in a separate window3.

2. Simple queries.
Let’s first describe queries that don’t involve navigation
traversal. On a class box:
§ we can mark an attribute’s checkbox to select it

(equivalent to ‘P.’ QBE command), or the class’
checkbox to show all the attributes. Note that
checking the class returns a collection of database
objects, while checking attributes will give as a result
a query-generated collection.

§ we can type comparison expressions following
attribute names. The type of the attributes is showed
in the tree-view or via tool tips4.

§ We can specify collating order by typing numbers in
“spin edit” controls and selecting order from a combo
box (ASC, DESC or none).

The results of the query will show the selected attributes of
the object instances that satisfied the specified criteria,
with a tabular representation. Given a database with an
extent on class Cartoon5 (see Figure 2), we could select
attribute title, type a condition on attribute year to obtain
films after between 1950 and 1980 and another on title to
obtain films whose title begin with “An”, and select
primary and secondary sorting criteria. Generated OQL is
the following:
select x.title
from CartoonExtent x
where x.year > 1950 and x.year < 1980

and x.title like "An*"
order by x.year DESC, x.title

2 An ODMG literal differs from an object in that it has not object
identifier (OID); we only deal with atomic literals, and not collection or
structured ones.
3 Based on commercial tools like ObjectStore’s Object Inspector or
POET Developer that provide a spreadsheet-like navigable interface for
instances.
4 Small labels that appear when mouse pointer is paused on a user
interface element.
5 A sample database extracted from POET 6 OODBMS Trial Edition.

Figure 2. An UQBE query on a single class6.

We’ll obtain a collection of string literals as result.
We can also define variables by typing identifiers on the
attributes (like _y in Figure 2), and we can use them in
conditions. Conditions that affect multiple attributes of a
class must be typed in a separate “Conditions” list-box, as
in QBE conditions table. The semantics are the same as
QBE domain variables, and we have used the same
notation: the identifiers must start with an underscore. We
can also put one of the OQL aggregation operators (count,
sum, min, max, avg) on an attribute to obtain a single
literal with the corresponding summary data.

3. Navigating associations.
Associations between classes are showed by default in the
UQBE diagram. Since we execute queries only on entry
point elements, other classes reachable form it via
association traversal are automatically included (if the user
marked something on them). To form the OQL query, we
only need to build path expressions from that class to any
other class that is selected in the query, using schema
information. Figure 3 shows an UQBE query equivalent to
the following OQL sentence:

select film.title
from FilmExtent AS film, film.directors AS
director
where director.Name = "Avery, Tex"

4. Additional features.

4.1. Schema and instance update
Inserting an object in QBE is as simple as writing values
on the corresponding class box and clicking on the insert
button (this works also for association implicit collections,
and can be translated to construction OQL expressions). In
a similar way, we can delete instances on an entry point by
specifying a query and clicking delete button (instance
deletion doesn’t have a direct OQL translation). We have
decided to implement updates on individual objects in the
result window. Note that OQL lefts instance update to be
done via method execution.
We have left unimplemented schema definition and
update, since these manipulations are better handled from
a separate modelling tool.

6 Note insert, delete, filter and run buttons in the upper left corner and
“save query” button in the bottom.

3/3

Figure 3. An UQBE query involving association
traversal 4.2. Nested queries and method invocation.
To keep UQBE diagrams simple we have adopted a
compositional approach for nested queries. UQBE allows
the user to save a query and associate a name with it (these
named queries are showed in the UQBE tree view). After
that, the user can drag and drop that queries on the right
pane, and a class box will show representing the results of
the query (single instance or collection). The user can then
make a query on the result of a previous one, just like
he/she does on an entry point. The result is a nested OQL
query. Method invocation can be used in a similar way.
Method invocations that return a collection or single
instance can be saved as a named query, and additional
queries can be defined on them. The important point is that
method invocation result and query execution are treated
exactly as entry points, since they ultimately are defined
from one of them.

4.3. Filtering collections.
Any UQBE collection defined on a base class C can also
hold instances of any subclass of C. Filtering (sometimes
called dowcasting, as in [10]) is a very common operation
on collections that returns a new collection, with base class
one of the subclasses of the original collection.
Filtering is implemented in UQBE through hierarchy
buttons on collection class boxes. When we click one of
these buttons, a separate windows shows us the inheritance
hierarchy of the base class of the collection, letting us
select one of the classes (the filtering class, that appear as a
tool tip on the name of the extent). Actual filtering is done
by the UQBE interface, and it’s not specified in OQL.

5. Conclusions.
Our work establishes the basis for a simple graphical query
language based on UML that follows a very different
approach to object visual queries than the one provided in
languages that use a 3D virtual interface (a relevant
example is [11]) or a graph-based complex notation, like
Quiver [12]. UQBE is simpler, easier to implement, and
better suited for integration with existing modelling or
database administration tools.

In our first prototype, developed on Windows platform, we
have only covered a small portion of the complex OQL
syntax7 (we use POET OQL to test our prototypes, and it
only supports ODMG OQL select clause), and therefore
much work remains to be done. But we believe that a
restricted implementation like the one described here
brings some important benefits for the object database
market:
§ UQBE is a good choice for simple interactive queries,

or whenever the user is novice or comes from the
relational world.

§ UQBE can be used as a good teaching aid for object
database or object modelling basics.

§ Object database and modelling tool vendors would be
able to offer a common visual query language,
improving their user and administration suites.

A simplified version of UQBE can be used for relational
databases, making joins between collections by marking
the foreign key of a table (represented as a class) and the
key in the parent table with the same attribute variable
(just like in QBE). This generic design follows the spirit of
some “relational-compatible” ODMG constructs like
tables, keys and joins, and facilitates transition from the
relational paradigm.

6. References
[1] Zloof , M., “Query By Example”, NCC, AFIPS, 44, 1975.
[2] Zloof , M., “QBE: A Language for Office and Business
Automation”, Computer, pp.13-22, May 1981.
[3] Ullman, J.D, Principles of databases systems, Second Edition,
pp. 207-209, Computer Science Press, 1982.
[4] McLeod, D., “The translation and compatibility of SEQUEL
and Query By Example”, Proc. Intl. Conf. Software Engineering,
San Francisco, CA, 1976.
[5] IBM, “Using QMF Version 3 Release 3”, Document Number
SC26-8078-01”, April 1997, Appendix 1.1.10.
[6] Prestwood, M. A., Corel Paradox 9 Power Programming,
Osborne/McGraw-Hill, August 1999, chapter 11.
[7] Staes F., and L. Tarantino, "OOQBE*: An Intuitive Graphical
Query Language with Recursion", Human-Computer Interaction:
Software and Hardware Interfaces, Vol. 19B, (Salvendy, G., ed.),
Elsevier, 1993.
[8] Object Management Group (OMG), “Unified Modelling
Language Specification”, Version 1.3, June 1999, available at
www.omg.org.
[9] Cattell, R. (Editor) et al, The Object Database Standard:
ODMG 2.0, Morgan Kaufmann Series in Data Management
Systems, Morgan Kaufmann Publishers, June 1997.
[10] Blaha, M. and Premerlani, W., Object-Oriented Modeling
and Design for Database Applications, Prentice Hall, 1997,
p.101.
[11] Murray,N. “Kaleidoquery: A Visual Query Language for
Object Databases”, Proc. of Advanced Visual Interfaces,
L'Aquila, Italy, May, 25-27, 1998.
[12] Chavda, M., Wood, Peter T., “Towards an ODMG-
compliant Visual Object Query Language”, Proc. 23th Intl. Conf.
on Very Large Databases, Athens, Greece, 1997.

7 In addition, ODMG 3 standard has been recently published.

